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1 INTRODUCTION 

In optical designs involving multiple lens systems, one often finds it 

advantageous to be able to achieve the desired optical properties by 

starting with thin lenses wherever allowed. The conditions set by 

-” -- tolerances and higher order aberrations are then used to optimize 

this linear design; therefore, an explicit solution for thin-lens systems 

satisfying the most general transform properties (i.e., highest degrees 

of freedom) is much desired. With such a solution, one can decouple 

the linear optical constraints from higher order optimization. Even in 

_ the presence of additional thick quadrupoles or other linear elements, 
. . .- 

this solution can -be applied by absorbing all the other elements into 

- the generic transfer matrix. 

From simple degree-of-freedom count, one can see that in order to 

construct a thin-lens system whose net effect equals an arbitrary linear 

block-diagonal 4 x 4 transfer map (A&, i&,) satisfying only the linear 

optical constraint 

detM, ~1, detMy =l, 0.1) 

one would need at least three thin lenses: 
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with corresponding drifts 

Di = , i = 1,2,3 . 

Thus the task appears to be solving the following set of matrix 

equations for Ki’s and Li’s: 

T3, - D3 + TzI . D2 . Tl, . D1 = M, , 

.a Tgy - D3 . Tzy . D2 . Tl, . D1 = My . W) 

_- However, if one blindly goes about solving Eq. (1.2) by eliminating 

all but one unknown variable, the resulting equation would take on a 
_-. 

- high order with- many spurious or unphysical roots. Apart from the .~ .- 

-intrinsic difficulty’ in solving such equations, one would be burdened 

with the task of sorting through all the roots in order to locate the 

desired one. In carrying out an optical design where Eq. (1.2) needs 

be solved repeatedly for many different conditions, this can become a 

discouraging task, and insight into the problem compromised. 

In this note we report an iterative algorithm aimed at solving Eq. (1.2) 

which, when followed single-mindedly, yields a second order equation 

in one of the parameters Ki or Li. The intrinsic order of this problem is 

exactly second order simply because both roots to the above mentioned 

second order equation are seen to satisfy Eq. (1.2), thus no spurious 

roots have been introduced in the process. The explicit solution of 
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the Ki’s and Li’s in terms of the Msij’s and Mgij’S allows insight into 

questions such as constraints on the transfer map (M,, MY) for physical 

solutions, and makes easy the extension into family of solutions when 

additional lenses are included. 

; -- 
2 THE ITERATIVE SOLUTION 

.I 

To solve Eq. (1.2), we adopt an iterative approach where a number 

(one or two) of the elements on the left-hand side of Eq. (1.2) is added 

to the whole system at each step, starting from one or two elements. 

- At each step the newly added unknowns alone are solved from a set of 
. 

.consistency conditions determined in the previous step, exclusively in 

terms of the Msij’s and Mvij’s. The last fact guarantees that when we go 

to the next step, the only unknowns will again be the newly added ones. 

The rationale of this algorithm is that since we have the control of the 

unknowns at any given step, the proliferation of equations is minimized. 

In the extreme case, one can choose to add only one element at a time, 

in which case one has to solve an equation with only one unknown all 

the time, and no proliferation of roots due to elimination of unknowns 

will occur. 

, - 
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8.1 Degree-ofifreedom count 

It is important to make sure at every step that we are not over- or 

under-constraining the degrees of freedom allowed in the intermediate 

system; thus, a discussion on the degree-of-freedom count is given here. 

The equations (1.2) are equivalent to the following equations: 

A=(Kl,Ll,Kz,Lz,...,K,,L,) = Mz(M,ll,M,lz I...), 

A,(& b,K2, L2,. . . ,I&, Ln) = Mv(M,u, Myis,. . .) , (2.3) 

where both A, and A, are 2 x 2 matrices depending on variables 

.~ ~~,L~,K~,_LP,...,K,,L,. For the discussion so far let’s make n c 4. 

- _ Together, A, and A, can have only 2n degrees of freedom (DOF). Thus 

there must be (8 - 27~) constraints among the matrix elements of A, and 

A,. These same constraints must apply exactly among the Msij’S and 

Myij’~, due to the equality. M=<~‘s and Myij ‘s are not further constrained, 

since the DOF counts must be equal on both sides. 

We can also look at Eq, (2.3) as being a system of 2n+8 variables (that 

is, 2n of the Ki, Li’s and 8 of the Msij, Myij’~) satisfying eight equations. 

But since there are only 2n DOF, everything else must be expressible 

in terms of the 2n Ki’s and Li’s. If we choose instead 2n out of the 

8Mcij’s and Myij’s as the independent variables, say, MI, M2, . . . , Mz,,, 

, -. 
_: -- 5 
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then everything else is expressible in terms of these Mi’Sa In particular, 

we have 2n equations stating that 

Ki (or Li) = Gi(Ml , . . . , MS*) 2n equations 
(2.4) 

Mcij (or i&ii) = &j(Ml,. ..,Mzn) 8 - 2n equations 

where Mcij’~ and Mvij ‘s are those matrix elements other than 
-” -- 

MI,..., ~Mzn. Together these make up the eight equations as required. 

.I 

.- 
Notice that the second part of Eq. (2.4) can simply be written as 

.- 
F~(all&p,,Mv,,)=O, k=l, . . . . 8-2n, (2.5) 

- namely, a consistency condition among all the elements MzPq’s and 
. . -- 

MyPq’s of the transfer matrices. 
-- 
. _ 

In the above discussion, we should keep in mind that the constraints 

on the transfer matrix elements MsP4’s and MYPq’s always implicitly 

include the linear optical condition (1.1). 

2.8 Step-by-step construction 

As an example of the iterative method, let us start by considering the 

one-lens system 
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From the earlier discussion, it is clear that if we manipulate the algebra 

correctly and forget about singular cases for the time being, we can 

always rewrite Eq. (2.6) as 

K1 = Gl(Mcij 9 Mzkl) , L1 = G2(Mcij j MS&I) , 

. . 

Fk(Mmpq, Mypq)=O, k=l, 2, . . . . 6, (2.7) 
-” -- 

where Mzij and Mnkl represent two smartly chosen elements from either 

M, or M, , and Mrpq ‘s Mvpq ‘s are all the elements in MS and M,. 

.- 
Equipped with Eq. (2.7), we add another set of matrices to the 

left-hand side of Eq. (2.6), 

T2r - D2r - TI, - DI, = Mc , T2,, a Dzv - TI, - Dl, = M, , . . 
- . 

- -or- . _ 

Notice Eq. (2.8) now has the same form as Eq. (2.6) if we make proper 

substitutions on the right-hand side. We can readily apply Eq. (2.7) 

and get 

KI =Gl(Mcij,M;cklrK2,L2) , LI = G(Mzij, Mzkl, K2, Lz) 9 

Fk(M=P(I,M~pp,K2,L2)=0, k=l, 2, . . . . 6. (2.9) 

Of course the functional forms of G1, G2, Fk are not the same any more, 

neither are the Mcij’S and Myij’S. They are a consequence of the 

substitution of Eq. (2.8) into Eq. (2.6). But notice that now K1,L1 

7 
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are totally separated from K2, ~~ by construction. Thus with the six 

equations for Fk’s containing ten variables, we can choose four of the 

M wq ‘s as independent and re-express Eq. (2.9) as 

KI = Gl(Mxij,Mxkl) Ll = G(Mxij 9 MxkI) 

K2 = Hl(Mxij 9 Mxkt) J52 = H2(Mxij 9 Mxk/) 

-” -- FdMxpq, Mypq)=O, k=l, 2, .a., 4. (2.10) 

where now the Mxij , Mxkl’s are the four chosen independent elements 

.- 
from either M, or Mya Notice there are four Fk’s now, consistent with 

.- the DOF count earlier for M, and My. 

We can iterate this process one step further for three lenses. Again 

.- .-K3,&, will be separated from the other Ki,.Li’sy and we only need to - . 

- -worry about two unknowns and two chosen equations. If we go to the - . 
extreme and add only one optical element at a time, we would have 

only one unknown and one equation at every step, by construction. 

3 The explicit solution 

The order of adding elements as demonstrated in the previous section 

is of course not unique. In the following we present an explicit solution 

obtained by a different order of adding elements. It is observed that 

a “conjugate” system to equation (1.2), where the order of successive 

optical elements is reversed and the formal roles of kicks and drifts 

8 
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interchanged, can be obtained through the transformations described 

in the following. 

First let us consider the 4-space spanned by (x,2’, y, y’), amounting 

to filling the diagonal 2 x 2 blocks of any 4 x 4 transfer matrices with 
-” -- 

corresponding z and y 2 x 2 submatrices, such as those in Eq. (1.2), and 

.I leaving the off-diagonal blocks zero in the absence of coupling. Thus 

the 4 x 4 transfer matrix for the thin lens Ki becomes 
.- 

- . 

Lo Lo 0 0 0 0 

Ki 1 Ki 1 0 0 0 0 
Ti = Ti = 

00 00 10 10 

\o 0 \o 0 -Ki 1 -Ki 1 

and that for the drift Li becomes 

1 1 Li Li 0 0 0 0 

0 0 1 1 0 0 0 0 
Di = Di = 

0 0 0 0 1 1 Li Li 

\o 0 0 1 \ 0 0 0 1 

, 

9 
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N o w  w e  in t roduce th e  o p e r a to r  R, which  is equ iva len t  to  reve rsed  

p r o p a g a tio n  in  y  only ,  

R =  

-” - -  

1 0 0  0  

0 1 0  0  

0 0 1 0  

0  0  0  -1  

. . a n d  app ly  th e  fo l low ing  t ransformat ions to  th e  th ree - lens  system, 

.- 
E q . (1.2):  

R-1~(T&Ds~~2 .D2 .T l .D1)T .R=R-1 .MT.R,  

- -  DTR.~R.D~R.T~R,D3TR.TTR=MTR.  3  (3 .11)  
- . 

w h e r e  th e  superscr ip t  T s tands  fo r  m a trix t ranspose  a n d  th e  superscr ip t  

R  fo r  m u l tip l icat ion by  R-l  a n d  R  as  ind icated.  T h e  M  is th e  4 x 4  m a trix 

c o n ta in ing  M C  a n d  M, d iagona l ly .  W e  th e n  h a v e  in  E q . (3.11):  

L  0  0  o \ 
Li  1  0  0  

D T R  I -  -  , a n d  l -?-R I =  

0 0  1 0  

\o 0  -L i  1)  

1  

1  Ki  0  0  

0  1  0  0  

0  0  1  Ki  

0  0  0  1  

T h u s  th e  expl ic i t  fo r m  o f th e  le f t -hand s ide  o f E q . (3 .11)  takes  o n  

a  fo rmal  r e s e m b l a n c e  to  E q . (1.2)  wi th th e  ro les  o f k icks a n d  drifts 

, -  
_: --  1 0  

.w. .- 
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interchanged. This is the “conjugate” system to Eq. (1.2). In particular 

if one makes the following substitutions in the left hand side of 

Eq. (3.11) : 

Kl*Ls t KS-J%, K2*La, 

then it is seen to be exactly equal to the left-hand side of Eq. (1.2). 
-” -- 

The fact that there is a symmetry between the pairs (KI, Ls), (KS, Ll), 

and (K2, Lo), as is also evident in the explicit form of Eq. (1.2) if all 

products are expanded, suggests the following order of adding elements 

in the iterative program that affords much simplified final expressions: 

_. T2 - D2. 4 D~-T~'D~-TI 4 T~-D~-T~-Dz.TI*DI. (3.12) 

.~ . 
- . 

- As mentioned earlier, this is a straightforward algorithm, and not 
. . 

too many choices or too much thinking is needed in the process. The 

only exception is possibly in choosing which of the Mxpq's to use as 

independent variables in say, equation (2.9) to get equation (2.10), or, 

equivalently, how to manipulate the equations in (2.9) to solve for KS 

and ~2. The optimal order of adding elements mentioned above does 

provide a natural option. In the following, we outline the intermediate 

steps that lead to the end solution. The algebraic calculation is done 

with Mathematics. 

, - 
_: -- 11 
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9.1 One-lens solution 

Starting with the first step in Eq. (3.12), namely, 

T2x s D2x = Mx , T2y - Dzv = M, , 

we obtain the trivial but potentially useful expressions for K2, ~2 in the 
; -- spirit of the first line of Eq. (2.4): 

K2 = Mx21 , L2 = Mx12 , (3.13) .a 

and the consistency conditions among the matrix elements in the spirit 

of the second line of Eq. (2.4): 

(-ia,, l-:;Mx2j = (;:: ;:I) * (3’14) 

Of the above, of course, only six equations are independent. 

9.8 Two-lena solution 

We proceed to add the next set of matrices as indicated in the second 

step in Eq. (3.12), namely, 

T2x . D2r = D,-,‘+M,.T;-,l, Tzv . Dzy = D&l - My . T;y’ , (3.15) 

, -. 
_: -- 12 _ .*. . 
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As discussed before, we can now impose the consistency conditions 

(3.14) on the right-hand side of Eq. (3.15) and obtain equations in Kl 

and ~~ only. These are linear equations. Having solved for K1 and L3, 

we also obtain expressions for K2 and ~2 in the new system, which is 

obtained by using the expressions Eq. (3.13) with the new Mxij, Mvij’S 

from Eq. (3.15) and the solutions for K1 and LB just obtained. The 

complete solution is: 

L3 = WY, L2 = Mx12Mv22 - Mx22”y12 . (3.16) 
My22 - Mx22 

.~ From the degree-of-freedom count one easily sees that this system is . 
- subject to extra constraints among the Mxij, Mvij’S. They are implied 
- . 

in Eq. (3.14) with the new matrix elements in Eq. (3.15) substituted. 

These remaining consistency conditions in principle allow us to solve 

for the three-lens system in the next step. 

9.9 Three lens solution 

We proceed to add the final set of matrices as indicated in the last step 

in Eq. (3.12), namely, 

D3r 9 T2x - Dzr - TIC = T3;’ - Mx . 0;’ , 

DB~ * Tzv . Dzv . Tl, = T3;’ . MY . D$, 

, -. 
_: -- 13 

.*. .- 

(3.17) 
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where the left-hand side has been completely solved in the previous 

step and thus the right-hand side must satisfy the same consistency 

conditions as before, with proper factors of KS and L1 substituted. Thus 

we obtain a set of equations with K3 and L1 being the only unknowns. 

The algebra involved in this step is too massive to be reproduced here. 

; -- It is however useful to mention that instead of looking at the conditions 

given in Eq. (3.17), one obtains far simpler expressions by looking at 
. . 

the sum and difference of the t- and y-parts of Eq. (3.17). The final 

_- equation for either K3 or Ll is a quadratic one. Solving for L1 in terms 

_-. _ 
of the Mxij’~ and Myij’~ we obtain: 

. . .- 
L1 = 

Y&/Z - . 
x ’ 

(3.18) 

_- 
- . 

where X, Y, and 2 are polynomials of the Mxij ‘S and Mvij ‘s, and & is a 

simple function of L1 and some of the matrix elements. A compact 

parametrization of these is given in the Appendix. Both roots in 

Eq. (3.18) satisfy Eq. (1.2). At this point It is not clear if a simple 

criterion exists for ensuring physical solutions (i.e., all Li’s > 0 ). Neither 

is it clear if Z in Eq. (3.18) is positive definite, although all numerical 

tests so far yield positive Z’S, However, since we have achieved an 

explicit solution that can be numerically calculated in real time, one can 

readily verify if there ‘is a physical solution for any given set of matrix 

elements. The remaining Ki’S and Li’s are obtained by substituting 
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Eq. (3.18) into equations obtained at earlier stages of the iteration with 

fewer elements : 

K3 = - -2 + Mx22 + Mv22 - Mx21L1 - Mv21L1 
-Mx12 + My12 + MxllLl - MyllLl 

, 

Kl =+, Kz =+ 

-” -- 

L2 =+p, L3 =g, 

where 

(3.19) 

KID = -Mx21 - My21 + MxnK3 - Myll& , 

~320 =E - @f,12 - Mydl) (Mx22 - McnKs - (Mm - M,nKs) L1) + 

. _ (Mx12 - MxllLl) (422 + My12K3 - (My21 + Myd3) LI) , 

KID = (My21 + M,dW (Mx22 - MxnKs - (Mx21 - MaKs) LI) 

+ Wx21 - MxdW (4,22 + MynK3 - (My21 + MynK3) ~51) , 

L3D = -Mx12 + My12 + MxuLl - MynLl , 

D = -Mx22 + My22 + MxnKs + MynK3 + Mx21L1- 

421L1 - MxllKsL~ - M,llK3L1 , 

_: -- 15 
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Equations (3.18) and (3.19) sum up the solution obtained by our 

iterative method. Since the explicit form is readily available, many 

optical design questions can be directly answered without resorting to 

mathematical tricks. For example, one can find out if a particular set 

of transfer matrices would lead to physical thin-lens solutions by direct 

-” -- substitution, It should also be easy to see what changes in the transfer 

matrices one needs to make in order to achieve a certain property for 

the Li’S and Ki’Se With Eq. (3.18) and Eq. (3.19), it is also easy to 

obtain parametrized family of solutions if one wants to use more than .- 
three thin lenses. 

.~ .- This method is--applicable, of course, to a different order of added 

- -elements. Depending on the emphasis, one may find an alternative . . 

intermediate solution that is advantageous for a specific problem. 

However, the final complete three-thin-lens solution should always be 

the same as those given in Eqs. (3.18) and (3.19). 
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APPENDIX A EXPLICIT FORMS OF X, Y, AND 2 IN EQ. (3.18) 
-” -- 

. . 

.- 

, -. 

By careful manipulation of Eq. (1.2), taking advantage of the simplified 

forms for the sum and difference of its z-part and y-part, one arrives at 

two independent and.relatively simple equations for L1 and K3 as follow: 

k2 - vf- WR3L”l +(Ti- 1)&-?3+(a- 1)6& +@- 1)2 = 0, 

- . [(a - 1) 7i2 - $1 R3.L; - (E - 1)aBIz3 (A.11 
-- 

. . 

where 

--(a- 1)&L; +[(a- l)c% -g3(ia- l)] = 0 

F3=gK34, z;=gLp-b 

B=(&-a), C=(gp-q, 

Z= Mxll + &II 
2 ’ 

M xl1 
a= 

- My11 

2 ’ 

i; Mx12 + M x12 = 412 
- 412 2 ’ b= 2 , 

F= MS21 + 421 M x21 - 

2 ’ E== 
421 

2 * 

Elimination of say, I?3 in Eq. (A.l) thus leads to the.. following 

equation: 

_: -- 
.*. -- 

Al il2 + Bl Zl + Cl = 0 ) (A-2) 

17 



I 

.- 

where 

Al = (7i-1) (a-ct) (a+i#, 

Bl = -(2$ - 27j - (-42) 3 6 - g($ - 2x3 - 2&2 + ai2 + a2a + a4 + a2) I 

Cl = (a- 1)B(B~++z2-~E-a3) . 

-” -- The above expression is really more symmetric in the matrix elements 

if one uses the explicit forms of a and z 

BI = -~~‘(M;,, + ~MxuM,u - 4My11 + M,2,, - 4Mxll) 
4 

. . _. -w (M;u 8M,2,1M,2,1 + 7MxllM,2,, - - . 

-- - + - 4M,211> 9 . . 4M;,, 7M,21&11+ M:,, 

Cl = -@&II + Mx11 - 2) (~M~IIM;,, - Mill - 2M,2,,Myll + Mill - 486) 
8 

Finally X, Y, and 2 in equation Eq. (3.18) are given by 

X = 2A1 , Y = -Bl , and Z = Bf - 4AlCr , (A.3) 

The complexity of Eqs. (A.2) and (3.19) does not pose any problem 

in terms of coding into a FORTRAN program and maintaining high 

degrees of accuracy and efficiency. 

1s 


