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ABSTRACT 
i 

I investigate the role of nonrenormalizable terms, up to order N=S, in a super- 

string derived standard-like model. I argue that nonrenormalizable terms restrict 

the gauge symmetry, at the Planck scale, to be SU(3) x S U ( 2 )  x U( ~ ) B - L  x U( 1 ) ~ ~ ~  

rather than SU(3) x S U ( 2 )  x U ( 1 ) y .  I show that breaking the gauge symmetry 

directly to the Standard Model leads to breaking of supersymmetry at the Planck 

scale, or to dimension four, baryon and lepton violating, operators. I show that 

if the gauge symmetry is broken directly to the Standard Model the cubic level 

solution to the F and D flatness constraints is violated by higher order terms, while 

if U(l)zt remains unbroken at the Plancli scale, the cubic level solution is valid 

to all orders of nonrenormalizable terms. I discuss the Higgs and fermion mass 

spectrum. I demonstrate that realistic, hierarchical, fermion mass spectrum can 

be generated in this model. 
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1. Introduction 

1. 

Superstring theories [l] are believed to provide a consistent framework for the 

unification of all the known fundamental interactions. The superstring unification 

scale is at the Planck scale. At the electroweak scale the Standard Model is in 

good agreement with experimental observations. However, the Standard Model, 

and point field theories in general, leave many problems unresolved. Among them, 

the origin of the number of generations, the origin of Yukawa couplings and their 

hierarchy, quantum gravity, etc. These problems find natural solutions in super- 

string theories. Thus, an extremely important task is to connect the superstring 

with the Standard Model. 

Two approaches can be pursued to derive the Standard Model from the su- 

perstring. One is to use a G U T  symmetry at an intermediate energy scale. Many 

attempts have been made in this direction and most notable are the flipped SU(5)  
[2,3] and the SU(3)3  models [4]. The second approach is to derive the Standard 

Model directly from the superstring without any non-abelian gauge symmetry 

at an intermediate energy scale [5,6,7,8,9). In refs. [7,8,9] realistic standard-like 

models were cohstructed in the free fermionic formulation [lo], with the following 

properties: 

Three and only three generations of chiral fermions. There are no additional 

generations and mirror generations which presumably get massive at a high scale. 

This property of the standard-like models leads to an unambiguous identification 

of the different generations. 

2. The gauge group is SU(3)c x s U ( 2 ) ~  x U ( ~ ) B - L  x U ( ~ ) T ~ ~  x U(1)” x hidden. 
n reduces to one or zero after application of the Dine-Seiberg-Witten (DSW) 
mechanism. The U(l)zl = $ U ( ~ ) B - L  - z U ( l ) ~ , ,  2 combination may be broken 

at the Planck scale, by the DSW mechanism. If it remains unbroken down to low 

energies, it results in a gauged mechanism to suppress proton decay from dimension 

four operators [11,12]. 

3. There are enough scalar doublets and singlets to break the symmetry in a realistic 
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way and to generate realistic fermion mass hierarchy [8,9]. 

4. Proton decay from dimension four and dimension five operators is suppressed due 

to gauged U(1) symmetries [9]. 

5. These models suggest an explanation for the top-bottom mass hierarchy. At the 

trilinear level of the superpotential, only the top quark gets a non vanishing mass 

term. The mass terms for the bottom quark and for the lighter quarks and leptons 

are obtained from nonrenormalizable terms. Thus, only the top quark mass is 

characterized by the electroweak scale and the masses of the lighter quarks and 

leptons are. naturally suppressed [8,9]. The top-bottom mass hierarchy is correlated 

with the requirement of a supersymmetric vacuum at the Planck scale [7,8,9]. 

In this paper I examine the role of nonrenormalizable terms in these models. 

For finiteness, I focus on the model of Ref. [7 ] .  Nonrenormalizable terms are 

expected to play an important role in the low energy phenomenology of these 

models. I show that because of nonrenormalizable terms the favored observable 

gauge symmetry at the Planck scale is SU(3)c x s U ( 2 ) ~  x U ( ~ ) B - L  x U ( ~ ) T ~ ~ .  I 
show that in this case the solution to the cubic level F and D flatness constraints 

is obeyed to all orders. In contrast if the gauge symmetry is broken directly to 

the Standard Model, a t  the Planck scale, the cubic level constraints are violated 

by higher order terms. Moreover, I illustrate that breaking of the gauge symmetry 

directly to the Standard Model may induce dimension four operators which mediate 

rapid proton decay. I suggest that these considerations restrict the possible gauge 

symmetry at the Planck scale to be SU(3)c  x SU(2)r.  x U ( ~ ) B - L  x U ( I ) T ~ ~ .  

Furthermore, they may nessecitate the existence of an additional neutral gauge 

boson at low energies, with U ( 1 ) z f  = ~ U ( ~ ) B - L  1 - i U ( 1 ) ~ ~ ~ .  I discuss the Higgs 

and fermion mass matrices in this model. I show that this model can generate 

realistic,hierarchical fermion mass spectrum. 

The paper is organized as follows. In section 2, I review the model and its 

symmetries. I discuss the rules for obtaining the non vanishing nonrenormaliz- 

able terms and emphasize the special properties of the standard-like model which 
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simplify the analysis. In section 3, I discuss the F and D flatness constraints. In 

sections 4 and 5, I discuss the implications of nonrenormalizable terms on proton 

decay and on the fractionally charged states. In sections 6 and 7, I discuss the 

Higgs and fermion mass matrices. Section 8 concludes the paper. 

2. The superstring model 

The superstring model is constructed in the free fermionic formulation [lo]. The 

model is generated by a basis of eight boundary condition vectors. The first five 
vectors in the basis consist of the NAHE t set, { l 7 S , b l , b 2 , b 3 }  [2,16,9]. This set is 

common to all the realistic models in the free fermionic formulation [2,6,14,7,8,9]. 

The important functions of the NAHE set are emphasized in Ref. [16,9]. The three 

vectors that extend the NAHE set and the choice of generalized GSO coefficients 

are given in table 1. The notation in the table emphasizes the division of the 

internal fermions according to their division by the NAHE set. In particular, it 

emphasizes the diirision and assignment of boundary conditions to the set of real 

fermions {yi,wiliji,Wi} ( i  = l , . . .  ,6). The boundary conditions for this set of 

internal fermions determine many of the properties of the low energy spectrum [9]. 

- 

*- 
-, 

The gauge group after application of the generalized GSO projections is 

Observable* : SU(3)c x U ( l ) c  x s U ( 2 ) ~  x U ( ~ ) L  x U(1)6 

Hidden' 

The weak hypercharge is uniquely given by U ( 1 ) y  = i U ( l ) c  + i U ( 1 ) ~ .  The 

: s U ( 5 ) ~  x s U ( 3 ) ~  x U(1)2. 

orthogonal combination 'is given by U(l)zl = U ( l ) c  - u(1)~ .  In the observable 

sector there are six horizontal U ( 1 )  symmetries. The first three, U(1)j ( j  = 1,2,3), 

correspond to the right-moving world-sheet currents i j1i j ; ,  i j2 f j ;  and i j 3 i j ; .  The last 

three, U (  l)r,+3 ( j  = 1,2,3), correspond to the right-moving world-sheet currents, 
, 

t This set was first constructed by Nanopoulos, Antoniadis, Hagelin and Ellis, in the con- 
struction of the flipped SU(5) ,  nahe =pretty in Hebrew. 

* U U ) C  = $ W ) B - L ,  U ( 1 ) L  = $u(l),R. 
# Hidden here means that the states which are identified with the chiral generations do not 

transform under the hidden gauge group [16]. 
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ij3y6, ij1G5 and G2G4, respectively. For every right-moving U( 1) symmetry cor- 

respond a left-moving global U(1) symmetry. The first three correspond to the 

charges of the supersymmetry generator x12, x34 and xS6. The last three, U(l)12+3 

( j  = 1,2 ,3) ,  correspond to the complexified left-moving fermions y3y6, y1w5 and 

w2w4. Finally the model contains six Ising model sigma operators which are ob- 

tained by pairing a left-moving real fermion with a right-moving real fermion, 
1-1 2-2 3 - 3  4-4 5-5  4 = {w w ,Y Y , w  w ,Y Y ,Y Y ,w6G6)* .  

The full massless spectrum is analyzed by using a FORTRAN program. The 

program takes as input the basis vectors B = {bl ,  - e ,  bs),.and the GSO coeffcients 

c ( ::), (i, j = 1,. . , 8). The program checks the modular invariance rules, spans 

the additive group f = cj njbj; ( j  = 1, - .  * , S), selects the sectors in Z which lead 

to massless states and performs the GSO projections. It calculates the traces of the 

of the U(1) symmetries and evaluates the quantum numbers of the massless states 

under all the symmetries in the model. This output is read by subsequent programs 

which can analyze the superpotential up to any order (the limit being a sensible 

CPU time limit). This program enables a thorough exploration of a wider range 

of models rather than specific isolated examples. Combined with the conformal 

field theory techniques for evaluating corralators between vertex operators, and 

the Renormalization Group Equations (RGE), it provides powerful machinery for 

studying the phenomenology of the superstring models. 

The following massless states are produced by the sectors b1,2 ,3 ,  S+bl +b2+cr+P, 

0 and their superpartners in the observable sector: 

(a) The massless spectrum contains three generations of chiral fermions from 

, 3 ) ,  the sectors b l ,  b2 and b3: G, = e t a  t u t a  + N i a  + d i  + Q ,  + La ( a  = 1, - 
where 

, 
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of SU(3)c x U ( l ) c  x s U ( 2 ) ~  x U ( ~ ) L ,  with charges under the six horizontal U(1)s. 

From the sector bl we obtain 

from the sector b2 

and from the sector b3 

The vectors b l ,  b2 and b3 are the only vectors in the additive group Z that produce 

spinorial 16 of SO(l0) .  This is in contrast to the case in which the SO(10) sym- 

metry is’broken to S U ( 5 )  x U(1) [2] or to SO(6) x SO(4)  [14]. There the massless 

spectrum contains additional 16 and l-6 multiplets. The fact that there are exactly 

three generations, without any extra generations and mirror generations, is unique 

to the choice of SU(3)  x SU(2)  x U ( l ) c  x U( 1 ) ~  as the observable gauge symmetry 

at the level of the spin structure. This property of the standard-like models leads 

to an unambiguous identification of the hierarchical generations. 

(b) The S + bl + b2 + Q + p sector gives 

(and their conjugates h45, etc.). The states are obtained by acting on the vacuum 

with the fermionic oscillators 44,5, $‘1-.j3, q 3 ,  ij3&tij6, i j 1 f i W 5 ,  ( s 2 f i W 4 ,  respectively 

(and their complex conjugates for $45, etc.). 



(c) The Neveu-Schwarz 0 sector gives, in addition to the graviton, dilaton, 

antisymmetric tensor and spin 1 gauge bosons, the following scalar representations: 

Electroweak doublets and singlets: 

(and their conjugates 61, etc.). Finally, the Neveu-Schwarz sector gives rise to three 
12-3 -6  
2 2 2  

singlet states that are neutral under all the U(  1) symmetries. [1,2,3 : xL wLwL 
34-5 -1 56 -2 -4 
2 2 2  P 2  

x i  YLWLlO)O,  x1 Y L Y p ) o .  

The sectors bi + 27 + ( I )  (i = 1 , . . , 3 )  give vector representations which are 

SU(3)c x s U ( 2 ) ~  x U ( ~ ) L  x U ( l ) c  singlets (see Table 1). The vectors with some 

combination of ( b l ,  b2, b3, cy, p)  plus y + ( I )  (see Table 2) give representations which 

transform under SU(3)c x s U ( 2 ) ~  x U ( ~ ) L  x U ( l ) c ,  most of them singlets, but 

carry either U (  1)y or U( l)zl charges. Some of these states carry fractional charges 

or i$. There are no representations that transform nontrivially both under 

the observable and hidden sectors. The only mixing which occurs is of states 

that transform nontrivially under the observable or hidden sectors and carry U(  1) 

charges under the hidden or observable sectors, respectively. 

The non vanishing trilevel terms in the superpotential of the model are 
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where a common normalization constant a g  is assumed. 

Nonrenormalizable contributions to the superpotential are obtained by calcu- 

lating corralators between vertex operators 

A N  - (V[V,fV,b - V i ) ,  (6 )  

f (y*)  are the fermionic (scalar) components of the vertex operators. The where 

non vanishing terms are obtained by applying the rules of Ref. [15]. To obtain the 

correct ghost charge some of the vertex operators are picture changed by taking 

Vb+l (Z)  = wu 'z  lim e . P ( c ) ( q F ( w ) v q ( z ) ,  

where TF is the super current and in the fermionic construction is given by 

6 

TF = $'aPX + i ~ x , y , w ,  = T: + TF1 + Tgl 
I = 1  

with 
. 12 

rI2 + T34 + e - i~56756  ; T;I = (T;I)* T' 1 = e-'X 

where T , ~  = 1 -(y'w' . .  + y j w j )  and ex'J - L ( x i  + ;xi). Jz -Jz 
Several observations simplify the analysis of the potential non vanishing terms. 

First, it is observed that only the T$l piece of TF contributes to AN [15]. Second, 

in the standard-like model the pairing of left-moving fermions is y1w5, w2w4 and 

y3y6.  One of the fermionic states in every term y'w' (i = 1, ..., 6) is complexified 

and therefore can be written, for example for y3 and y6, as 

Consequently, every picture changing operation changes the total U (  l ) e  = U (  l)e, + 
U ( l ) ! ,  + U ( l ) ,  charge by f l .  An odd (even) order term requires an even (odd) 
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number of picture changing operations to get the correct ghost number [15]. Thus, 

for AN to be non vanishing, the total U(l)e  charge, before picture changing, has 

to be an odd (even) number, for even (odd) order terms, respectively. Similarly, in 

every pair yiwi, one real fermion, either yi or wi, remains real and is paired with the 

corresponding right-moving real fermion to produce an king model sigma operator. 

Every picture changing operation changes the number of left-moving real fermions 

by one. This property of the standard-like model significantly reduces the number 

of potential non vanishing terms. 

3. F and D constraints 

The massless spectrum of the superstring model contains six anomalous U (  1) 

symmetries. Of the six anomalous U (  1)s only five can be rotated by an orthogonal 

transformation and one combination remains anomalous. The six combinations 

can be taken as [7] 

The anomalous U(1) generates a Fayet-Iliopoulos D-term by the VEV of the 

dilaton field. Such a D-term, in general, breaks supersymmetry. Supersymmetry 

is restored if there exist a direction in the scalar potential 4 = xi which is F 
flat and also D flat with respect to the non anomalous gauge symmetries and in 

which xi Q41c~i1~ < 0. If such a direction exists, it will acquire a VEV, canceling 

the anomalous D-term, restoring supersymmetry and stabilizing the vacuum [17]. 

Since the fields corresponding to such a flat direction typically also carry charges for 

the non anomalous D-terms, a non trivial set of constraints on the possible choices 
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of VEVs is imposed. It is, in general, a non trivial problem to find solutions to the 

set of constraints. 

The set of constraints is summarized in the following set of equations, 

where xk are the fields that get a VEV and Q i  is their charge under the U(1)j 
symmetry. The set {vi} is the set of fields with vanishing VEV. 

In the standard-like models the solutions to the set of F and D constraints divide 

into two kindslof solutions. Solutions which break U(l)zl  and those which do not. 

Only the Neveu-Schwarz sector and the bl + b2 + CY + ,8 sector produce SO(10) 

singlets with negative QA.  Therefore, only these sectors contribute to solutions 

which keep both U(1)y and U(l)z l  unbroken at the Plank scale. For solutions 

which break U(l)zt ,  the  states from the sectors b1,2 + b3 + Q + y f ( I ) ,  and the 

states { N l ,  N2, N3) from the sectors b l ,  b2 and b3, can obtain a VEV as well. These 

states have vanishing weak hypercharge but non vanishing U( l)zj charge. 

The F flatness conditions derived from the cubic superpotential are 
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For equations (13b) - (13d) the barred equations have to be taken as well. In 

addition to these equations we have 12 constraints of the form H<. The total 

number of F flatness constraints results in 35 equations. 

I focus first on solutions which do not break U(1)zI. I show that in this case the 

cubic level solution is obeyed to all orders of nonrenorm.alizable terms. I demon- 

strate that solutions which break U(l)zl  do not hold to all orders. 

For solutions which do not break U(l)zl ,  ( H )  = 0. Therefore, the choice 

satisfies the cubic level F constraints. I also impose ( @ 2 3 , 6 4 5 )  = 0. In this case 

the set of cubic.leve1 F constraints reduces to 
i 

-- - a 4 5 6 4 5  + ipf6f + a:&- = 0 dW 
a t 3  

3 1  

where W is the cubic superpotential and summation on repeated indices is implied. 

I now turn to discuss the implication of nonrenormalizable terms on the cubic 

level F flatness constraints. The order N terms that have to be investigated are of 

the form 

(( ap)j ( N S )  N - j )  

where ( N S )  denotes fields which belong to the Neveu-Schwarz sector and (ap) 

denotes fields that belong to the sector bl + b2 + Q t p. Without loss of generality 
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we can choose two of the (ap) fields to be the two space-time fermions in these 

corralators. The N = 2 world-sheet global U(1) charges, ( X , ~ , X ~ ~ , X ~ ~ ) ,  for the 

(ap) fields are (O,O, 3) for fermions and (-f, -+, 0) for scalars. All the Neveu- 

Schwarz fields in Eq. (16) are scalar fields, with charges x,, = 0 or -1. Of 
the Neveu-Schwarz singlets, only @12, 6 1 2  and (3 carry U(l)c, charges. We can 

always choose a basis in which the xs6 charge of these fields is picture changed to 

zero. The picture changing operation on the (a@) scalars can only change them 

to (.ti,kf,O). Therefore, all the terms of the form of Eq. (16) are not invariant 

under U( l)e,.  The conclusion is that all these terms vanish identically to all orders. 

Thus, in models with SU(3)c x s U ( 2 ) ~  x U(1)B-L  x U ( ~ ) T , ~  gauge symmetry 

at the Planck scale the cubic level F flatness solution is valid to all orders of 

nonrenormalizable terms. 

I now turn to show that in models with broken U(l)zl, at the Planck scale, the 

cubic level solution is violated by higher order terms. As an illustrative example I 
take the.solution that was found in Ref. [7 ] .  With the set of non vanishing VEVs, 

(H23, H l g , & ,  @ 4 5 , 5 2 3 ,  @:, @;}, Eqs. (12) have the solution, 

This set breaks the observable gauge symmetry to SU(3)c x s U ( 2 ) ~  x U(1)y. This 

solution obeys the cubic level F and D flatness constraints. At  order seven we find 

the following non vanishing term, 

Thus the cubic level constraint E E 0 is violated. Moreover, if ( 2  gets a Planck 

scale VEV the superpotential receives a contribution of O(Mpl)  and W # 0. There- 

fore, in models with broken U(l)zl the cubic level solution is violated by higher 

order terms, while in models with unbroken U(1)p  the cubic level F flatness solu- 

tion is valid to all orders. I would like to emphasize that giving a VEV to any pair 
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of singlets from the sectors b1,2 t b3 t CY + y f ( I )  leads to a violation of the cubic 

level F flatness solution at the quintic or N = 7 orders. We could contemplate 

giving a VEV to one of the three Standard Model singlets in the 16 of SO(lO), N l ,  

N2 or N3 and, for example, to  H23. In this case F violating terms do not appear 

up to N = 7, but may appear at orders higher than N = 7 .  However, as I show 

in the next section giving a Planck scale VEV to N1, N2 or N3 leads to problems 

with proton decay. 

The number of flat directions is larger than the number of constraints. There- 

fore, the solution to the F and D constraints is not unique.. However, once a specific 

choice has been made, the phenomenology of the model is determined. In what fol- 

lows bellow I focus on one illustrative example. An explicit solution which satisfies 

all the F and D constraints is given by the following set of non vanishing VEVs 

with 
-.- 

4. Dimension four operators 

In this section I show that nonrenormalizable terms induce effective dimension 

four operators which may result in rapid proton decay. It is well known that the 

most general supersymmetric standard model gives rise to dimension four opera- 
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tors, which induce rapid proton decay, 

c c c  
V ~ U L ~ L ~ L  + w&QL 

where generations indices are suppressed. If 71,772 are of O( l),  the proton will decay 

instantly. These dimension four operators are forbidden if the gauge symmetry of 

the Standard Model is extended by an additional U ( 1 )  gauge symmetry which is a 

combination of B-  L ,  baryon number minus lepton number, and T3R [2 ] .  This U( 1 )  

symmetry is exactly the U (  l )p  which is derived in the superstring standard-like 

models. The dimension four operators may still appear from the nonrenormalizable 

terms, 

c c c  c W ( U L ~ L ~ L N L  -t ~ ( d f & L N f ) @  

where @ is a combination of fields that fixes the string selection rules [3] and gets a 

VEV of O(rnpl), and N f  is the Standard Model singlet in the 16 of SO(l0). Thus, 

the ratio 0 M p l  controls the rate of proton decay. In the standard-like model, the 

following non vanishing terms appear at order N = 6, 

In section 7, I will show that the states in G3 have to be identified with &he 

lightest generation. From Eqs. (20)  and ( 2 1 )  it is evident that if any of N1, N2 or 

N3 gets a Planck scale VEV, dimension four operators are induced, which result in 

rapid proton decay. Thus, we conclude that ( N l ,  N2, N3) 0 at the Planck scale. 
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Moreover, since the coefficients in front of the terms in Eqs. (21) are expected to 

be of order one [15], a possible VEV for N1,2,3 has to be well below the GUT scale. 

This result, combined with the result of the previous section, show that models 

with an SU(3)  x SU(2)  x U ( ~ ) B - L  x U ( ~ ) T , ~  observable gauge symmetry, at the 

Planck scale, are favored over models with SU(3)  x S U ( 2 )  x U(1)y. 

5 .  Fractionally charged states 

The massless spectrum of the superstring model contains the following singlet 

states with fractional charge k;, 

These states do not transform under any of the non abelian gauge groups in the 

model. Therefore, they are not confined by any non abelian gauge symmetry. 

While many experimental searches for fractional charges have been conducted, no 

reported observation of a fractionally charged state has ever been confirmed and 

there are upper bounds on the abundance of any such particle in the range of lo-'' 

to [18] of the nucleon abundance for charges between 5 and 1. This may be a 

fundamental property of nature or merely an accidental property of the low energy 

spectrum that we have been able to observe so far. Indeed, fractionally charged 

particles may exist provided they are sufficiently heavy or sufficiently rare. 

In the superstring standard-like model the following mass terms for the frac- 

tionally charged states are obtained from nonrenormalizable terms, 

From Eq. (23b) and Eq. (23c) we learn that H7H8 and H11H12 acquire a large 

mass by the non vanishing VEV of the fields {[I, [ 2 ,  3 ,  at2}. Since @c2 3, 'Pl2 
> I  1 9  

14 



obtain a Planck scale VEV the mass scale of these fractionally charged singlets is 

determined by the VEV of (1, ( 2 .  

The term H3H4@?@;@12 induces an effective mass term H3H4@12 

where M ,  (a?) and (a$) are O(Mpi ) .  This term will give a heavy mass term to 

H3H4 by the VEV of @ 1 2 .  According to the F and D flatness solution, this VEV 

vanishes at the Planck scale, and is constrained by the yet unknown mechanism 

for supersymmetry breaking. Thus, @ 1 2  may obtain a VEV which is still tolerated 

by the requirement of N = 1 space-time supersymmetry, giving a superheavy 

mass to H3H4, which is beyond the reach of present accelerators. Similarly, the 

From 

Eq. (15a) (!$'!$f) is O(M&).  Therefore this term is an effective mass term for 

H29H30 by the VEV of @12. 

term H29H30!$+Gr@12 induces an effective mass term H29H30-*-@12. G++- 

This result illustrates that all the fractionally charged states are expected to 

decouple from the low energy spectrum. Since all the fractionally charged states 

appear in vector-like representations this result is expected. The exact mass scales 

can only be determined by resolving the problem of supersymmetry breaking in 

these models. 

6. Higgs inass matrix 

The light Higgs spectrum is determined by the massless eigenstates of the dou- 

blet Higgs mass matrix. The doublet mass matrix consists of the terms h ih j (Qn) ,  

and is defined by h E ( h f h ) i j h j 7  i , j  = 1 ,2 ,3 ,4  where hi = (h17h2 ,h3 ,h45)  and 

h; = ( h l ,  h 2 ,  h3, &) .  At the cubic level of the superpotential the Higgs doublets 

mass matrix is given by, 

The matrix Mh is diagonalized by SMhTt where S and T are two unitary 
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matrices and (sMhTt)ij = mibij. It follows that S M M t S  = T M t M T  = 1m12. 

The h and h mass eigenstates are obtained by evaluating the eigenvalues and 

eigenstates of M M i  and M t M ,  respectively. The mass eigenvalues are given by 

The h mass eigenstates are given by 

hi = ( O ,  O , O ,  1); 

and the h mass eigenstates are given by 

- 1  6 1 3  
=(l, o,o,  --); 

a 4 5  

Equations (25), (26) and (27) show that at  the cubic level of the superpotential 

there are two pairs of light Higgs states. The number of light Higgs pairs is reduced 

by taking into account higher order terms in the superpotential. For example at 

the quintic level we obtain the following non vanishing terms 

These additional terms reduce the number of light Higgs pairs to one pair. For 

example, if (H25) - (H26) N 1014GeV, one of the light pairs receives a mass of 
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U(1O"GeV). At order N = 7 we obtain additional terms which may make the 

extra pair massive without breaking U (  l)zf. The remaining light combinations 

depend on the specific entries in the Higgs mass matrix which become non zero 

and is highly model dependent. For example, if the 12 entry in equation (24) is non 

zero, the two light Higgs eigenstates will consist of h45 and a combination of 51 and 
- 
h45. Below I assume that only one pair of Higgs doublets remain light. However, I 
do not make a specific assumption as to what are the exact light eigenstates, but 

rather assume that the light pairs may contain any of the states that remain light 

at  the cubic level. The purpose in doing so is to try to learn general properties 

of the light spectrum rather than details which depend on specific choices of flat 

directions. From equations (26) and (27) it follows that h3 and 6 3  do not appear in 

the light eigenstates. Therefore the light eigenstates may contain only ( h l ,  h2, h45) 

and (%I, 52 ,545) .  The absence of h3 and 63 from the light eigenstates results in 

G3 being identified with the lightest generation. As I show in the next section, 

the states in C3 do not couple directly to the light Higgs eigenstates. Therefore, 

diagonal mass terms for G3 do not appear up to N = 8. Consequently, after 

diagonalization of the mass matrices, the states in G3 will be the largest component 

in lightest generation states. 

7. Fermion masses 

One of the most fundamental problems in high energy physics is the origin and 

hierarchy of the fermion masses. In this respect the Standard Model, and point field 

theories in general, can only be considered as successful attempts to parameterize 

the observed mass spectrum. Superstring theory gives a unique framework to 

understand the fermion mass hierarchy in terms of symmetries which are derived 

in specific models, unlike point field theories where the symmetries have to be 

imposed by hand. Therefore it is important to examine the structure of the fermion , 

mass matrices in specific superstring models [19]. 

The class of superstring standard-like models is an especially restrictive class of 
models in which the fermion mass spectrum can be examined. A unique property 
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of the standard-like models is the possible connection between the requirement of 

a supersymmetric vacuum at the Planck scale, via the DSW mechanism, and the 
heaviness of the top quark relative to the lighter quarks and leptons. The only 

standard-like models which admit a solution to the set of F and D constraints 

are models in which only +: charged quarks obtain trilevel Yukawa couplings. 

Application of the DSW mechanism leaves a trilevel mass term only to the top 

quark. The mass terms for the lighter quarks and leptons must come from higher 

order, nonrenormalizable, terms. These terms become effective mass terms for the 

lighter quarks and leptons by applying the DSW mechanism, and are naturally 

suppressed .relative to the trilevel top Yukawa coupling. A second property, unique 

to the standard-like models, is the fact that the massless spectrum contains only 

three light generations. There are no extra generations and mirror generations 

which become superheavy at  some high scale. This property of the standard-like 

models eliminates the ambiguity in the identification of the different generations 

that exist in other realistic superstring models [2,14]. 
$ 

The top quark mass term is obtained from XtulQlhl. At the quartic level there 

are no potential mass terms for the quarks and leptons. At the quintic level, the 

following mass terms are obtained 

At this level potential mass terms for the heaviest down quark and charged lepton 

are obtained, d1&1h45@:(2, elL1h45@;<2. From the solution to  the F an& D 
constraints = I@;/. Therefore, A b  = A, at the unification scale. However, 

the VEV of f2  is not determined by the F and D constraints and is left as free 

parameter. 
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The charm quark obtains a mass term from u292hl(&f6;). The charm quark 
mass is suppressed by Iw relative to the top quark mass. The suppression 

factor is expected to be of about two orders of magnitude. If we take (&)#O at 

the unification scale, dzQzh456yG and ezLzh456;(1 can give mass terms to the 
strange quark and to the muon lepton. According to Eq. (20), 6; = (6 7 I+&)+ 6o 

and 6; = 0. Therefore according to this solution only the strange quark get mass 

from this term. A modified solution which includes 6;#0 will give a mass term 

to the muon lepton as well. At this level the states in G3 do not receive any mass 

terms. Therefore, G3 is identified with the lightest generation. 

At every increasing order of nonrenormalizable terms the number of potential 

non vanishing terms increases exponentially. A search up to N = 8 was performed. 

Several observations simplify the analysis. First, there is no component of h3 

or 6 3  in the light Higgs representations. Second, there are several scales in the 

model. The leading scale correspond to the VEVs of singlets fields. There are two 

non abelian hidden gauge groups s U ( 5 ) ~  x s U ( 3 ) ~ ,  with matter in fundamental 

representations (see tables 2,3). These hidden gauge groups produce two additional 

scales in the model, which correspond to the scales at which their couplings. become 

strong. I assume that A5 >> A3. 

A2 At order N = 6 all the up quark mass terms are suppressed by at least -&. 
There are no diagonal mass terms for the states in G3. In the down quark and 

charged lepton sectors we obtain the following leading terms, 

At order N = 6 we obtain generational mixing in the down quark sector and 

in the charged lepton sector. In the quark sector the mixing is proportional to 
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A2 A2 +. In the leptonic sector it is proportional to -$+. It may be possible, (and 

desirable) to reverse this result by changing some of the generalized GSO phases. 

The importance of this result is to show that generational mixing is obtained. The 

symmetry between the down quark and charged lepton sectors is broken as the 

relative magnitude of the mixing is related by 3. 
A2 

A:H 

At order N = 7 we obtain the following leading terms. In the down quark 

sector all the generational mixing terms are proportional to +, and are a small 

correction to the sixth order terms. Similarly, there are small corrections, of order 

A: 

one percent (assuming cp - &) to the diagonal quintic order terms. There is no 

diagonal term of the form d3Q3h or e3L3h. 

In the up quark sector we obtain non vanishing generation mixing terms. Here 
A: I list only the leading terms which are proportional to +. 

with additional terms, obtained by replacing hl by h p .  At order N = 8 genera- 
A: tional mixing which is proportional to ~, appears in the down quark sector. Up 

to level N = 8 the diagonal mass terms for the states in G3 are suppressed by 

at  least (M$”y)2 .  Therefore, these states are identified with the lightest genera- 

tion states. The identification of G3 with the lightest generation is unambiguous 

and completetly general. It is a general characteristic of the class of standard-like 

models under consideration. It follows from the structure of the boundary con- 

dition vectors which characterizes these models. At the level of the NAHE set 

there is a cyclic symmetry between the vectors bl, b2 and b3. Th’erefore, there is 

universality among the generations. This cyclic symmetry is broken by the vec- 

tors CY and p. The vectors CY and p are symmetric with respect to bl and b2. 

However, the cyclic symmetry between bl, b p  and b3 is broken. The universality 
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among the three generations with respect to the horizontal U ( 1 )  symmetries is 

still unbroken. The symmetries of the spin structure determine the allowed terms 

in the cubic superpotential. These symmetries and the requirement of F flatness 

impose (Q12, (p12 , t3 )  0. Therefore, requiring D flatness by applying the DSW 
mechanism removes the degeneracy among the generations and forces h3 and h 3  

to become superheavy. Since the remaining light doublets are not charged under 

u(1)3, and because the only N S  or a@ fields with X56 charge are 4 1 2 ,  612 and <3, 

diagonal mass terms for the states in G3 are suppressed. 

8. Conclusions 

In this paper I examined several aspects of nonrenormalizable terms is a super- 

string derived standard-like model. This model belongs to a class of standard-like 

models with unique characteristics. They reproduce most of the properties of the 

Standard Model and provide explanations to several fundamental puzzles beyond 

the Standard Model. Among those, the replication of three and only three gener- 

ations of chiral fermions and the heaviness of the top quark relative to the lighter 

quarks and leptons. 

Nonrenormalizable terms play a pivotal role in the phenomenology of these 

models. Due to nonrenormalizable terms the preferred vacuum at the Planck 

scale extends the Standard Model gauge symmetry by an additional, generation 

independent, U (  1) symmetry. This U (  1) symmetry is uniquely determined to be, 

U ( l ) z t  = ~ U ( ~ ) B - L  - T u ( 1 ) ~ ~ ~ .  2 Breaking of the gauge symmetry, at the Planck 

scale, directly to the Standard Model results in violation of the cubic level F flatness 

solution or in induction of dimension four operators, which mediate rapid proton 

decay. Thus, this model predicts the existence of an additional neutral gauge 

boson below the Planck scale. Nonrenormalizable terms lead to decoupling of the 

fractionally charged states from the massless spectrum. 

The most important function of nonrenormalizable terms is in generating the 

hierarchy of the fermion mass spectrum. This function of nonrenormalizable terms 
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is the fingers print of specific superstring models. The origin of the fermion mass 

spectrum is perhaps the most fundamental problem in physics. The ability of su- 

perstring models to generate the observed spectrum is the real challenge facing 

these models. The standard-like models have the advantage that they explain the 

mass hierarchy of the top quark relative to the lighter quarks and leptons. In this 

paper I demonstrated that the superstring standard-like model can in principle 

account for the observed spectrum, including generational mixing. Resolution of 

the problem of supersymmetry breaking in these models, better understanding of 

the dynamics of the hidden sector, and explicit calculation of the coefficients of 

the higher order terms, will improve our ability to obtain quantitative estimates. 

Resolving these problems will uniquely determine the singlets VEVs, the hidden 

sector condensates, and the numerical coefficients of the higher order terms. Thus, 

yielding a full quantitative confrontation versus the low energy observations. I will 

come back to the phenomenology extracted from these models in future publica- 

tions. 
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F 

VI 
v2 

v3 

v4 

V5 

vs 
v7 

va 
VS 
VI 0 

VI 1 

v12 

S U ( 5 )  x SU(3) 

n 
SEC 

bi  + 2P+ (I) 

b2 + 2P+ ( I )  

b3 + 2P + ( I )  

Q7 Qa 

Table 2. Massless states and their quantum numbers. V indicates that these states form vector representa- 

tions of the hidden group. 



Table 3. Massless states and their quantum numbers. 


