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From the beginning at Los Alamos National Laboratory (LANL), 

solutions to the transport equation were very important. Many long- 

forgotten approximate solution techniques, including one by Feynmanl, 

were developed to help design nuclear weapons. Most of these methods 

were based on the methods of mathematical physics familiar to the project 

physicists and predated the use of computers, but continued research and 

pressing need produced two new and powerful computer-based systems: 

Monte Carlo and the Sn Method. The healthy and long-term competition 

between the ‘two Los Alamos groups responsible for these quite different 

approaches was both stimulating and synergistic. 

In 1953, Bengt Carlson described2 a finite difference approximation to 

the transport equation in which the angular variable was represented by n 

piecewise continuous linear segments. He christened the representation the 

angular segmentation, or Sn, method. In the next ten years Carlson and his 

coworkers, without changing the name, developed a much improved 

general-geometry discrete ordinates system. This system, for which the best 

early description is Reference 3, was an integrated whole based on a set of 
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compatible themes. Using the multigroup formulation as a starting place, 

these themes included the following: 

1. particle-conserving difference equations 
.^ 
. 2. accurate. but simple finite difference approximations for speed of . - evaluation 

3. a unified formulation for all geometries 

4. minimum-angle quadratures with symmetries based on the 
symmetries of the geometry involved. 

The discrete ordinates method was first suggested by Wick4 in 1943, but the 

detailed development was due to Chandrasekhar? The great disadvantage of 

the method was the difficulty of extending it to curved geometries and 

treating the angular derivatives of the transport operator. Carlson invented 

an elegant representation for these angular derivatives in terms of a given set 

of angular quadrature weights and directions by assuming a space-angle 

finite difference scheme with undetermined coefficients and then 

determining the coefficients by satisfying particle conservation in detail. In 

addition to its practical advantages, this scheme facilitated experimentation 

with different quadrature schemes. Carlson’s innovative use of particle 

conservation was partially stimulated by the need of LANL designers to 

have accurate, detailed particle balances for their iterated designs of fast, 

leaky assemblies. Carlson, Lee and LathropV experimented with 

quadrature schemes and evolved workable recipes for reducing the required 

number of directions by one-half in cylindrical and higher dimensional 

geometries. “Singular” quadrature directions in which the angular derivative 

terms do not appear were used to initialize the angular variable just as 
. . 

readily as the spatial boundary conditions could be applied. Using a simple 
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central difference approximation then reduced the whole process of inverting 

the differential transport operator to evaluating a set of simple, stable, 

recursion relations. Hence, data storage requirements were minimal. 

.^ 
With source iteration, the Sn system was nearly perfect for fast 

numerical evaluation. Using a technique invented by Carlson and Bells, the _ - _. .- 
source iteration was accelerated by enforcing whole-system particle balance 

(re-balance) at each iteration, and this was possible because of the 

construction of the difference equations. Unlike numerical approximations 

to the diffusion equation, convergence of Sn iterations did not worsen as the 

spatial mesh size decreased. 

The effectiveness, efficiency and generality of the discrete Sn method 

rather quickly led to its application in one-, two- and three- dimensional 

computer codes% 10, some of which were heavily used around the world. 

Not until the mid 1960’s was it realized11 (at approximately the same 

time at Bettis Atomic Power Laboratory and LANL) that use of discrete 

directions in two-dimensional geometries leads to anomalous spatial 

variations or ray effects 12. This late recognition was in part because two- 

dimensional calculations were not widely used earlier and in part because 

earlier two-dimensional calculations were more often for distributed sources 

rather than for the isolated sources in absorbers that most clearly display 

anomalous results. Ray effects can be eliminated, at additional 

computational cost by adding a zero-sum angular source which converts the 

discrete ordinates equations to spherical harmonic equationsl3. 
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