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-- ABSTRACT 

_ 

There exists a class of cosmic strings that turn matter into antimatter (Alice strings). In 

a GUT where the unbroken gauge group contains charge conjugation (C), such strings form 

when a phase transition renders C a discrete symmetry. They become boundaries of domain 

walls at a later, C-breaking transition. These ‘Alice walls’ are cosmologically harmless, but 

-. can play an important role in baryogenesis. We present a three-generation toy model with 

scalar baryons, where a quasi-static Alice wall (or a gas of such walls) temporarily gives rise 

to net baryogenesis of mliform sign everywhere in space. This becomes a permanent baryon 

excess if the wall shrinks away early enough. We comment on the possible relevance of a 

similar mechanism to baryogenesis in a realistic SO( 10) unification model, where Alice walls 

would form at the scale of left-right symmetry breaking. 
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. -- 1. Introduction 

Alice strings [1,2,3] are a class of cosmic strings with the remarkable property that a 

particle traveling around one will come back as its own antiparticle. In a Grand Unified - 

Theory in which the charge conjugation operator C is contained in the original gauge group, 

such strings form via the Kibble mechanism when the symmetry is broken to a smaller group 

having C as.a discrete (i.e. not deformable to 1) symmetry. This occurs, for example, for 

certain SO( 10) GUTS. 

In the vacuum we inhabit, of course, C is not a symmetry. This means it must have been 

- spoFt_aneously broken at some later phase transition. At that epoch, the Alice strings would 

have become boundaries of domain walls. We shall henceforth refer to the latter as ‘Alice 

walls’. The dynamics of cosmological networks of string-bounded walls has been studied [6]. 
. . 

- 

The. walls eventually shrink via surface tension, string intercommutation and nucleation of 
_~ 

new string loops. Thus they never dominate the energy density of the Universe, and can 
.- 

have interesting cosmological effects while they last. 

_ -. _ Until recently it was believed that Alice strings could only have existed in pre-inflationary 

epochs,-- since a phase transition giving rise to Alice strings also tends to form magnetic .- 
monopoles in abundances ruled out by experiment [4]. H owever, in ref. 7 we gave an example 

of a natural .symmetry-breaking scheme in which this problem is avoided. The models 

considered in ref.7 were variants of the original Alice-string model of ref.1 in which an SO(3) 

gauge symmetry is spontaneously broken to O(2), and then (optionally) to smaller groups. 

The present paper is dedicated to the study, in such a toy model, of a novel baryogenesis 

-_ mechanism involving Alice walls. The original gauge group is SO( 3), and the (scalar) baryons 

belong to SO(3) triplets. We define the baryon number, B, to be the electric charge for 

members of these ‘baryonic triplets’, and zero for all other fields. Here ‘electric charge’ refers 

to the U(l),, subgroup of SO(3) g enerated by 7’3. Ba,ryon number is violated by perturbative 

processes, such as exchange of the charged+ vector bosons IV& of SO(3), although no net 

baryogenesis can occur while C F exp(riTz) is still conserved. When SO(3) is broken to 

- O(2) (which is the semidirect product U(l),, x { 1, C}), the IV* bosons become massive 

- and the perturbative violations of baryon number become suppressed as the temperature 

continues to fall. However, this phase transition also creates Alice strings, through the 

’ XibbJg~mechanism. In the presence of such a string C is still conserved (it is an element of 

t By ‘charged’ we shall a.lways mean U(l),, charge. 
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O(2)), but B is globally ill-defined since when a ‘baryon’ is taken once around a string it .-A 
becomes an ‘antibaryon’. Locally, however, B may be sensibly defined and is still weakly 

violated by perturbative processes’. 

At a lower temperature, we spontaneously break C by allowing a (non-baryonic) SO(3) - 

Higgs triplet to acquire a VEV’. A closed Alice string loop now becomes the boundary of 

an Alice wall, where the triplet Higgs develops a kink. Outside such a wall, it is clear that B y 

may be globally defined. In this case, the passage of a baryon through the wall will be seen as 

a B-violating process - it will emerge on the other side as an antibaryon (and vice versa). 

. If we could arrange for baryons to bounce off the wall more frequently than antibaryons, 

say,&hen we would have a means of driving baryogenesis. In practice, we find that the 

model must be complicated slightly to achieve this: it must contain at least three copies 

_.. (2 enerations’) of baryonic triplets, and also at least three Higgs triplets. The transmission 

.~ rates of baryons and antibaryons through the wall are generically different in the extended 

model. .- 

-If we now impose that (prior to wall formation) the ambient baryon-antibaryon plasma 

: has B-= 0 and is out of- thermal equilibrium, then baryogenesis will initially occur. This 

result holds even for a static Alice wall - a novel result so far as we are aware ‘. Ina 

cosmolbgical setting there will be a gas of such Alice walls, each driving baryogenesis. It _ 
is important to stress that the sign of the baryon excess will be uniform throughout space. 

However, if the walls are left intact indefinitely, B will execute damped oscillations and 

return asymptotically to zero. We must therefore allow the walls to shrink away sufficiently 

quickly that a net B remains. 

This baryogenesis mechanism occurs at the tree level. It is completely classical if we 

think of the scalar baryons as wave packets. It is more useful, however, to think of the 

relevant transmission (and reflection) rates as squares of moduli of quantum amplitudes, in 

a formalism where the baryons are first-quantized and evolve in the classical background of 

the Alice wall. 

In our specific model, net baryon number implies also a net electric charge. Thus the 

- Alice wall must accumulate charge (Cheshire or otherwise) to offset the baryon number it . 

$ We thank J. Preskill for a discussion concerning this point. 
c -- . $ Parity is conserved in our model, and so CP and C are not independent symmetries. This circumstance 

&f coarse change in the realistic SO(10) model. 
7 Note that even in this case Sakharov’s conditions are met since the ambient plasma is not in thermal 

equilibrium. 
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- creates around it; in the parameter regime we shall focus on, only Cheshire (i.e. nonlocalized) - -.-.- 
charge accumulates. This charge continuously decays as it forms, by electrically polarizing 

the surrounding plasma and also by the quantum-mechanical emission of charged particles. 

Since the plasma is composed of other chaaged particles besides (anti)baryons, the decay of * 

Cheshire charge will only partially cancel the accumulated B, not eliminate it. 

The Alice walls in our model may or may not exhibit the Meissner effect. This depends : 

on whether the charged Higgs components acquire VEVs in the wall core. We refer to these 

two cases as the superconducting and normal cases, respectively. In the version where we find 

baryogenesis, the normal phase is chosen for all three Higgs triplets, since this is simplest. 

Thetise of superconducting walls, however, has its own points of interest, quite apart from 

baryogenesis. We shall return to this case in a future publication [8]. 

. So far we have been discussing a toy model. Some viable GUT schemes can also form 

-- Alice strings and walls; we wish to raise the question of whether a variant of our mechanism 
.- 

can play an important role in baryogenesis for such GUT’s-e.g. for the group SO(10). This 

-question is currently under investigation; we discuss it briefly in the concluding section. 

The remainder of the paper is organized as follows. In section 2 we set up the toy model. 

We specialize to a fiiggs potential such that both an Alice string and the wall it bounds are 

formed;and such that the wall is normal (non-superconducting). In this regime, the wall is 

described as kinks in the three neutral Higgs fields. In section 3, we analyze the spectrum 

and discrete symmetries of the model; it is seen that C (and thus CP) are broken in the space 

surrounding the wall. Section 4 is the main part of the paper. It is shown there that the 

discrete symmetries are not capable of constraining the baryon and antibaryon transmission 

rates sufficiently-to rule out baryogenesis. A parameter regime is chosen which simplifies the 

physics. In particular, the heaviest among the three mass-eigenstate baryons is decoupled. 

We next proceed to derive the momentum- and position-averaged rate equations for the 

concentrations of the. two lightest baryon species, and their antibaryonsb. The asymmetry 

between the transmission ra,tes of baryons and antibaryons through the wall is computed in _ 

the Born approximation. It is thus shown that an out-of-equilibrium plasma with B = 0 

_ initially accumulates a net baryon number, which becomes permanent if the wall disappears - 

in time. This baryon number 1la.s a uniform, physically-meaningful sign throughout space. 

b &&fact-that we are able to completely decouple one of the three mass-eigenstate baryon species yet 
still obtain baryogenesis, does not contradict our previous statement that at least three generations are 
needed. This is explained in section 4. 
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- _ zhis remains true in the presence of a gas of such walls. In section 5 we summarize our 

conclusions, and briefly discuss ongoing work on baryogenesis in SO( 10). 

2. The Model 

Our model is an SO(3) gauge theory with the following matter content: An isospin- 
t 2 Higgs field @‘ab (a 3 x 3 traceless symmetric matrix); three scalar ‘baryonic triplets’ 

p a 7 with I ranging from 1 to 3; aad three Higgs triplets, z):). We shall refer to I,J, etc. 

as generation. indices. The lower-case a,b etc. will denote gauge indices; repeated gauge 

or Lorentz indices will be summed over except when stated otherwise, but not generation 

indices. We employ the West-Coast metric (1, -1, -1, -1). We also include one additional 
. . nonbaryonic isotriplet, u,; its sole interaction is a minimal coupling to the gauge fields. The 

-~ only role u will play in the model is to cancel the Alice wall’s accumulated electric Cheshire 
.- charge. We will not need to e?plicitly write the u-dependent terms in the action. 

?Ih& Lagrangian density is as follows: _ -. _ 

with (the superscript 7’ denotes isovector transposition): 

(2.2) 

Tq?J) = -6 x 7J(‘) . u(J) (2.3) 
I<J 

(2.4) 

(2.5) 

where e is the gauge coupling, and X,,P~,~,K and b are all chosen to be positive. The gauge 

c 8eldsi%w A$:and their field strengths F;V. 

t ‘Isospin’ refers to the gauge-group transformation properties. 
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.-- We now explain the motivation of the various potential terms. VI is some polynomial 

in traces of powers of the matrix a’, chosen to have a minimum (unique up to a gauge 

transformation) at 

cp=CY (2.6) 

we shall not require a specific form for VI here. The role of the Vi” terms is to give the 

triplet Higgs fields vacuum expectation values (VEVs); apart from the standard Mexican-hat 

potentials, they contain alignment terms (with couplings X,) which tend to align (Q), in 
-” -- 

isospin space, with respect to Cp. This alignment is required to preserve the U(l),, symmetry, 

as explained below. The neutral members of the Higgs triplets must acquire VEVs in order 
. . 

to break C. As we shall see, these VEVs are constant in the bulk of space, and have kinks 

-- at the wall since the Alice twist requires them to vanish on some surface within the wall. 
.- 

The Higgs couplings are generation-dependent, and in a cosmological setting they are 

-.. .also temperature- (and thus time-) dependent. Thus, a, should decrease with temperature, 

and at some epoch they will be in a regime such that all the Higgs triplets acquire VEV’s, - . 
and C is-broken. 

The signs of (vy’) f or d ff i erent I are a priori uncorrelated. The purpose of the term V3 

is to correlate them, thus ensuring that there are only two true vacua after C is broken-and 

as one is the C-reflection of the other, these are gauge equivalent. The parameter E can be 

chosen as small as desired. Together with V2, it constitutes the mass-squared matrix of the 

-. v-fields in the Csymmetric vacuum. The V3 term correlates not only the bulk VEVs of the 

Higgs triplets, but also the locations of the kinks for different values of 1. 

The potential VI contains the 1c, mass term and a $$I@ Yukawa interaction. The latter 

is introduced in order to break the degeneracy between the charged and neutral members of 

t-he baryonic multiplets. By (2.4),(2.6) we have 

rn2, = p; 1 KCY, iv; = pi + 2K.a (A = 1,2,3) (2.7) _ 

w-here pz are the eigenvalues of the symmetric matrix uIJ, and m,,AIA are the masses of the . -. 
char&andneutral $ fields, respectively, before C is broken. This mass splitting between 

charged and neutral baryons is not really necessary, but it is convenient, since we can now 
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proceed to make the neutrals very massive: .-A 

MA f O(a), mA < a (2.8) 

where cy is the scale of the Q, VEV. This is accomplished by choosing pA = O(o), /p, - ~~1 << 

Q and tuning K to produce a hiera.rchy between MA, which are at the S0(3)-breaking scale, 

and mA. Thus neutral baryonic particles can be assumed to have already decoupled at the 

temperatures where the Alice wall forms. This suits our purpose, since these particles have 

no baryon number-we wish to concentrate on the baryons and antibaryons. 

-,Ei_nally, there is the potential Vs. This consists of Yukawa couplings of the form $$Jv, 

and serves to couple the baryons to the wall. In the bulk (outside the wall), it changes 

the mass-squared matrix of the baryons in the C-broken phase, so the bulk definition of . . 
the three baryons (and their antibaryons) changes. In this phase a mass-eigenstate baryon .~ 

.- is, in general, no longer in the same gauge multiplet as its CPT-conjugated antiparticle. 

Note that despite the breaking’of C and CP, each baryon-antibaryon pair is still degenerate, 

_ -. _ -as required by the CPT.theorem. In addition to its effect in the bulk, we shall see that 

-the Vs potential gives rise to different transmission probabilities for incoming baryons and . 
antibaryons of the same energy. Since each transmitted baryon (antibaryon) is turned into 

0 an antibaryon (baryon) , this asymmetry enables baryogenesis. This will be explained in 

detail in section 4. 

The VEV eq.(2.6) breaks the gauge group SO(3) down to O(2), which has two connected - 

components and is the semidirect product of U(l),, and Z2 = { 1, C}. The group U(l),, 

-_ consists of isospin rotations about the internal 3-axis; C is charge conjugation, and we choose 

it-to be a rotation by 7r about the internal 2-axis. Stable Alice strings exist in the O(2) phase. 

We wish to consider processes in the background of a closed Alice string, so we must begin 

by twisting all charged fields by C around curves linking the Alice-string loop*. Thus, the 

physical gauge -defined by eq.(2.6) is valid in all of space excluding some branch-cut surface. 

This surface is arbitrary, except that its boundary must be the string. Any given field is - 

0 In general a baryon is sometimes transmitted while staying a baryon. However, we shall choose the . 
parameters of the model so this does not happen. This choice will also ensure that a reflected baryon 

_ (antibaryon) remains unflipped. 
C -. * We shall not need to consider the structure of the string core in this paper. Since we assume a hierarchy 

t&Y?een the two symmetry-breaking scales, it is natural for the wall thickness (and of course its size) 
to be much larger than the string core. We shall, however, require details of the kink configuration at 
the core of the Alice wall. 



- matched to itself across the cut via the C operation. Thus (vy’) flip their signs at the cut, - .-- 
(4’) are continuous, etc. 

It is straightforward to check that the vu@ alignment term in V2 forces (v(‘)) in the bulk _ 

to lie along the internal 3 direction. The term was chosen for precisely that reason: we wish 

to break C, but not U( l)em, in the bulk of space’. 

We next- investigate the structure of a static Alice wall. We shall assume the string loop 

to be a smooth curve (e.g. a circle), statically held in pla.ce, with the pancake-shaped wall 

centered at the planar disk bounded by the string!. 

;As the temperature decreases, we assume that all three a, parameters become small - 

enough so that the C-symmetric vacuum (v(‘)) = 0 becomes unstable. Let us begin by 

considering a single Higgs triplet, say 1 = 1. Since we would first like to understand the . . 
structure of the wall itself, without ambient matter, the II, fields will be set to zero at this .~ 

.- stage. The relevant single-generation potential is then: 

V wall = v-1 (!P) + XVTaw + uv2 + p(v2)2 (2.9) 

In addition, the Higgs medhanism causes the two charged gauge bosons, W&, to eat two of 
-- 

the components of Cp, and acquire a mass 

Mw = 32/2cue (2.10) 

The VEV (Y defines the scale of the Alice strings. 

The v = 0 vacuum is unstable, but (va) cannot be uniform throughout space, due to 

the Alice twist. Since vl,v3 are twisted by -1 around a closed curve linking the string, each 

of these two components must vanish on some surface having the string as boundary. As 

explained above, however, of the three isospin components only 29 will develop a kink, i.e. 

a soliton configuration interpolating between two VEVs of opposite sign. The deviations of 

t Except during a brief LangackGr-Pi phase, which is desirable in order to get rid of magnetic monopoles 
[7]. Such a phase does not arise in the model described here, but we shall see below that there is a . 
parameter range for which the kink that defines the wall is superconducting. In this regime, U(l),, is 

, broken in the wall, though it is still a good symmetry in the bulk. However, in this paper we concentrate 
, -. on. the -regime where (vc)) = 0 everywhere for a = 1,2. 

$ %&-wall 2s unstable against nucleating virtual Alice string-loops on its surface, which will eventually 
destroy it even if we hold the string fixed. But the rate of this nucleation is strongly suppressed for 
even a modest hierarchy between the string-forming and C-breaking scales [5], so this is not a problem. 
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- va  f rom the i r  bu lk  V E V s  wil l  b e  lim ite d  to  a  wall ,  enc los ing  th e  v3  =  0  sur face a n d  hav ing  -  .-’ 
a  th ickness o f o r d e r  

wal l  th ickness =  0 ( 1 /h ) . P ll) _  

This  is prec isely  th e  A l ice wal l  ( f igure 1 ) . W e  let th e  str ing l ie a l o n g  a  fixe d  circle in  th e  

z =  0  p l a n e ; th e  us  =  0  sur face is th e n  ta k e n  to  b e  th e  z =  0  disk b o u n d e d  by  th is circle. T h e  

v-f ield c o n fig u r a tio n  o f th e  wal l  reacts back,  th r o u g h  th e  e q u a tio n s  o f m o tio n , o n  th e  {a’, A ;} . 

fie lds  o f its preex is t ing str ing b o u n d a r y . O u r  a p p r o a c h  shal l  b e  to  c h o o s e  th e  p a r a m e ters  

so  as  to  m a k e  th is back-rea,c t ion smal l ,  a n d  th e n  to  stu d y  th e  e ffect o f th e  wal l  o n  a  d i lu te 

a m b ient  p l a s m a , wh ich  in  tu r n  h a s  neg l ig ib le  back- reac t ion  o n  th e  A l ice wall .  
-” --  
W e  shal l  fin d  it conven ien t to  e m p loy two distinct phys ica l  g a u g e s  in  w h a t fo l lows; e a c h  

o f th e m  h a s  its a d v a n ta g e s . O n e  o f th e m  w e  cal l  th e  ‘disk’ g a u g e ; it h a s  its b ranch -cu t ins ide .a  
th e  -wal l ,  a t th e  sur face w h e r e  (vy’) van ish’. Fo r  o u r  sta tic wall ,  th is  sur face l ies in  th e  

.- 
s y m m e try p l a n e  z =  0 . In  th is  g a u g e , electr ic c h a r g e  a n d  b a r y o n  n u m b e r  a r e  wel l  d e fin e d  .- 
o u tsid e  th e  wall ,  a n d  th e r e  is n o  difficulty in  descr ib ing  m u lt i-wall c o n fig u r a tio n s . T h e  o th e r  

-physical  g a u g e  is th e  ‘t ransmiss ion’ g a u g e . H e r e  th e  cut sur face is c h o s e n  to  ex tend  f rom 

- the s t r ing- loop o u twards,  to  infinity, a l o n g  th e  p l a n e  o f th e  str ing. In  th is  g a u g e  c h a r g e  
-  . 

a n d  b a r p o n  n u m b e r  a r e  n o t g loba l ly  d e fin e d  in  th e  bulk,  b u t it is eas ie r  to  ana lyze  b a r y o n  

t ransmiss ion s ince th e  cut l ies a w a y  f rom th e  wall .  T h e  b ranch -cu t sur faces fo r  th e  two 

physical  g a u g e s  a r e  s h o w n  in  fig u r e  2 . 

In  e i ther  o f th e s e  physical  g a u g e s , th e  surv iv ing c o m p o n e n ts o f th e  Q , fie ld  a fte r  th e  H iggs  

m e c h a n i s m  a r e : 

a  +  y1  +  9 2  Y 3  0  

@ =  

i 

5 9 3  Q  +  $ 2  -  p a  0  (2 .1 2 )  

0  0  - 2 a  -  2 9 9 1  1  

H e r e  9 1  is n e u tral, w h e r e a s  th e  two rea l  fie lds  5 9 2 , 5 9 3  to g e th e r  const i tute a  c h a r g e d  fie ld.  

T h e  masses  o f. th e s e  Q  H iggs  b o s o n s  a r e  o f o r d e r  o . D u e  to  th e  a s s u m e d  h ierarchy,  th e  

wal l  th ickness is m u c h  la rger  th a n  th e  l/o  scale,  a n d  a lso  la rger  th a n  th e  re la ted  W - b o s o n  -  

_  ( inverse)  mass  scale:  

a  < <  cy2, a  < <  e 2 a 2  (2 .1 3 )  . 

, - W e  n o w  requ i re  th a t th e  exci tat ion o f th e  a -H iggs  m o d e s  ~1,~2 ,~3  in  th e  vicinity o f th e  
--.- . -2 u  

$  A s  po in ted  ou t  above ,  the  in te r -genera t ion  a l i gnmen t  potent ia l  V s  m a k e s  it energet ica l l y  favorab le  for  
the  k inks of  the  th ree  genera t i ons  to b e  c e n t e r e d  a b o u t  the  s a m e  sur face  
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- malli be small relative to the bulk VEV, CY. Upon consulting eqs.(2.9-13), we find this to 

hold for the following parameter range: 

X(a/p) < a3 (2.14) - 

Next, consider the back-reaction of the wall on the gauge fields; in the absence of the wall, 

Af vanish in a physical gauge. For a normal (non-superconducting) wall, it is easy to check 

that the gauge fields remain zero even near the wall. In the superconducting case, the gauge 

fields are excited in the wall, but again one can choose a regime where this back-reaction is 

small [8]. 
-” -- 
Having deait with the issue of the wall’s back-reaction on the Alice-string fields, it 

remains to study the wall configuration itself-that is, the 2, kink. We find there are three 
. . 

pertinent Higgs-parameter ranges [8]: 
.- 

.- l a > 2Xo: the va = 0 vacuum is stable, no wall forms. We call this regime I. 

.o Regime II: --[ooXc~ < a < 2Xa. The ‘u = 0 vacuum is unstable, but a 03 kink with 

- --. :vr = v2 = 0 is stable. -Here 50 is a pure number; we do not know it, but the relevant 

point is that -2 <-&I < 11./a, so regime II exists. The wall formed by this kink is normal 

(non-superconducting). _ 

l Finally, regime III is a < -[oXa. In it the above kink is unstable, and there exists 

another, stable kink with v2 nonvanishing in the kink core and vanishing outside it. This 

kink is the superconducting wall referred to above. 

From here on we shall restrict attention to normal kinks. For our quartic potential, and 

in the transmission gauge, this kink is the well-known tunh soliton centered at z = 0’: 

Vl = v2 = 0, 2xc4! - a 
v3 = 

2P 
tanh(zdG) (2.15) 

Thus far, we have been discussing the structure of the Alice wall for a single Higgs triplet. - 

_ When there are several genera.tions, aa in our model, we need to separately consider the three 

(I) - potentials V2 . Assuming the ‘temperature has fallen sufficiently so that all three a, have . 

entered regime II, three kinks of type (2.15) will form, with different widths and heights; 

, -- 
t &&iially; khe neutral component cp1 acquires a small VEV throughout space, but this serves only to 

modify (Y slightly. 
lj This expression for the soliton requires corrections near the edge of the wall. 
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- .a$ are bounded by the same Alice string. As discussed above (2.7), the role of the inter- 

generation alignment potential V3 is to break the degeneracy between the vacua with different 

relative signs of (vy)), so that only two degenerate vacua are left. In these true vacua, all 

three VEVs have the-same sign. Furthermore, since C belongs to the original gauge group, * 

these two vacua are gauge-equivalent and are thus physically identical. The spatial regions 

between kinks of different generations consist of false vacua, and the pressure differences _ 

. between these regions and the true vacuum will force them to shrink. It is thus energetically 

favorable for the three kinks to coalesce. We therefore assume from here on that all three 

are centered at z = 0 * (figure 3). F’ mally, note that in addition to kinks bounded by the 

strip& the C-breaking transition will also form kink bubbles with no boundaries. Since we - 

are assuming a mass hierarchy, those bubbles which interpolate between the two equivalent 

vacua are metastable, while the other ones shrink and disappear due to pressure differences. . . 
The- baryogenesis mechanism, to be demonstrated below, applies to the metastable bubbles .~ 
as well as to Alice walls’. According to refs.6, however, bubbles tend to be shredded into .- 
bounded walls in an evolving string-wall network. 

3. The Spectrum and Discrete Symmetries 

At temperatures below the (a) scale, SO(3) is broken down to O(2). The discrete 

symmetries of the vacuum are then C,P and 2’. The action of C on the various fields is 

straightforward: for each gauge index a # 2 appearing in a field, it gets multiplied by (-1). 

Parity simply reverses the sign of spatial coordinates, and multiplies a field by (-1) for every 

spatial index appearing in it. Time-reversal reverses the sign of time, changes c-numbers 

into their complex conjugates t and, a.s for C and P, multiplies the various fields by some 

signs. These signs are almost determined by the requirements that all couplings in the action 

are C,P and T invariant, and that CT remains a symmetry when the Alice wall forms. The 

only freedom left in choosing these signs reflects the following two symmetries: 

* Realistically their relative positions will fluctuate, at least for small E. However, they are more likely 
to be found near each other than far a.part, so our assumption is reasonable even in a true finite- 
temperature environment. 

# As long as such a bubble does not begin to decay via virtual-string nucleation, however, a global 
. definition of baryon number is not physically relevant. Once it decays it becomes an Alice wall, to 

, -. which our .analysis applies. 
t &t%entidned above the baryogenesis mechanism explicated here is classical, although we choose to 

interpret it in particle language. At the classical level, then, one may work with the real components 
of all fields, and then no complex numbers are involved. 
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_ .-. (I) II,---+ --A th fi Id o er e s unchanged; this symmetry is just baryon-number conservation 

modulo 2, if perturbative baryon-violating processes are neglected. 

(II) A global U(l),, rotation by r. 

Modulo (I) and (II), one finds that T acts on the real fields precisely as C does, except 

that t -+ -t. In other words, CT (which must be conserved by the CPT theorem, since P 

is) acts as follows in our model: 

(C’T)F(~, t)(u)-l = F(Z’, -t) (3.1) 

_ for any field F. When v(‘) acquire VEVs, C and T are broken as separate symmetries. _ 
; c, 

Analogously to-what happens for CP violation in the Standard Model, the mass terms by 

themselves obey a modified C, but the interaction terms violate it, so in fact no good charge- 
. . 

conjugation symmetry can be found once the wall has formed. However, CT remains a good 

.~ symmetry, since the VEVs are left invariant under it (eq.(3.1)). 
_- 

Next, let us take stock of the spectrum after the formation of the Alice wall. The 

_ -. _ -surviving components of the @ Higgs are yr,v2 and ~3, which make up one real neutral field 

and one complex, charged field. Their masses are of order (Y, if we make the quartic couplings 

in VI(~). of order 1. Th e charged gauge bosons Wk have a mass given by (2.10), and the 

three neutral components of the $ (‘1 triplets also have masses O(o) (see (2.7-8)). We shall 

refer to these particles (with masses of order o) as superheavy; they will decouple before the 

wall-forming epoch, so we henceforth ignore them and the quantum processes they mediate. 

The remaining particles are the charged $-particles and the (charged and neutral) v- 

._ particles. Since we wish to study the regime II (in the classification above (2.15)), we must 

choose X, small enough so that 

A, = O(u,/a) . (3.2) 

We shall collectively denote the scales a, by a where convenient. 

- From (2.2),(3.2) we find that each generation of Higgs triplet has one real neutral field 

and one complex charged field: with masses of order &: 

(my = 0(&i), (myy = 0(&i) 

’ -wher-efke-superscripts n,ch refer to neutra.1 and charged components, respectively. 

(3.3) 

* We assume that the coupling E is small, so the inter-generation mixing it engenders is negligible. 
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- Finally there are the three charged 1c, fields, which describe the three baryons and their _ 

‘-antibaryons. Before C breaking their masses were mA (eqs.(2.7-8)). When v(I) acquire VEVs, 

the Yukawa potential V5 modifies the ‘1c, mass-squared matrix. The new mass term for the 

baryons is z-dependent; neglecting wall-edge effects, the baryonic action in the transmission 

gauge is 

S baryonic = 
IJ 

(3.4) I 

. . 

.- 

_ At this point, it is useful to change ba.sis in generation space. We do this by acting with an- 

SO(3) matrix on the I index, in such a way that in the new basis (with indices denoted by 

where 

are the (anti)baryon fields, and the position-dependent, hermitian mass-squared matrix for 

the $y’ fields is: 

where fiIJ 5 vIJ- m!bIJ has eigenvalues nzt (eqs.(2.4),(2.7)). The v:’ kinks appearing in (3.6) . . -- 
are given by (2.1§), with-(X, a, p) replaced by (X,, a,, pJ). It is crucial for the baryogenesis 

effect-that the widths of the three kinks all be distinct from one another, as will be seen in . _ 
section 4. 

Let us denote 

rI E v~‘(+co) WV 

-These three numbers are positive**, and determine the mass-squared matrix in the bulk. 

Switching to the disk gauge and choosing it so that vy’ = r1 away from the wall, we obtain 

-from (3.6) th e mass-squared matrix in the bulk: 

(h!ffJ)bUlk = fiIJ - ibx cIJI,.rIc (disk gauge) (3.8) - 
K 

--: -.i- 
c- 

** Their relative signs are determined by the potential V3, as discussed in section 2. Their absolute sign, 
however, can be changed by a global C transformation, to which the physics is invariant. 
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the letters A,B, etc.) .-’ 

where: 

(3.10) 

are the generators of the generation-space rotation group, and CAB is the matrix fi in the 

new basis. We now conveniently choose fi as follows: 

v = m; + (w + 172; - mi)(t3)2 (3.12) 

. It follows from (3.9),(3.12) that the mass-squared spectrum of baryons in the bulk is: rn~,m~ : 

.- rn$n~+2w, (3.13) 

-and- we choose mH > rnh > ml. Each baryon is degenerate with its antibaryon, as required _ -. _ 
-by CPT invariance. The ‘light’ (1) and ‘ medium heavy’ (h) baryons in the bulk are described 

(in disk gauge) by the t3 = ‘-1 and t3 = 0 components of the $+ field, respectively, whereas 

the ‘heavy? (H) b ar y on is described by the t3 = +l component. Thus, upon decomposing 

the baryon field in the t3 basis, 

(3.14) 

baryons : (1, IL, H) = (?q, qq’, Tjy) (3.15) 

antibaryons : (7, h, fi) = ($(+I, $I_“‘, $?‘) (3.16) 

In what follows, we shall choose to decouple the H baryon, 

(3.17) 
- .  1 

‘So tha&oniy. the I and h baryons and their antibaryons will play a role in the plasmab. 

b All three baryonic masses are still kept much lower than the superheavy scale. 
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So farwe have discussed the mass-squared matrix in the bulk, and in disk gauge. Next, - .-- 
we return to (3.6) in the vicinity of the wall, and in the transmission gauge (in which it 

holds). The bulk assignments (3.15-16) now become: 

fz > 0 buryons : (1, h, H) = ($$‘, I/$‘, $y’) (3.18) 

fz > 0 untiburyons : (1, h, H) = (q!$‘, T/J:), $$)) (3.19) 

It is important to note that although eqs.(3.18-19) hold in transmission gauge, our usage 

of the labels ‘baryons’, ‘antibaryons’, I,tetc. still refers to the global (disk gauge) definition. 

Th&?an I baryon impinging on the Alice wall from the z < 0 side, for instance, may 

be transmitted through the wall to the z > 0 side. In this case, the transmission-gauge 
. . description is that the $- field is transmitted from a t3 = -1 to a t3 = +l component, and 

-~ the outgoing particle is called 1. In the disk gauge, however, we would say that the $c’ field 

‘- (1) acquires upon transmission, a $‘_” component (t). 

-The mass-squared matrix throughout spa.ce, including the wall core, is 

- M”(z)-= V + Cw,(z)t, (transmission gauge) (3.20) 
A 

- . 

where tiA( z) are related to vy’ by the S0( 3) matrix which relates the two generation-space 

bases. The functions WI, w2 are thus only defined modulo an arbitrary So(a) rotation, but 

the physics we shall be interested in is unaffected by this ambiguity. The functions wA(z) 

satisfy (see (3.9)) 

w3(fm) = fw ) (3.21~) 

wA(~oo)=O forA=1,2. (3.21b) 

All the information on transmission and reflection of baryons and antibaryons at the wall is 

encoded in the following Klein-Gordon equation ((3.4),(3.20)): . 

{a2 + fi+ xWA(+A}1I)+ = 0 (3.22) 
A 

’ -&h&given by (3.12). 
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- - .-- 4. Baryogenesis via Asymmetric Transmission 

Let us consider a temperature low enough so that the Alice wall has formed. The wall is 

embedded in a plasma of baryons and antibaryons (and other particles) having an initially- - 

zero net baryon number, and we are interested in baryon-number violating processes capable 

of giving rise to baryogenesis. 

. In the bulls of the plasma one has the usual kinds of baryon-violating processes, familiar 

from realistic GUTS. There are perturbative quantum processes, all of them suppressed by 

inverse powers of the superheavy scale; A few such processes are depicted in figure 4 (In 

- general one also expects sphaleron-induced baryogenesis, but that requires chiral fermions 

and hence cannot arise in our model). The wall-catalyzed baryogenesis mechanism, however, 

. is independent of the superheavy scale*. Furthermore, we shall see that it can be catalyzed 

even by a static wall, if the wall disappears at finite time. We now investigate this mechanism .- 

.- in detail, for a single static wall. 

.In order to facilitate a clear presentation, the remainder of this section is divided into 

. subsections mirroring its -main conceptual components, which are: 
. ..- 

1) Choice of <convenient parameter regime. 
-- 

2) ‘The &&catalyzed buryonic S-mutriz; CPT constraints. 

3) Averaged rate equations: approximate, linear Boltzmann equations for the plasma 

populations of the particle species (1, h, 1, h} in the presence of the wall, averaged 

over particle positions and momenta. 

4) Calculation of the microscopic buryon-untiburyon asymmetries (reflection and trans- 

mission), in a Born approximation. 

5) Demonstration of finite-time buryogenesis B(t) f or a plasma which, at t = 0, is out 

of thermal equilibrium and has B(0) = 0. 

6) DiJerent kinds of Alice walls. 

4.1 Parameter Regime.-We choose the range of model parameters and plasma tem- 

perature so as to simplify the analysis and suppress uninteresting effects. Let m, be the 

c -mass_ofthe (charged and neutral) u-bosons, which are implicitly present in our model (see 
.*, ‘,. 

-k Except in that the Alice string itself was formed at that scale. 

16 



I 

- discussion- above (2.1)). Let T be the temperature, and define rll E 2X,cr - a, > 0. The - .-’ 
regime we work in is defined in the appendix. It implies the following: 

(I) The wall is normal (not superconducting). 

(II) The plasma is populated mainly by nonbaryonic u-particles, and its baryonic com- 

ponent is dilute and non-relativistic. The back-reaction of the plasma upon the wall 

is negligible. 

(III) The populations of H,H baryons in the plasma, a.s well as those of the v-particles 

and the superheavies, can be approximated as zero. 

(IV4 A baryon (I or h) can only disappear by annihilating an antibaryon. Such anni- 

hilations occur at negligible rates. In general, since u-particles are far more abun- 

.a dant than baryons we may ignore reactions involving more than one baryon (or 

antibaryon) in the initial state. Collisions (predominantly electromagnetic) between .~ 

.- baryonic particles and u-particles serve to equilibrate the momenta of the former, 

but the probability of’ such a collision changing the species of a baryonic particle 

_ (from 1 to h, etc.) is suppressed’. 

(V) The wl,w2 ierms in- (3.22) are small enough to be treated in a Born approximation 

-(but not ws); th is will prove useful in subsection 4.4. 

4.2 Wall Catalyzed S-Matrix.- The plasma particles exert a negligible back-reaction 

on the Alice wall; hence they can exchange momentum, but not energy, with it. The creation 

of baryon-antibaryon pairs at the wall is thus kinematically suppressedS. Consulting point 

(IV), we see that the only species-changing microscopic baryonic processes occurring in the 

.- plasma are the reflection or transmission of an l,l,h or h particle at the Alice wall. Therefore 

the baryonic rate (or Boltzmann) equations, to be considered in subsection 4.3, are linear 

in the concentrations of these four particle species and determined by the reflection and 

transmission rates. Since the normal Alice wall considered here has no charged zero modes, 

impinging particles cannot exchange localized charge with it. The wall-catalyzed S-matrix 

thus has nonzero entries only for the following processes: 

l AB = 0 reflection: S;j, with i the initial-particle label, j the final; i, 

and (i, j) both baryons or both antibaryons. 

j E (1, i, h, h) 

< -. 
t &&se -@.uge interactions are diagonal in generation space. 
$ We shall ignore electromagnetic bremstrahlung at the wall, since it does not change the (anti)baryon 

species (see (IV) above). 
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- or vice versa. For transmission - .-- l AB = 3~2 transmission: Sij, with i E (1, h}; j E {I, h} 

processes, the wall picks up an electric Cheshire charge Q = -AB. Some reflection 

and transmission processes are depicted in figure 5. 

The S-matrix depends on the incoming momentum, but the outgoing (j-particle) mo- 

mentum is uniquely determined by conservation of energy and hy, (momentum parallel to 

wall) : 

Sij = S;j (Zi) . (4.2.1) 

As before we are ignoring wall-edge effects, which would slightly violate &, conservation. For 

partities that miss the wall altogether S;j is, of course, the unit matrix Sij. For kinematical 

reasons, 

Sij(ic') = 0 if g2 < rn3 - rnf , (4.2.2) 

.- Since & determines cj, unitarity simply means that the 2 x 2 complex matrix S;j(i) is 

unitary. The wall is physically symmetric under z --f -2, as is manifest in disk gauge; thus 

- ---:Sij(g) does not depend on the sign of Ic,-the particle i may be incident on either side of 

the wall. The CPT-symmetry implies that 
-- 

. _ 
Sij(Zi) = SJf(Zj) (4.2.3~) 

when 

E;(/g) = j+(g) p) = /p 
3 9’ II II * (4.2.3b) 

This constraint relates, for instance, Sll(i) to Sn(i). Thus, had we chosen a parameter 

range such that only the lightest baryon is present in the plasma, no baryogenesis could 

occur ‘. However, since we have h-particles as well, the CPT symmetry cannot rule out 

asymmetries enabling the production of a net baryon number. 

4.3 Averaged Rate Equations.- In order to simplify the four-species Boltzmann 

equations into a set of four first-order, linear, ordinary differential equations, we assume 

. that the-jnitial plasma has Boltzmann distributions in all particle energies- but only within 
-** -;- 

5 We thank J. Preskill for a discussion on this point. 
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- fach species. In other words, denoting by h’;(C,t)d3k th e momentum-space distribution of 

particle momenta at time t, we assume 

d3 ke-Ei(GIT (4.3.1) - 

where ni(t) is the total number of i-particles. The exact rate equations do not preserve this 

Boltzmann momentum distribution within a given species, unless n; are also in the correct 

Boltzmann ratios at t = 0. However, the baryonic particles in the plasma are constantly 

-undergoing electromagnetic collisions with U& particles, and this tends to restore their Boltz- 

marm-z distribution without affecting the ratios n;/nj (point (IV)). Since the mean free path - 

between such collisions is much shorter than a baryon’s mean path between consecutive en- 

counters with the wall, we will assume that the momentum distribution within a species stays . . 
frozen at its initial, Boltzmann shape ll at all times t > 0. However, the total population .- 
of the i-th species, n;(t), does evolve with time. The non-equilibrium nature of the initial 

plasma, necessary for baryogenesis, will then manifest itself only through non-Boltzmann 

.initial population ratios, .nh(O)/?zl(O) and nh(O)/nl(O)*. Since the wall interconverts light 

-and medium;heavy particles, the rate equations will tend to restore these ratios to their 

Boltzm-ann values. - -- 
- . 

A note on spatial dependence: the generated baryon number will actually diffuse out- 

wards from the Alice wall; we assume a very large diffusion coefficient, so the species popu- 

lations n;(t) can be taken to be spatially homogeneous. We have not attempted to translate 

this simplifying assumption into an additional quantitative condition on our model param- 

eters. In our thought experiment, we also stipulate that the wall is formed (or externally 

introduced) at t = 0 into a plasma box of finite volume V. This is reasonable: in a cosmo- 

logical setting, a gas of Alice walls will form, so V may be thought of as the average volume 

per wall. 

Given a plasma with such properties, then, we now derive the averaged (over space 

and momenta) rate equation satisfied by n;(t). Let A d enote the area of the wall, which 

is assumed much larger than all baryonic Compton wavelengths; we are then justified in _ 

neglecting wall-edge effects. We define Pij to be the probability per unit time that a given 

7 ‘2%~ barydnic plasma is dilute, so the Bose-Einstein and Boltzmann distributions agree. 
* These ratios could have realistically deviated from equilibrium as T first decreased through mh and 

then through ml. 
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particle of.species i, anywhere in the box, is converted by the wall into a j-particle. We have: - .-’ j # i (4.3.2) 

where: 
c 

fi = fi G 
J 

@,$e-Ei(E)IT . (4.3.3) 1 

In (4.3.2), jk,J/Ei is the normal velocity of the incoming baryon or antibaryon relative to 

the wall, and no summation over i is implied. By S-matrix unitarity, 

-” -- 

- ISii(ic’)12). (4.3.4) 

. . 
The-CPT invariance yields the relation _~ 

.- 
(4.3.5) 

-where -we have used the fact that, for a transition i --+ j, 

Ik~)ld3k~ = lk(j)ld3k. 2 z 3 (4.3.6) 

This follows from the conservation laws (4.2.3b) and is simply a manifestation of the conser- 

vation of phase-space volume in hami1tonia.n mechanics (Liouville’s theorem). 

The averaged rate equations now assume the form, familiar from statistical mechanics: 

4.4 Calculation of Microscopic Asymmetries.- As noted at the end of section 3, the 

wall-catalyzed Sij is encoded in the Klein-Gordon equation (3.22). We can work with this - 

- single equation, and yet describe (in transmission gauge) both baryons and antibaryons. This 

can be seen from the assignments (3.1%19), which tell us that eq.(3.22) describes baryons . 

for z > 0 and antibaryons for z < 0. 
_ - 

W&%halIrassume the $+ wave is monochromatic, so the methods of time-independent 

scattering theory can be used. 
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- T h e  i d e a  o f th e  B o r n  a p p r o x i m a tio n  w e  shal l  e m p loy, is to  p e r tu r b  + !J+  ( to first o r d e r  -  .-’ 
in  wr ,w2)  a r o u n d  th e  so lut ion o f (3 .2 2 )  wi th on ly  th e  A  =  3  te r m . T h e  p a r a m e te r  r e g i m e  

c h o s e n  in  4 .1  ensu res  th a t th is  B o r n  a p p r o x i m a tio n  is val id, a n d  th a t th e  lim it m H  +  o o  m a y  

b e  ta k e n  with th e  o th e r  two b a r y o n  masses  r e m a i n i n g  finite. T h e  t runcated space  o f w a v e  

fu n c tio n s  (‘Hi lbert  space’ in  a  f i rs t -quant ized p ic ture)  consists, in  th is  lim it, o f fu n c tio n s  

with on ly  th e  two c o m p o n e n ts t3 =  -sgnz,  0  a t pos i t ion (5 , y, z). In  a d d i tio n , th e  t3 #  0  

c o m p o n e n ts van ish  a t z =  0 , w h e r e a s  th e  t3 =  0  c o m p o n e n t a n d  its first der ivat ive a r e  

c o n tin u o u s  th e r e . 

T h e  p a r a m e te r  r a n g e  fu r th e r  ensu res  th a t th e  width o f th e  I =  3  kink is very smal l  

c o m $ r e d  w i th~those o f I =  1 ,2 , a n d  th e s e  latter widths a r e  in  tu r n  m u c h  smal ler  th a t 

th e  d e  Brog l ie  a n d  C o m p to n  w a v e l e n g ths  o f th e  ba ryons . T h e  u n p e r tu r b e d  $ J +  w a v e  fo r  a n  
. . i ncoming  1  is th u s  th e  w a v e  fu n c tio n  o f a  p l a n e  w a v e , imp ing ing  o n  a  ‘br ick wal l’ (a t z =  0 )  

.- f rom th e  z >  0  s ide  a n d  to tal ly re flect ing f rom it. It is th e r e fo r e  th e  s u m  o f th e  inc ident  a n d  
.- r e flec ted  waves.  T h e  u n p e r tu r b e d  $ +  w a v e  fo r  a n  incoming  I, o n  th e  o th e r  h a n d , is th e  s u m  

.o f a -  p l a n e  w a v e  inc ident  f rom th e  z <  0  s ide, a n d  a  to tal ly-ref lected w a v e . Fo r  a n  incoming  
.- 

.h  o r  h ; th e  p o te n tia l  is fla t a n d  th e  zero th -o rder  $ +  is just th e  i ncoming  p l a n e  w a v e , f rom 
. . -  - -  

th e  a p p r o p r i a te  direct ion.  - -  

T h e  p e r tu r b i n g  p o te n tia ls  w~(z) ,w~(z)  a r e  fin i te in  th e  m , - +  C K I lim it, a n d  a r e  g i ven  by  

e q .(A .lO ) o f th e  a p p e n d i x . They  a r e  a lso  dep ic ted  in  fig u r e  6 . 

Us ing  th e  zero th -o rder  waves  desc r ibed  a b o v e , it is s t ra ight forward to  c o m p u te  th e  var-  

ious  e n tries in  th e  wal l -cata lyzed S - m a trix. Fo r  instance,  th e  e l e m e n t S J ~  in  th e  B o r n  a p -  

p rox ima tio n  r e a d s  u p  to  a  p h a s e  ( w h e r e  k i n e m a .tical ly a l l owed  by  (4 .2 .2))*  

0 3  
dze- i l r”:l” sin  (Ib Iz> (O l  ewA(z ) tA l -  1 ) )  (4 .4 .2 )  

A = 1  

w h e r e  ic’ =  & , ic’l =  Z h  a n d  1s)  is a  g e n e r a tio n - s p a c e  sta te  hav ing  t31()  =  [I< ) . As  wil l  b e  

s e e n  in  4 .5 , al l  th e  re levant  b a r y o n - a n tib a r y o n  t ransmiss ion a s y m m e tries a r e  express ib le  in  

te rms  o f a  s ing le  ref lect ion a s y m m e try, by  u s e  o f th e  C P T  constraints a n d  unitarity. This  

* & .~yp icd . ( thermal )  m o m e n t a ,  IS ,h[’ <  1  thanks  to (A.7) .  For  the  k inemat ica l  e n d p o i n t  f : .--+ 0,  the  
express ion  (4 .4 .2)  is s ingu lar .  This  is a n  art i fact of  the  B o r n  approx imat ion ,  a n d  h a s  a  neg l ig ib le  effect 
o n  the  m o m e n t u m - a v e r a . g e d  asymmet ry  ( (4 .4 .4a)  be low) .  
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I 
asymmetry is - .-.- 

Ah1 = P&i - Phi , (4.4.3) 

And in the Born approximation it is: 

(4.4.4a) 

where no& 2 is the incoming (h or h) momentum, 2 the outgoing (I or 7) momentum, the 

average is performed over incoming momenta with Boltzmann measure, and the complex 

amplitudes D, are defined as follows: 
-” -- co 

D,(k) E 
J 

d.ze-ilkzlz sin( Ik~Iz)w..,(z) (4.4.4b) 

. . 0 

-- with tiA given by eq.(A.lO). Th is asymmetry is, in general, nonzero. One easily checks 
.- that the minimal numbers of baryonic and Higgs generations for which Jthl does not vanish 

-identically, are three and three; this statement holds to all orders in perturbation theory. 

In.‘subsection 4.5 we.will show that the plasma, which starts at B(0) = 0 and out of 

equilibrium, develops a finite B(t) thanks to the asymmetry &. Note that this baryogenesis -- 
results even though we chose to decouple one of the three baryon mass-eigenstates (by making 

its mass mH high). This does not contradict our above statement, which implied that two 

baryonic generations cannot yield baryogenesis. This is because, of the surviving baryons 

and antibaryons, h and h are in the same gauge multiplet, but 1 and ? are not- they are not 

related by C ( see (3.15-16)). The dynamics of the Alice wall still involves all three baryon 

-- generations, even when H is decoupled. 

4.5 Finite-Time Baryogenesk- From unitarity and CPT-invariance (eqs.(4.3.3-5)) 

it can be-shown that the rate equation, (4.3.7), admits a unique equilibrium state: 

(%)quil CX .fi * 

Now in general, the net plasma baryon number is 

(4.5.1) _ 

B(t) = nl + nh - n[ - nh (4.5.2) 

, -. 

SO fr&S( 4.5.-l.), Bequil = 0; by assumption, the initial baryon number is also zero, B(0) = 0. 

IIowever, at finite t, B(t) # 0, p rovided the initial ratio nh/nl differs from the equilibrium 
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- _ fatio fh/fi. To see this, let us compute b(O). From (4.3.2-7), 

B(O) = -2&&h - fhndfi) , (4.5.3) 

where Ahl is the asymmetry computed in subsection 4.4. If the wall remains in place, 

then B(t) must eventually approach zero again. If the wall disappears at some finite time, 

however, t-hen a baryon asymmetry will be left behind. 

In general, (4.3.7) is solved by resealing na = 0” *n2 and expanding the initial distribution 

in the eigenvectors of Pij-Sijqi, with Pij = flPji/fi, qi E CI, Pik and Pii E 0. Since P is 

realWed asymmetric*, the corresponding eigenvalues are pairs of complex-conjugate complex - 

numbers. Thus n;(t), and therefore B(t) as well, are linear combinations of exponentially 

damped sine functions with various periods, phases and decay constants. This asymptotic . . 
behavior of B(t) (f or a wall held in place indefinitely) is more general than the particular .- 
model considered here. To see a. particularly elegant example of this behavior, let us concoct .- 
a simple-minded P matrix which realizes the necessary baryon-antibaryon asymmetry in a 

-‘maximal’ way. The P matrix we choose is deterministic-the label of the incoming particle 

-determines that of the outgoing one, and thus whether the incoming particle is reflected 

or transmitted. The rules &e choose are encapsulated in figure 7: an 1 is always reflected 

(into an hj; an h reflects into an 7; an t is always transmitted into an I, whereas h is always 

transmitted to become an h. It is readily seen that the asymmetry is then nonzero. For 

simplicity we set mh = ml, so that all nonzero entries in Pij are equal to 7-l 3 + ( lvZI), 

with ( IzJ~~) th e average z-velocity of any incident particle. It is then straightforward to show 

that, as long as the wall is present, 

B(t) = -2(nh(o) - n[(o))e-t’T sin (i/7). (4.5.4) 

4.6 Different Kinds of Walls.- As discussed in section 2, the inter-generation align- 

ment term V3 correlates the rela.tive signs of the three bulk VEVs (u:‘>, and also causes the - 

- three types of kinks to be preferentially centered at the same surface. This is important for 

_ baryogenesis: if the alignment coupling c is set to zero there are degenerate, nonequivalent 

vacua with, say, the same VEV sign for I = 1,3, but opposite signs of (2) 
( > 

v3 . Therefore, 

-By eqs..@.7),(4.4.4) and (A.lO), Al’ 
-s&* cm 

ice walls embedded in these two vacua will yield different 

* Its asymmetry is solely due to reflection and transmission asymmetries, such as AhI. 
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- _ csymmetries Ahl - in fact, in the decoupled-H limit the asymmetries are equal and oppo- 

site. When t # 0, however, the bubbles enclosing one type of vacuum tend to collapse due 

to the pressure difference between the vacua, and so only one & value is relevant. 

For topological an-d dynamical reasons, there is only one kind of Alice wall (bounded by 

one type of Alice string) in the true vacuum, since an Alice wall must be a solution of the 

equations of motion. However, suppose our plasma is inhabited by capable engineers who are 

able to change the shapes of the v3 (I) kinks without changing their VEVs in the bulk of the > 
plasma. Assume further that they are able to hold these altered kinks static by some means. 

Such an artificial wall is still bounded by an Alice string. If an artificial wall is adjusted so 

thafi%s wl,w2 functions are interchanged, we see from (4.4.4),(4.5.3) that the baryogenesis 

it causes will be precisely opposite to that engendered by a genuine (‘natural’) Alice wall of 

the same area. One can easily show that this conclusion holds for the exact Klein-Gordon 

..equation, and is thus not limited to the Born approximation. Fortunately, however, even the 

full transport equations are unlikely to give rise to engineers - so our conclusions are safe. 

Although there is only one kind of Alice wall (in the true vacuum), two otherwise iden- 
_.~ 

tical Alice walls can still be different-they may carry different amounts of electromag- . . - -- 
netic charges. More specifically, there are two such charges [2]: Cheshire electric charge 

and Cheshire. magnetic charge. The electric Cheshire charge (caused e.g. by transmission 

of baryons) decays rapidly, mostly by attracting oppositely charged u-particles from the 

plasma, which are almost always transmitted and thereby cancel the Cheshire charge. We 

have ignored magnetic charges in this paper; in ref.7 a scenario was presented in which they 

disappear. But even if they are present, their effect on the wall S-matrix is not expected 

to cancel the bar.yogenesis found here-especially since in a gas of Alice walls, the sign of a 

given wall’s magnetic charge is random. 
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- .-- 5. Summary and Conclusions 

In a Grand Unified Theory in which the charge conjugation operator is contained in the 

original gauge group, Alice strings form when the symmetry is broken to a smaller group - 

having C as a discrete symmetry. Magnetic monopoles usually form as well, but (as shown 

in ref.7) these can be eliminated by a Langacker-Pi mechanism, at least in a toy model. Thus 

magnetic monopole bounds need not rule out cosmological, post-inflationary Alice strings. 

In this paper we have studied, also in a toy model, a novel baryogenesis mechanism 

involving Alice walls. The original gauge group is SO(3); baryons are scalar and belong 

to S@(3) triplets. Baryon number B is violated by perturbative processes, which become 

suppressed after SO(3) is spontaneously broken to O(2). H owever, this same transition forms 

. . Alice strings, in the presence of which B is globally ill-defined. At a lower temperature, C 

_~ too is spontaneously broken, through VEVs of non-baryonic SO(3) Higgs triplets. A closed 

_- Alice string loop now becomes the boundary of a domain wall-an ‘Alice wall’, where the 

Higgs triplets develop kinks. In a cosmological network of string-bounded walls, the walls 

- -- -eventually shrink and decay, and never dominate the energy density of the Universe; C and 
.~ . . . 

CP remam broken, While-the walls exist, the symmetries C, CP and B are all violated, 

the latter mainly by the transmission of ba,ryons/antibaryons through the wall. This enables - . 
baryogenesis, which indeed occurs (even for static walls) when there are three baryonic 

‘generations’ and three Higgs triplets, and when the initial plasma (with B = 0) is out of 

thermal equilibrium. The baryogenesis occurs due to different transmission rates of baryons 

and antibaryons through the wall. Such a transmission changes a baryon into an antibaryon 

and vice versa, in the ‘disk’ gauge where baryon number is well-defined in the region excluding 

the disk. The Alice walls must be removed at finite time, or else the net baryon number 

equilibrates back to zero. 

This baryogenesis mechanism is classical in nature. As baryon number increases the 

Alice wall tends to accumulate electric charge; in the parameter regime that we have focused 

on in this paper, this charge is purely of the ‘Cheshire (unlocalized) variety, and decays 

rapidly, predominantly by attracting oppositely-charged particles from the ambient plasma _ 

and flipping their charges. These charge-decay processes have a negligible effect on the 

_ produced baryon number for the parameters we choose. They merely serve to electrically 

scree&?he n&t baryon excess by a corresponding excess of oppositely charged, non-baryonic 

particles. 
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- The main conceptual difference between our mechanism and electroweak scale, sphaleron- - .-- 
induced baryogenesis [9] is as follows. Electroweak baryogenesis assumes a preexisting CP- 

violation, uses sphalerons to supply Biviolation, and requires moving bubble-walls. The 

Alice-catalyzed mechanism, on the other hand, relies on preexisting deviations from equilib- - 

rium, and uses unstable domain walls to supply the other Sakharov conditions*. 

Some realistic GUT schemes can form Alice strings and walls, and these might catalyze 

cosmologically significant baryogenesis of the type found in the toy model. This possibility, 

for the unification group SO(lO), is currently under investigation in a scenario in which C,P 

and CP are spontaneously broken at the left-right symmetry breaking scale. Both in the toy 

mod&and SO(l0) GUTS, topologically stable bubbles may form, in addition to Alice walls. 

In the toy model, such bubbles shrink away due to pressure differences and do not affect 

. . the wall-catalyzed baryogenesis. We do not yet know how non-Alice walls affect similar 

_~ baryogenesis mechanisms for SO(lO), but the different nature of C and CP violations is 

_- likely to play an important role in that (or any other realistic) model. Finally, it remains 

to b-e seen to what extent the baryon number produced at the left-right symmetry breaking 

- -- -epoch can survive the above-mentioned electroweak-sphaleron processes. 

. _ APPENDIX 

The constraints we choose to impose on the temperature and the parameters of the toy 

model, are as follows (apart from the condition that regime II of section 2 holds): 

A, = O(u/cu) 

PI li+ a2/a4 (1 = 1,2,3) 

mu << T << ml < mh , 

(A4 

(A4 

(A.3) 

(A4 _ 

(A.5) 

* The phase transition that gives rise to Alice walls is also likely to increase the deviations from equilib- 
rium, thus enhancing baryogenesis. 

26 



- .-’ 
( m ,/c~ ) ~  <  b 2 /a  (A-6)  _  

b 2  <  m lT ( A .7 )  

fi K  & /ln ( m ~ / (b2q1) )  (I=  W )  (A -8 )  

1 1 3  =  O (a)  ( A .9 )  ; 

C o n d i tio n  ( A .l) is e q .(3.2), a n d  fo l lows f rom th e  r e q u i r e m e n t th a t th e  th r e e  kinks a r e  no r -  

m a 1  ( reg ime  II o f sect ion 2 ) . C o n d i tio n  ( A .2 )  fo l lows f rom (2 .1 4 )  (smal l  back- reac t ion  

o f t&c  wal l  o n  th e  str ing) to g e th e r  with ( A .l). T h e  cho ices ( A .3 -9 )  a r e  consistent  wi th -  

(2 .1 5 ) , (3.10) , (3.~13).  E q .(A .7 )  ensu res  th e  validity o f th e  B o r n  a p p r o x i m a tio n  in  sect ion 4 .4 , 

a n d  ( A .6 )  fo l lows f rom ( A .2 -3 ) . . . 

.- Fo r  th e  p u r p o s e s  o f th e  wal l  S - m a trix calculat ions o f 4 .4 , th e  l a r g e - m H  lim it resul ts in  

.- th e  fo l low ing  a p p r o x i m a tio n  fo r  th e  p e r tu r b i n g  p o te n tia ls  in  (3 .2 2 ) : 

w A .(z) %  b r ,(ta n h ( & z )  -  sgnz)  , A  =  1 ,2 . ( A .lO ) 

. 
--  A C K N O W L E D G E M E N T S  . _  
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. . FIGURE CAPTIONS 

.~ 
1) (la) The Al ice wall. (lb) A n edge-on, cross-sectional view of the wall. The small ’ 

_- 
circles represent sections, of the Alice-string core. 

- 2). Edge-on view of the branch cut surfaces in two physical gauges: (2a) disk gauge (2b) 

transmission gauge. ._ 

3) Profiles~of the th ree Higgs-triplet kinks. 

4) Some perturbative baryon-violating processes. Diagrams (4a-c) are suppressed by su- 

perheavy propagators. The plasma contains a negligible Wh population, so (4d) can 

be ignored as well. 

-- 5) Some reflection and transmission processes in the presence of the Alice wall. 

- 6) The potentials of the Klein-Gordon eq.(3.22) in the mH t co limit. In this limit, the 

amplitude of the 1 = 3 kink of figure 3 becomes infinitely large, and this kink becomes 

infinitely narrow. The two solid curves are profiles of WI(Z) and WZ(Z), while the dashed 

horizontal lines are the two surviving mass-squared levels. 

7) A set of deterministic reflection/transmission rules with maximal transmission asym- 

metry. 
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