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ABSTRACT

I report on recent developments in the heavy-quark effective theory and its application to B meson decays.
The parameters of the effective theory, the spin-flavor symmetry limit, and the leading symmetry-breaking
corrections to it are discussed. The results of a QCD sum rule analysis of the universal Isgur-Wise func-
tions that appear at leading and subleading order in the 1/mQ expansion are presented. I illustrate the
phenomenological applications of this formalism by focusing on two specific examples: the determination of
Vcb from the endpoint spectrum in semileptonic decays, and the study of spin-symmetry violating effects in
ratios of form factors. I also briefly comment on nonleptonic decays.

1 Introduction

The theoretical description of hadronic processes in-
volving the decay of a heavy quark has recently
experienced great simplification due to the discov-
ery of new symmetries of QCD in the limit where
mQ →∞ [1, 2]. The properties of a hadron contain-
ing the heavy quark then become independent of its
mass and spin, and the complexity of the hadronic
dynamics results from the strong interactions among
the light degrees of freedom only. The so-called
heavy-quark effective theory (HQET) provides an
elegant framework to analyze such processes [3]. It
allows a systematic expansion of decay amplitudes
in powers of 1/mQ.

In the formal limit of infinite heavy-quark masses,
the spin-flavor symmetries impose restrictive con-
straints on weak decay amplitudes. In the case of
semileptonic transitions between two heavy pseu-
doscalar or vector mesons, for instance, the large
set of hadronic form factors reduces to a single uni-
versal function, the so-called Isgur-Wise form factor
ξ(v·v′). This function only depends on the change of
velocities that the heavy mesons undergo during the
transition. It is normalized at zero recoil (v = v′).
This observation offers the exciting possibility of be-
ing able to extract in a model-independent way the
weak mixing parameter Vcb from the measurement
of semileptonic decays of beauty mesons or baryons,
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without limitations arising from the ignorance of
long-distance dynamics.

The heavy-quark symmetries greatly simplify the
phenomenology of semileptonic weak decays in the
limit where the heavy-quark masses can be consid-
ered very large compared to other hadronic scales
in the process. But clearly, a careful analysis of
symmetry-breaking corrections is essential for any
phenomenological application. Already at leading
order in the heavy-quark expansion the spin-flavor
symmetries are violated by hard-gluon exchange.
The corresponding corrections are of perturbative
nature and are known very accurately to next-
to-leading order in renormalization-group improved
perturbation theory [4, 5, 6]. At order 1/mQ, on the
other hand, one is forced to introduce a larger set
of universal form factors, which are nonperturbative
hadronic quantities such as the Isgur-Wise function
itself [7, 8]. These functions characterize the prop-
erties of the light degrees of freedom in the back-
ground of the static color source provided by the
heavy quark. Their understanding is at the heart of
nonperturbative QCD. In this talk I review recent
progress in this direction. I discuss the parameters
of HQET, the leading QCD and 1/mQ corrections
to the infinite quark-mass limit, and some specific
applications of the effective theory to semileptonic
and nonleptonic B decays.

2 Parameters of HQET

The construction of HQET is based on the observa-
tion that, in the limit mQ � ΛQCD, the velocity vµ
of a heavy quark is conserved with respect to soft



processes. It is then possible to remove the mass-
dependent piece of the momentum operator by a
field redefinition. To this end, one introduces a field
hQ(v, x), which annihilates a heavy quark Q with
velocity v (v2 = 1, v0 ≥ 1), by [3]

hQ(v, x) =
(1 + /v)

2
exp(imQv ·x)Q(x). (1)

If Pµ is the total momentum of the heavy quark, the
new field carries only the residual momentum kµ =
Pµ − mQvµ, which is of order ΛQCD. In the limit
mQ → ∞ the effective Lagrangian for the strong
interactions of the heavy quark becomes

Leff = h̄Q iv ·DhQ − δmQ h̄QhQ, (2)

where Dµ is the covariant derivative, and δmQ de-
notes the residual mass of the heavy quark in the
effective theory [9].

Note that there is some ambiguity associated with
the construction of HQET, since the heavy-quark
mass used in the definition of the field hQ is not
uniquely defined. In fact, for HQET to be consis-
tent it is only necessary that δmQ and kµ be of or-
der ΛQCD, i.e., stay finite in the limit mQ → ∞.
A redefinition of mQ by a small amount ∆ in-
duces changes in these quantities. In particular, if
mQ → mQ+∆, then δmQ → δmQ−∆. Hence there
is a unique choice m∗Q for the heavy-quark mass in
the construction of the effective theory such that the
residual mass vanishes, δmQ = 0. This prescription
provides a nonperturbative definition of the heavy-
quark mass, which has been implicitly adopted in
most previous analyses based on HQET. Yet it is
important to notice that the mass m∗Q is a non-
trivial parameter of the theory. For instance, one
can associate the difference Λ̄ between this mass
and the mass of a meson M (or baryon) contain-
ing the heavy quark with the energy carried by the
light constituents. That Λ̄ is in fact a parameter
characterizing the properties of the light degrees of
freedom becomes explicit in the relation

Λ̄ = mM −m∗Q =
〈 0 | q̄ (iv ·←−D) ΓhQ |M(v)〉
〈 0 | q̄ΓhQ |M(v)〉 , (3)

which can be derived from the equations of motion
of HQET [9]. Here Γ is an appropriate Dirac matrix
such that the currents interpolate the heavy meson
M .

The two parameters m∗Q and Λ̄ characterize the
static properties of the heavy quark and of the light
degrees of freedom. Their ratio determines the size

of power corrections to the infinite quark-mass limit.
Assuming Λ̄ ' 0.50 GeV one expects Λ̄/2m∗b ' 5%
and Λ̄/2m∗c ' 20% for the leading power corrections
relevant to processes involving B or D mesons, re-
spectively. This estimate is confirmed by detailed
computations (see below).

Because of the spin-flavor symmetry the non-
trivial dynamical properties of a hadron containing
the heavy quark are entirely related to its light con-
stituents. Consider, for instance, a transition be-
tween two heavy mesons (pseudoscalar or vector),
M → M ′, induced by a weak current. At lead-
ing order in the heavy-quark expansion the associ-
ated hadronic matrix element factorizes into a triv-
ial kinematical part, which depends on the mass and
spin-parity quantum numbers of the mesons, and a
reduced matrix element, which describes the elastic
transition of the light degrees of freedom. Introduc-
ing spin wave-functions by

M(v) =
√
mM

(1 + /v)
2

{
−γ5 ; JP = 0− ,
/ε ; JP = 1− ,

(4)

one finds

〈M ′| h̄Q′ΓhQ |M〉 = −ξ(w) Tr
{
M′(v′) ΓM(v)

}
,

(5)
where w = v · v′, and ξ(w) is the universal Isgur-
Wise form factor [2, 4]. It measures the overlap of
the wave functions of the light degrees of freedom in
the two mesons moving at velocities v and v′. The
conservation of the vector current implies that there
is complete overlap if v = v′, such that at zero recoil
ξ(1) = 1.

Let us now focus on semileptonic decays of B
mesons. It is convenient to define a set of heavy-
meson form factors hi(w) by

〈D(v′)| Vµ |B̄(v)〉

=
√
mBmD

[
h+(w) (v + v′)µ + h−(w) (v − v′)µ

]
,

〈D∗(v′)| Vµ |B̄(v)〉
= i
√
mBmD∗ hV (w) εµναβ ε∗ν v′α vβ , (6)

〈D∗(v′)|Aµ |B̄(v)〉

=
√
mBmD∗

[
hA1(w) (w + 1) ε∗µ

−hA2(w) ε∗ ·v vµ − hA3(w) ε∗ ·v v′µ
]
,

where Vµ = c̄ γµ b and Aµ = c̄ γµγ5 b, and εµ is the
polarization vector of the D∗ meson. In the infinite



quark-mass limit one finds from (5)

h+(w) = hV (w) = hA1(w) = hA3(w) = ξ(w),
h−(w) = hA2(w) = 0. (7)

These relations summarize the symmetry con-
straints imposed on the weak matrix elements.

The mass parameter Λ̄ and the Isgur-Wise func-
tions are fundamental hadronic quantities that ap-
pear at leading order of the heavy-quark expansion.
They can only be computed using nonperturbative
techniques such as lattice gauge theory or QCD sum
rules. While no lattice results are available so far,
QCD sum rules [10] have often been used success-
fully to compute hadron masses, decay constants,
and form factors. This method has been recently
applied to the analysis of form factors in HQET
[11, 12, 13]. From the study of the correlator of
two heavy-light currents in the effective theory one
finds that [11]

Λ̄ = 0.50± 0.07 GeV, (8)

corresponding to heavy-quark masses m∗b ' 4.8
GeV and m∗c ' 1.4 GeV. The Isgur-Wise function
is obtained from the analysis of a three-current-
correlator. The result can be parameterized in
terms of a pole-type function

ξ(w) '
(

2
w + 1

)β(w)

; β(w) = 2 +
0.6
w
. (9)

It explicitly obeys the normalization condition
ξ(1) = 1 and exhibits dipole behavior at large re-
coil.

3 Symmetry-Breaking Corrections

From the fact that the mass of the charm quark
is not particularly large compared to a hadronic
scale such as Λ̄ one expects substantial symmetry-
breaking corrections to the relations (7). These have
to be incorporated in any phenomenological anal-
ysis based on HQET if the effective theory is to
be more reliable than a particular model for the
hadronic form factors. The leading corrections come
from hard-gluon exchange and from terms of order
1/m∗Q in the heavy-quark expansion. I will discuss
these corrections separately below. Fortunately, it
turns out that at least at zero recoil they can be cal-
culated in an almost model-independent way, such
that reliable predictions beyond the infinite quark-
mass limit are still possible.

Table 1: The universal form factors at leading and
subleading order in HQET.

function normalization broken symmetries

ξ(v · v′) ξ(1) = 1 no

ξ3(v · v′) no spin, flavor

χ1(v · v′) χ1(1) = 0 flavor

χ2(v · v′) no spin, flavor

χ3(v · v′) χ3(1) = 0 spin, flavor

In order to make the heavy-quark symmetry limit
and the leading symmetry-breaking corrections to it
explicit, I write

hi(w) =
[
αi + βi(w) + γi(w) + . . .

]
ξ(w), (10)

where α+ = αV = αA1 = αA3 = 1 and α− = αA2 =
0, the functions βi(w) are the short-distance per-
turbative corrections, and γi(w) contain the 1/m∗c
and 1/m∗b corrections. The ellipses represent higher-
order terms.

3.1 QCD Corrections

The form factors receive perturbative corrections
due to the coupling of hard gluons to the heavy
quarks. The corresponding coefficients βi(w) in (10)
are complicated functions of w, αs(m∗c), αs(m∗b ), and
the mass ratio m∗c/m

∗
b . Their calculation is, how-

ever, purely perturbative and can make use of
the powerful methods of the renormalization group
[4, 5, 6]. The coefficients βi(w) are known to next-
to-leading logarithmic order and are tabulated in
Refs. [6].

3.2 1/m∗Q Corrections

At subleading order in the heavy-quark expansion
the currents no longer have the simple structure as
in (5). Instead, there appear higher-dimensional op-
erators such as

1
2m∗Q

h̄Q′Γ i /DhQ, (11)

whose hadronic matrix elements give rise to new
universal form factors. In total, four additional
functions are required to describe all 1/m∗Q cor-
rections to transitions between two heavy mesons



[7, 14]. Their properties are collected in Table 1.
The conservation of the vector current implies that
two of these functions vanish at zero recoil. As a
consequence, the hadronic form factors h+(w) and
hA1(w) are protected against 1/m∗Q corrections at
w = 1. This is the content of Luke’s theorem [7].

The subleading universal functions can again be
calculated using QCD sum rules in the effective the-
ory. One finds [13]

ξ3(w) ' 1
3

[
ξ(w) − κ (w − 1)

]
,

χ1(w) ' 2
3
w − 1
w + 1

[(
4w +

7
2

)
κ− ξ(w)

]
+ 18χ3(w),

χ2(w) ' 0,

χ3(w) ' κ

8

[
1− ξ(w)

]
. (12)

Nonperturbative effects are contained in the Isgur-
Wise function and the parameter κ ' 0.16, which
is proportional to the mixed quark-gluon conden-
sate 〈q̄σµνGµνq〉. One does indeed find that the
functions χ1(w) and χ3(w) vanish at w = 1. In ad-
dition, restricting to the diagrams usually included
in a sum rule analysis one finds no contribution to
the spin-symmetry violating form factor χ2(w), and
obtains the parameter-free prediction

ξ3(1) =
1
3
. (13)

Corrections to this relation are expected to be small.
In Table 2, I show the theoretical prediction for

the sum of the symmetry-breaking corrections to
the various heavy-meson form factors, based on the
most recent calculation of QCD corrections [6] and
the above sum rule results. The relations between
the corrections γi(w) and the subleading universal
functions are given in Ref. [14].

4 Phenomenological Applications

The theoretical results summarized in Table 2 form
a solid basis for a comprehensive analysis of semilep-
tonic B decays to subleading order in HQET. Some
specific applications, as well as the extension to non-
leptonic decays, are discussed below. I do not ad-
dress here the important issue of decay constants of
heavy mesons. The reader interested in this subject
is referred to Refs. [11, 12].

4.1 Measurement of Vcb

As a first application let me focus on the extraction
of the quark-mixing parameter Vcb from the extrap-

Table 2: Total symmetry-breaking corrections
δi(w) = βi(w) + γi(w) in %.

w δ+ δ− δV δA1 δA2 δA3

1.0 2.6 −9.5 31.0 −1.5 −34.1 −1.9

1.1 2.4 −9.5 29.6 −0.9 −31.7 −0.9

1.2 3.1 −9.4 29.2 0.6 −29.6 0.9

1.3 4.9 −9.5 29.8 2.8 −27.6 3.4

1.4 7.3 −9.6 31.1 5.7 −25.8 6.4

1.5 10.4 −9.7 33.2 9.0 −24.2 10.0

olation of semileptonic B decay rates to zero recoil.
This subject has been discussed in detail in Ref. [15].
In general, one finds that

lim
w→1

1
[w2 − 1]1/2

dΓ(B̄ → D∗` ν̄)
dw

=
G2
F

4π3
|Vcb|2 (mB −mD∗)2 m3

D∗ η
∗2,

lim
w→1

1
[w2 − 1]3/2

dΓ(B̄ → D ` ν̄)
dw

=
G2
F

48π3
|Vcb|2 (mB +mD)2 m3

D η
2, (14)

with η∗ = η = 1 in the infinite quark-mass limit.
Because of Luke’s theorem the decay rate for B̄ →
D∗` ν̄ is protected against 1/m∗Q corrections at zero
recoil. Thus to subleading order in HQET the co-
efficient η∗ deviates from unity only due to radia-
tive corrections. Ignoring terms of order 1/m∗2Q , one
finds that η∗ = 1 + δ∗QCD with δ∗QCD ' −0.01 [6].
On the other hand, Luke’s theorem does not ap-
ply for B̄ → D ` ν̄ decays because the decay rate
is helicity-suppressed at zero recoil [14, 15]. In this
case η = 1 + δQCD + δ1/m∗

Q
with δQCD ' 0.05 and

δ1/m∗
Q

=
Λ̄
2

(
1
m∗c

+
1
m∗b

)(
mB −mD

mB +mD

)2[
1−2 ξ3(1)

]
,

(15)
which gives δ1/m∗

Q
' 0.02. Note that the 1/m∗Q

corrections are suppressed by the Voloshin-Shifman
factor [(mB−mD)/(mB+mD)]2 ' 0.23 [1], and that
the corrections to the sum rule prediction ξ3(1) =
1/3 are expected to be small. Since the canonical
size of 1/m∗2Q corrections is 1− 5%, I thus conclude
that the theoretical uncertainty in η is comparable
to that in η∗. Hence one should extract Vcb from



both decay modes, using the theoretical numbers

η∗ ' 0.99, η ' 1.07, (16)

which are expected to have an accuracy of better
than 5%.

Until now such an analysis has only been per-
formed for B̄ → D∗` ν̄ [15]. Using the updated value
for the total branching ratio as measured by CLEO,
B(B̄ → D∗` ν̄) = 4.4± 0.5% [16], I find

Vcb = 0.040± 0.005 (17)

for τB = 1.3 ps.

4.2 Ratios of Form Factors

It has been emphasized in Ref. [13] that a measure-
ment of spin-symmetry-breaking effects in ratios of
the various form factors that describe B̄ → D∗` ν̄
transitions would not only offer the possibility of a
nontrivial test of HQET beyond the leading order,
but also provide valuable information about non-
perturbative QCD. In the limit where the lepton
mass is neglected, two axial form factors, A1(q2)
and A2(q2), and one vector form factor, V (q2), are
observable in these decays. The ratios

R1 =
[
1− q2

(mB +mD∗)2

]
V (q2)
A1(q2)

,

(18)

R2 =
[
1− q2

(mB +mD∗)2

]
A2(q2)
A1(q2)

become equal to unity in the infinite quark-mass
limit and are thus sensitive measures of symmetry-
breaking effects.

To subleading order in HQET, I write

Ri = 1 + εQCD
i + ε

1/m∗Q
i ; i = 1, 2. (19)

The theoretical prediction for εi as a function of q2

is shown in Table 3. I propose a measurement of
these quantities as an ideal test of the heavy-quark
expansion for b→ c transitions. In particular, note
that the large values of R1 result from both large
QCD and 1/m∗Q corrections. The latter ones are
to a large extent model-independent since the sub-
leading universal functions only appear in the 1/m∗b
terms [13]. Thus the sizeable deviation of R1 from
the symmetry limit R1 = 1 is an unambiguous pre-
diction of HQET. A measurement of this ratio with
an accuracy of 10% could provide valuable informa-
tion about the size of higher-order corrections. The

Table 3: Theoretical predictions for the symmetry-
breaking corrections εi in %.

q2 [GeV2] εQCD
1 ε

1/m∗Q
1 εQCD

2 ε
1/m∗Q
2

10.69 12.0 19.1 0.5 −11.0

8.57 11.7 18.2 0.5 −10.3

6.45 11.3 17.5 0.5 −9.6

4.33 11.0 16.8 0.5 −8.9

2.21 10.7 16.2 0.5 −8.3

0.09 10.4 15.6 0.5 −7.7

ratio R2, on the other hand, receives only very small
QCD corrections and is sensitive to the subleading
form factors ξ3(w) and χ2(w). It can be used to
test the sum rule predictions (12). For the practi-
cal feasibility of such tests it seems welcome that the
theoretical predictions for both ratios are almost in-
dependent of q2 (R1 ' 1.3 and R2 ' 0.9), such that
it suffices to measure the integrated ratios.

4.3 Nonleptonic Decays

As a final application, let me briefly comment on
nonleptonic two-body decays of B mesons. In this
case, the heavy-quark symmetries do not yield re-
lations as restrictive as those for semileptonic tran-
sitions. One still has to rely on the factorization
hypothesis, under which the complicated hadronic
matrix elements of the weak Hamiltonian reduce to
products of decay constants and matrix elements
of current operators, which are of the same type as
those encountered in semileptonic processes. It is at
this stage that the heavy-quark symmetries can be
advantageously incorporated, leading to essentially
model-independent predictions for the factorized de-
cay amplitudes. This provides for the first time
a clean framework in which to test factorization.
The procedure would be as follows: One extracts
the Isgur-Wise function from data on semileptonic
B decays and incorporates the leading symmetry-
breaking corrections as discussed above. This deter-
mines the functions hi(w), which suffice to compute
all matrix elements that appear in the factorized de-
cay amplitudes for nonleptonic processes. Besides
decay constants, these amplitudes contain two pa-
rameters, a1 and a2, which are related to the Wil-
son coefficients of the effective Hamiltonian. They
would be universal numbers if factorization were ex-



act. In cases where the relevant decay constants are
known, a case-by-case determination of a1 or a2 pro-
vides a test of factorization. In other cases, one may
rely on factorization to obtain estimates for yet un-
known decay constants such as fDS . Both strategies
have been pursued by various authors, and we refer
the interested reader to the literature [17].

5 Conclusions

I have presented a short overview of recent devel-
opments in the theory of heavy-quark decays. The
spin-flavor symmetries that QCD reveals for heavy
quarks lead to relations among the hadronic form
factors which describe semileptonic decays of heavy
mesons or baryons. The heavy-quark effective the-
ory provides a convenient framework for the analysis
of such processes. It allows a separation of short-
and long-distance phenomena in such a way that
the nontrivial dynamical information is parameter-
ized in terms of universal functions, which describe
the properties of the light degrees of freedom in the
background of the static color source provided by
the heavy quark. These functions are fundamen-
tal, nonperturbative quantities of QCD. I have pre-
sented explicit expressions for them obtained from
QCD sum rules. In the near future, similar results
should be obtainable from lattice gauge theory.

If the leading symmetry-breaking corrections are
taken into account, the heavy-quark effective theory
forms a solid, almost model-independent basis for an
analysis of many weak decay processes. I have dis-
cussed the determination of Vcb from the endpoint
spectrum in semileptonic B decays, and the study
of symmetry-breaking effects in ratios of form fac-
tors, which offers nontrivial tests of the heavy-quark
expansion beyond leading order. I have also empha-
sized that the use of the spin-flavor symmetry may
provide a cleaner basis for tests of factorization in
nonleptonic two-body decays of B mesons.

Acknowledgement: Part of the work reported here
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with A. Falk and M. Luke.
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