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ABSTRACT

In the heavy-quark effective theory, current matrix elements between two heavy
pseudoscalar or vector mesons are parametrized by a set of universal form factors.
These functions are calculated to. subleading order in the 1/mg expansion using
QCD sum rules. The equations of motion and Ward identities of the effective theory
are incorporated in the analysis. Within this approach, parameter-free predictions
are obtained for all form factors at zero recoil. The results allow for an almost
model-independent analysis of current-induced transitions between heavy mesons.
As an application, the 1/m, and 1/m corrections to the hadronic form factors
describing semileptonic B — D{v and B — D*{v decays are computed. The
possibility of extracting V,; from these processes is discussed, and the importance
of a measurement of symmetry-violating effects in ratios of factors is pointed out.
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I. INTRODUCTION

The theoretical description of hadronic processes involving the decay of a heavy
quark @ has recently experienced great simplification due to the discovery of new
symmetries of QCD in the limit where mg — oo [1,2]. The properties of a hadron
~ containing the heavy quark become then independent of its mass and spin, and the
complexity of-the hadronic dynamics results from the strong interactions among the
light degrees of freedom only. A covariant effective-field-theory approach provides an
elegant framework to analyze such processes. It allows an expansion of decay ampli-
tudes in powers of 1/mg in such a way that the spin-flavor symmetry relations become
explicit [3-8]. Hadronic matrix elements in the effective theory are parametrized in
terms of form factors which characterize the properties of the light degrees of free-
dom. They are universal in the sense that they do not depend on the properties of
the heavy quark itself.

The heavy-quark symmetries impose restrictive constraints on weak decay ampli-
tudes. In particular, the description of semileptonic transitions between two heavy
mesons or baryons becomes very simple in the formal limit of infinite heavy-quark
masses. Both for- mesonic and baryonic processes. the large set of hadronic form
factors is then reduced to a small number of universal functions, which depend on
the quantum numbers of the light degrees of freedom but not on the heavy-quark
masses and spins [2,9-11]. These so-called Isgur-Wise form factors are functions of
the kinematical variable v-v’, which measures the change of velocities that the heavy
hadrons undergo during the transition.

The reduction of form factors greatly simplify the phenomenology of heavy-quark
decays in the limit where the the heavy-quark masses can be considered very large
compared to any other hadronic scale in the process. But clearly, a careful analysis
of at least the leading symmetry-breaking corrections is essential for any phenomeno-
logical application. Much attention has been devoted to this subject. Already in
Jeading order in the heavy-quark expansion the spin-flavor symmetries are violated
by hard-gluon exchange. The corresponding perturbative corrections have been cal-
culated first in leading logarithmic approximation {12-14], and more recently in next-
to-leading order in renormalization-group improved perturbation theory [15-18]. At
order 1/mg, one is generally forced to introduce a larger set of universal form factors.
The equations of motion and the Ward identities of the effective theory impose con-
straints on some of these form factors. The structures that arise have been worked
out for matrix elements between two heavy mesons [19] or A-baryons [20], as well as
for the decay constants of heavy mesons {21].

Generally, the effective theory allows one to derived in a concise way the various
symmetry relations among form factors to a given order in the 1/mg expansion. Hav-
ing established these relations, the non-trivial dynamical information is parametrized
in terms of a set of universal functions, which characterize the properties of the light
degrees of freedom in the background of the static color source provided by the heavy
quark. An understanding of these functions is at the heart of nonperturbative QCD.
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Ultimately, they may be computable using a formulation of the effective theory on a
space-time lattice [22-25]. However, any other consistent analysis is interesting in its
on right, and several model-calculations have been discussed in the literature {26-29].
QCD sum rules are particularly suited for this purpose. They have been recently
adapted to study matrix elements in the effective theory and have been employed to
calculate the asymptotic value of the scaled pseudoscalar decay constant fp,/mp (31,
32], the 1/myg corrections to this quantity [21], and the universal Isgur-Wise form
factor {30, 31]. o

In this paper we extend the sum rule analysis to the subleading form factors
which appear at order 1/mg in the desciption of matrix elements between two heavy
mesons. In Sec. II we review the formalism of deriving the structure of 1/mg correc-
tions in the effective theory, define a minimal set of universal functions and discuss
their properties under renormalization. The QCD sum rule analysis of the subleading
form factors is presented in Secs. 11T and IV. We show how to satisfy the equations of
motion and the Ward identities of the effective theory, which lead to relations among
certain form factors and require others to vanish at zero recoil. Most importantly,
under the approximations usually made in QCD sum rules we obtain parameter-free
predictions at zero recoil for all form factors not constrained by symmetries. These
predictions are expected to be quite accurate. When combined with the rather elab-
orate computations of the perturbative corrections to the heavy-quark form factors
that have been performed recently. our results form a solid basis for a detailled analy-
sis of semileptonic B decays to subleading order in the 1/m¢ expansion. Some specific
applications, as well as a summary of the results, are presented in Sec. V. We empha-
size that a measurement of symmetry-breaking corrections to the infinite quark-mass
limit does not only test the heavy-quark expansion at next-to-leading order, but also
provides valuable information about strong interaction dynamics.

II. THE HEAVY-QUARK EXPANSION

The construction of the so-called heavy-quark effective theory (HQET) is based
on the observation that, in the limit mg > Agep. the velocity v of a heavy quark
is conserved with respect to soft processes [5]. It is then possible to remove the
mass-dependent piece of the momentum operator by a field redefinition. To this
end, one introduces a field hg(v, @), which annihilates a heavy quark with velocity v
(v?=1,v2>1), by

hg(v.a) = u 5 il exp(tmou-x)Q(z) . (2.1)
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Then if P is the total momentum of the heavy quark, the new field carries only the
residual momentum k& = P — mgu, which is of order Agcp. In the limit mg — oo,
the effective Lagrangian for the strong interactions of the heavy quark becomes [5-7]

- Lejg=hov-(iD—émuv)hg . (2.2)



where D, = 0, — 1g,A%t® is the gauge-covariant derivative, and ém is the residual
mass of the heavy quark in the effective theory [33].

Note that there is some ambiguity associated with the construction of HQET
since the heavy-quark mass used in the definition of the fields hg is not uniquely
defined. In fact, for HQET to be consistent it is only necessary that k and §m be of
order Agcp,-t-e., stay finite in the limit mg — co. A redefinition of mg by a small
amount A induces changes in these quantities
k—k—Av ,
bm—-ébm—-A

such that only the combinations (mg + ém) and (k — ém v) remain unchanged. This
suffices, however, to guarantee that physical quantities computed in HQET are inde-
pendent of the choice of the expansion paramater. The reason is that the heavy-quark
expansion can be organized as an expansion in powers of 1/(mg+6ém) with coefficients
being the matrix elements of operators containing the covariant derivative acting on
the heavy-quark fields only in the combination (:D — émv) [33].

It is clear from this discussion that there exist a unique choice my, for the heavy-
quark mass in the construction of the effective theory such that the residual mass
vanishes, ém = 0, and the heavy-quark expansion becomes an expansion in powers of
tD/my. This prescription provides a nonperturbative definition of the heavy-quark
mass, which has been implicitly adopted in most previous analyses based on HQET.
Yet it is important to notice that the mass mg, is a nontrivial parameter of the theory.
For instance, one can associate the difference A between this mass and the mass of
a meson M (or baryon) containing the heavy quark with the energy carried by the
light constituents in the restframe of the hadron. That A is in fact a parameter
characterizing the properties of the light degrees of freedom becomes explicit in the
relation

il . (0]G(iv-D)T hg |M(v))
=Mprr — M
voe (01gThg [M(v))

which can be derived from the equations of motion of HQET [21, 33]. Here I' is an
appropriate Dirac matrix such that the currents interpolate the heavy meson M.

The scale A determines the canonical size of power corrections to the infinite
quark-mass limit {19, 20]. QCD sum rules predict A ~ 0.50 GeV [32, 21], corre-
sponding to the quark masses m; ~ 4.8 GeV and m> =~ 1.4 GeV. For the leading
power corrections relevant to processes involving B and/or D mesons one thus ex-
pects A/2m; ~ 5% and A/2m> ~ 20%, respectively. It is the aim of this paper to
put this estimate on a more quantitative basis.

Let us now review the construction of the heavy-quark expansion for current ma-
trix elements between two heavy mesons. The heavy-quark current Q'T Q, where
I' =9, or I' = 9,75 for the vector or axial vector current, has a short-distance expan-
sion in terms of operators in the effective theory. In leading logarithmic approximation
it reads

(2.4)



Q'TQ— Co(p) ho: T he

1 7 . 3 Y 4
+ om® [Cl(ﬂ) thFlp hQ +CQ(/J) th I'sv'-D hQ]
mq
1 ’ - R ’ - B el
5= [Ci(w) hg: (=i ) T ho + C5(w) hor (—iv- D) T ho
, lQ/
.0 (2.5)

The effective current operators renormalize differently from their QCD counterparts.
In particular, they have non-zero anomalous dimensions, such that matrix elements
in the effective theory depend on the renormalization scheme. The short-distance
coeflicients C;(p) ensure that the final result for any physical quantity is independent
of the renormalization procedure. If, for simplicity, QCD is matched onto the effective
theory at a scale ¢ = m, which i1s some average of the heavy-quark masses, the
coefficients are given by (13, 8, 33]

. . , as(m)]**
Colp)=C(p) = Cy(pn) = [ ( } ~ (2.6)
. as(p)
, 16 r(y) —y as(m)
, = = —— 1
Cal) =) = =5 o) S 1 [as(#) ,
where y = v - v’ denotes the product of the heavy-quark velocities, and
1.
r(y)=—=—=In(y+y* - 1),
ye—1
S
aLzzi-[yr(y)—l] , B=33-2n;. (2.7)

Here ny is the number of light quark flavors in the low-energy theory. More sophis-
ticated expressions for the short-distance coefficients, which include the full one-loop
matching conditions, a summation of logarithms between mg, and mg, to resolve the
ambiguity in m, or higher-order corrections in perturbation theory, are discussed in
the literature [14-18]. However, the structure of the operators in the effective theory
remains the same as in (2.5).

Similar to the appearance of higher-dimensional operators in the expansion of the
current, there are also additional terms in the effective Lagrangian at order 1/mg, [8]

1

6£5jf =
QmQ

(ko (iD)? hg + £ Z(p) ho 0,,G* ho] . (2.8)

In leading logarithmic approximation, the renormalization constant for the “color-
magnetic moment” operator is

9/8
Z(p) = [M} . (2.9)



At subleading order in the heavy-quark expansion, matrix elements in HQET
receive power corrections from both the higher-dimensional effective current operators
in (2.5), and from insertions of § L. into diagrams involving the leading-order current
{19]. These matrix elements are constrained by the heavy-quark symmetries and can
be parametrized in terms of few universal functions. The number of independent
form factors and the relations among matrix elements become most transparent in a
compact trace-formalism [13;34]. In HQET, a heavy meson M is represented by a
spin wave-function

M(v) = \/m_M(l—;ﬂ {;"5 ﬁ _ (1): : (2.10)

which satisfies p M(v) = M(v) = —M(v) $. Hadronic matrix elements of the leading-

order current are written as
(M'(v') ko T hq [M(v)) = —€(y, 1) Tr { M'(v') T M(v) } (2.11)

with £(y, ) being the universal Isgur-Wise form factor {2]. It is the “reduced matrix
element” of the transition and describes the overlap of the wave functions of the
light degrees of freedom in the two mesons moving at velocities v and v’. The fact
that there is a single reduced matrix element in this case is a consequence of the
projection properties of the spin wave-functions, which in turn reflect the heavy-quark
spin symmetry.

At order 1/mg one encounters matrix elements of higher-dimensional operators.
The corrections to the current in (2.5) have the structure !

(M'(v') hg:TiD, hg |M(v)) = —ATr { £, (v, 0", ) M) T M(v)} . (2.12)
The most general decomposition of the form factor is

Eulv v’ op) = Ex(y ) (0 + 0 )y + € (yop) (v =)y — &y, )7, (213)

and because of T-invariance of the strong interactions the functions &;(y, 1) are real.
An expressions for the corresponding matrix element with the derivative acting to the
left can be obtained from (2.12) by complex conjugation. Imposing the equation of
motion tv-D hq to the matrix element and to its conjugate, one derives the constraints

[19]

(y+ 1) &y, p) = (v — 1) E-(y, 1) + Ea(yo ) =0,
é-(y,u)=%€(y,u)- (2.14)

_'In contrast to Ref. [19] we have inserted a power of A in order for the universal functions
£.(y, 1) to be dimensionless.



Thus only one of these funtions, say £s(y, 1), is independent. Insertions of 6L.;y into
diagrams involving the leading-order current yield to matrix elements of the operators

O1=i [ dyT{ (ke T hey, (ke (iD)* ha), } , (2.15)
(0v=i [ & T{ (e T ho (a0, G™ ha), }

Those give rise to new functlons defined by [19]

(M'(v")| O |M(0)) = ~28 xaly, ) T { (") T M(v) }
(M'(6")] 02 [M(v)) = =28 Tr { xu (0,0, 1) T (o) T Py (0) ™ M(v) } , (216)

where P, (v) = (1 + #)/2. The most general decomposition of the form factor y,, is

X (v, 0", 1) = ixa(y, 1) (Vi v — v,7u) + 2x3(y, 1) Ops (2.17)

The universal functions &;(y, i) and x;(y, ) can be interpreted as higher-dimensional
structure functions of the light constituents in an infinitely heavy meson. As the
Isgur-Wise form-factor itself they are fundamental quantities of QCD.

At subleading order in the heavy-quark expansion, any current matrix element
between two ground-state heavy mesons can be expressed in terms of the Isgur-
Wise functions and the four subleading form factors &s(y, 1) and x:(y, #). Using the
conservation of the vector current Q+,Q it is then possible to derive normalization
conditions for some of these functions at zero recoil. They are {2, 19]

6(1 /t)—l
xi1(1, 1) =x3(1,p)=0. (2.18)

The normalization of the Isgur-Wise function allows model-independent predictions
for decay rates close to the kinematical endpoint region. The fact that two of the
subleading form factors vanish at y = 1 implies that some of these predictions are
protected against leading power corrections. This fact plays an important role in the
determination of the weak mixing angle V,, from semileptonic decays [35].

Before we present the calculation of the universal form factors from QCD sum
rules, let us discuss their behavior under renormalization. The scale dependence of
matrix elements in HQET is such that it combines with that of the short-distance
coefficients C;(p) to give scale independent results for physical matrix elements. Thus,
e.g., the u-dependence of the Isgur-Wise function £(y, ) is opposite to that of Co(u)
in (2.5). This is the content of the renormalization group equation which Co(u) is the
solution of. In general, it can be shown that the combinations

E(y,m) = Colp) E(y, 1)
&(y,m) = Cl(ﬂ)fa(y N)
(y,m) (
(y.m) (

Ny, m) = Co(p) xa(y, p) + (y — 1) Co(p) €y, 1)

— V
xi(y.m)=Cy

#) Z(p) xily, 1) 5 1 =2.3 (2.19)
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are renormalization-group invariant quantities [33]. It is convenient to split these
functions into a mass dependent part and renormalized form factors which are inde-
pendent of 4 and m. We thus define

£ (y) = [as(p)) ™" &y, 1)
£ (y) = [as(p)] ™ &y, 1)

xie"(y)% [as(#)]“'“i{xl(y,u) + 16r(y)

)
5T In [as(u)]é(y,u)} ;

N iy, ) 5 i=2,3. (2.20)

Xi"(y) = las(p
In this way the renormalized form factors are still universal functions with respect to
heavy-quark symmetry transformations. Their relation to the physical form factors
evaluated at the scale p = m is

ity =au(m* {3 - 5 I nfaoml @)}
Xi(y, ) = [as(m)]H7 X (y) 5 i = 2,3, (2:21)

Note that at zero recoil a; = 0, such that the renormalized form factors still obey the
normalization conditions (2.18). If more elaborated expressions for the short-distance
functions C;(p) are used, the renorialized universal functions (in leading logarithmic
approximation) stay the same as in (2.20). However, in this case egs. (2.21) become
more complicated.

II. QCD SUM RULES FOR € AND &,

The application of the QCD sum rules developed by Shifman, Vainshtein and
Zakharov [36] to the calculation of universal heavy-quark form factors has been re-
cently worked out and is described in detail in Refs. [30-32, 21]. Here we shall only
briefly outline the procedure by reviewing the analysis of the Isgur-Wise function.
The idea is to study the analytic properties of correlators of heavy-quark currents in
the effective theory. Specifically, consider the three-point function

== [dedy e® =9 (0] T{[gTarhg (v)le, lhor(v)) T ho(v)los (ho(v) Tar aly}10) -
(3.1)

The heavy-light currents interpolate heavy pseudoscalar or vector mesons M(v) and
M'(v'), which is achieved by choosing respectively

s ; JJP =07,
FM-{%_U“ L JP =1 . (3.2)
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In leading order in HQET the correlator = is an analytic function in w = 2v - k
and w' = 2v’ - k' with discontinuities for positive values of these variables. It can be
written as a double dispersion integral over physical intermediate states. Separating
the double-pole from the resonance contributions one obtains the phenomenological
_representation

Pres(v, V') :
btract . .
Sy Py + subtractions (3.3)

f— T p— I - I
Sphen = Zpole + /dV dv (

Using the fact that the total external momenta are P = mgv+k and P! = mg.v' +F/,
as well as the definition of A in (2.4), one finds for the double-pole contribution in
the infinite quark-mass limit

= ( Z) (019 Tmrhq |M'(v')) (M'(v')| ho: T hq |M(v)) (M(v)| hg Tar ¢ 10)
pele (P? —m3, +1€) (P2 — m%,, + ie)

pol.

F2¢(y)

S @S2t —2h g AT BT P () T (3.4)

where again P.(v) = (1 4+ $)/2. The sum over polarizations applies if M or M’ is a
vector meson. For the evaluation of the hadronic matrix elements one uses (2.11) as
well as

 F
(014T ho [M(v)) = 5 T {T M(v)} (3.5)

where F' denotes the asymptotic value of the scaled decay constant of M, F =
fy/mar [31]. We suppress, for the moment, the p-dependence of £(y) and F. It
will be discussed later. The traces in the numerator in (3.4) can be combined by use
of the relation

()T {TaM )} T { AR ()T M(v) ) Tr { M(0) T )
pol.

= dmpymp Tr { ATpp Pr(v")T Pr(v) T } (3.6)

which is valid for arbitrary matrices A and I'. Note that the product P, (v)I'p has
the same projection properties as M(v).
For large negative values of w and w’ (i.e., Agep € —w() <« m

"
function can be calculated in perturbation theory using the Feymr?an rules of HQET.
The idea of QCD sum rules is that, at the transition from the perturbative to the
nonperturbative regime, nonperturbative effects can be accounted for by including
the leading power corrections in the operator product expansion of the correlator.
They are proportional to vacuum expectation values of local quark-gluon operators,
.the so-called condensates [36]. Hence one approximates

) the three-point



—_ ' ppert(l/ VI)

Ziheo =~ | dvdy , + subtractions + . nq . (3.7)
(v —w—te) (V —w — i¢)

For our purposes it is sufficient to consider the corrections proportional to the quark

condensate (dimension d = 3) and the mixed quark-gluon condensate (d = 5), which

have values

" {3g) ~—(230 MeV)?
(G950, G* q) =m2 (Gq) , m2=~08 GeV?, (3.8)

The contribution involving the gluon condensate (d = 4) is tiny and can safely be
neglected [31].

The QCD sum rule is obtained by matching the phenomenological and theoretical
expressions for =. In doing this, one assumes quark-hadron duality to model the
contributions of higher-resonance states described by p,., in (3.3) by the perturbative
continuum above some threshold wy. Furthermore, in order to reduce the importance
of higher-resonance states a double Borel transformation w() — 7() is applied to both
sides of the sum rule. This yields to an exponential damping factor in the dispersion
integrals and also eliminates possible subtraction terms. Because of the heavy-quark
symmetries the Borel paramters are equal, and we set 7 = 7/ = 2T. After the Borel
transformation it is convenient to change variables in the dispersion integral according
to

_ )yt INYR (=)
ve =2 u__(y_l) s (3.9)
To one-loop order in perturbation theory the double discontinuities of the correlator
are conﬁned to the region 2yvv’ — v? — "2 > 0 and v, v > 0, which then transforms
into ¥2 > v% and v; > 0, such that [31]
/dl/d r etV V) = pres(v, V) + subtractions
(v —w—e) (V' — W — 2¢)
wo(y)
BT 1 (y—1\'? -
= 9% (y—H—) / dvy e7+/T / dv_ ppert(Vg,v-) . (3.10)

—v4

Facing the lack of information on the structure of resonance contributions to the
three-point function =, the separation between pole and continuum states in the sum
rule has an unavoidable arbitrariness which leads to the dominant uncertainty in the
prediction for the Isgur-Wise function. We shall, therefore, explore two simple models
for the continuum threshold wq(y) in (3.10), namely

ly+1) : model 1,
y (3.11)

1 ; model 2.

o

woly) = fly)wo with  f(y) =
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It has been argued in Ref. [31] that the second choice leads to a conservative upper
bound for the form factor, while the first one might be more realistic. Both forms of
f(y) have the non-trivial property that the slope of the Isgur-Wise function at zero
recoil is finite.

Putting everything together one obtains the Laplace sum rule [30, 31]

: . , wo(v)

R I
2 —2R/T _ 2 vy /T
Foely)e _87r2(y+1) O/dy+y+e +

(G0 + (2y +1) m3{(qq)
3 47

The first term on the right-hand side arises from the perturbative triangle diagram
(bare quark loop), while the remaining terms are the leading nonperturbative cor-
rections. A remark is in order concerning the large-recoil behavior of the Isgur-Wise
function. For y > 1 the form factor should tend to zero, whereas the power cor-
rections in the above sum rule stay finite or even increase. It is then necessary to
sum the series of higher-dimensional condensates. This can be simulated by using
so-called soft condensates which exponentially decrease for y >> 1 {30, 31]. However,
the corresponding effects are very small for values of y accessible in semileptonic B
decays, and we shall neglect them here.

At zero recoil (3.12) reduces to the sum rule F? e 2T = Koo(T™,wo; 1), from
which the parameters A,wy and F can be extracted in a self-consistent way by re-
quiring optimal stability against variations of the Borel parameter T inside the “sum
rule window” 0.6 < T < 1.0 GeV, where the theoretical calculation of = is reliable
[21]. One finds good stability for

= Koo (T wo39) . (3.12)

A ~0.50 + 0.07 GeV,
wo~2.00 £ 0.30 GeV,
F=~0.30 £ 0.05 GeV3/2, (3.13)

with correlated errors. Once the value of wy is determined, one can compute the
Isgur-Wise function from the ratio £(y) = Koo(T !, wo;y)/Koo(T ™, wp; 1), which is
independent of A and F and explicitly exhibits the zero-recoil normalization £(1) = 1.
Before we present the result let us discuss the renormalization-group improvement of
the sum rule analysis. In leading logarithmic approximation this is accomplished in
a trivial way, since there are no large ratios of mass parameters that enter the sum
rule calculation. Both A and the Borel parameter T are low-energy parameters. If
the subtraction point g is identified with one of them it is guaranteed that the sum
rule is free of large logarithms even if radiative corrections were included. To be
specific we choose y = 2A ~ 1 GeV, which still allows for a perturbative treatment.
Hence in leading logarithmic approximation it is the function £(y,2A) which can be
.extracted from the sum rule analysis, and the renormalized form factor defined in

(2.20) is obtained from
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Koo (T, wo3 9)
Koo(T- 1, wo;1)
This is in fact consistent with the result of a more detailled calculation of radiative
corrections [31].

In Fig..1(a) we show the sum rule predictions for the renromalized Isgur-Wise
function for the two continuum models defined in (3.11). Inside the “sum rule win-
dow” the dependence on the precise values of T',wy and the vacuum condensates is
rather weak, as indicated by the width of the bands. The largest uncertainty arises
from the arbitrariness in the choice of f(y).

Let us now turn to the derivation of the QCD sum rules for the subleading form
factor £,(v,v’) defined in (2.12). To this end, we study the correlator =, that is ob-
tained from Z in (3.1) by replacing the heavy-quark current by [hg/(v')TiD, hg(v)]o.
The double-pole contribution to =, is of the same form as in (3.4), but with £(y)
replaced by A £,(v,v"), i.e.

—pole _ AF?
TE T (w=2A Fde) (W' — 2A + e

€ (y) = los(24)]7

(3.14)

T {£(0.0) Tag Py(v) T Pa(0) T}

(3.15)

In the theoretical calculation of the correlator it is convenient to choose the external
momentum P = mgv + k parallel to v, such that k, = (k- v)v, (and similar for £').
In the analysis of the triangle diagram one encounters tensor one-loop integrals in
HQET, which are collected in Appendix A. After the double Borel transformation
the dispersion integrals are evaluated according to (3.10). Decomposing &,(v,v’) as
in (2.13) we find the sum rules

1 0 _
—ZE"TT]KOO(T lawo;y) )

1 8 m?(qq)
— —— Koo (T, wo: —00NEET
g a7 NeolT woiy) + — o

which are expressed in terms of the derivative of the function K., with respect to
the inverse Borel parameter. The form factor £, (y) is related to £_(y) and £3(y) as
shown in the first equation in (2.14), in accordance with the equations of motion of
HQET. Using the sum rule (3.12) for the Isgur-Wise function we identify

/—\F2 f—(y) e—?A/T:

A F? &,)(y)e_w—\/T: (y - 1) y (316)

a , _ -
S Kool T woiy) = =28 F2(y) 7T, (3.17)
which leads to
£-(v)=5€0)
1
&(y) =3 [6w) — w(T) (v~ 1], (3.18)

where

12



_ m3 (4q) 2A/T

&(T) = CATFZ € . (3.19)
We have recovered the second relation in (2.14), which states that the equations of
motion require that £_(y) be a multiple of the Isgur-Wise function. In good ap-
proximation this is also true for the form factor £3(y), since x(T) is small. For
T = Ty = 0.8 GeV, corresponding to the center of the “sum rule window”, one finds
k(To) >~ 0.16 F 0.04 with errors anticorrelated with those in (3.13).

In leading logarithmic approximation the renormalization-group improvement of
the universal functions is again accomplished by writing £7°"(y) = [as(2A)]7%* &(y).
For the two continuum models specified in (3.11) the renormalized form factors are
shown in Fig. 1(b). The sensitivity of these curves to changes in the sum rule pa-
rameters is similar as shown in Fig. 1(a). The most important observation is that,
independent of all sum rule parameters, we obtain the zero-recoil normalization

() = % : (3.20)
Since there is no restriction on the value of this form factor from heavy-quark sym-
metries (in contrast to the exact relation £7°"(1) = 1/2) one expects corrections to
a simple result like (3.20). In the context of QCD sum rules, however, these could
only come from next-to-leading-logarithmic radiative corrections to the triangle dia-
gram, or from higher-dimensional condensates not included in our analysis. They are
expected to be small.

IV. QCD SUM RULES FOR y;

In order to derive sum rules for the subleading universal functions x:(y) one has
to repeat the analysis of the three-point correlator = in (3.1) taking into account in-
sertions of vertices from the higher-order effective Lagrangian §L.s; in (2.8). Because
of the spin-flavor symmetry it is sufficient to consider the special case of equal heavy
mesons (mp, = mg and M’ = M), thereby simplifying the presentation. In the calcu-
lation it is of advantage to sum the insertions of the operator (1/2mg) hq(i0)*hq in
0Lcss to all orders by using 7 (p+1)/wg for the heavy-quark propagator in momentum
space, and wg = 2v - k + k?/m7, instead of w = 2v - k as dispersive variable.?

The spin-symmetry violating operator (g,/4mg) hgo ., G* hq in 6L.ss needs some
special consideration. Since we do not consider radiative corrections (beyond the
leading logarithmic approximation), insertions of this operator only contribute to
diagrams involving gluonic condensates. The leading ones are proportional to the
mixed quark-gluon condensate, and noting that

- *Since wg = (P? — m7)/my this treatment insures that there is no left-hand cut in the
complex wg-plane.
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. v z = v
(G2 i9:G" gp) = 75 m3 (d9) (o) (4.1)

it can be readily seen from (2.17) that there is no such contribution to x2(y). Thus
within the standard approximations made in QCD sum rules we find that

x2(y) =0. (4.2)

Corrections to this result are again expected to be small. The more complicated
trace structure associated with the xz-term in (2.16) can be reduced to that of the
remaining terms in the sum rule by use of the identity

Pi(v) oy, M(v)o* = 2dpy M(v) (4.3)

where dps = 3 for a pseudoscalar meson, and dys = —1 for a vector meson.

After these remarks we present the expression for the theoretical side of the sum
rule (3.12) which includes the 1/mg, corrections. Using the tensor integrals collected
in Appendix A we find

. wo(y)
- 3/ 2\ v, 2y—1
[\’m-(T_l,&;y):———( ) / dvy v2 e+/T [1——(1-{-————-)]
@ 0 8r2 \y + 1 J o mg Jy+1
2 —
B mé (qq) [23/ +1 T N ]
S I (49— 1+du)| - (4.4)

On the phenomenological side oné now has to include the 1/mg, corrections to the
Isgur-Wise function as well as to the “decay constant” F. Using the fact that x,(y) =
0 to the order we are working, the left-hand side of (3.12) is replaced by

mb

N2~ 92 2A
(m_M> e~ IT 2 {1 + = [G1 +2du Gz]} {ﬁ(y) + = [a(y) + 2d X3(y)]} ’
Q Q

(4.5)

where the mass ratio arises from the factor m3, in (3.6) and 1/m(} from the meson
propagators. The constants Gy and G, have been defined in Ref. [21]. They are the
analogues of x1(y) and x3(y) for the case of meson decay constants. In the above
expressions it is important to realize that, in addition to the explicit 1/my, corrections,

also the sum rule paramters A = (m3, — mz’)/2m7, and &o(y) = f(y)@o contain both
spin-symmetry conserving and violating corrections, i.e. [21]

~ = 1
A:A{1+ — [6A1+dM6A2]} :
my
- 1
wozwo{l + — [5w1 +dM6w2]} . (46)
mQ
Before evaluating the sum rule it is convenient to eliminate the explicit 1/m},
correction in the dispersion integral by a redefinition of the Borel parameter,
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_1__,_1__(1_1_231_:1) 1 ) (4.7)

Using mp = mg + A in (4.5) we then obtain

L ~ 9 _
) - ) . F_2 e 2M/T {1 +— [Gl + 2A + 2dp; Gz]}
Lo ‘ C Mg

. | x{{( T2n/_; [X1(y) 4 .g_ z—;___if(y) + 2dp X3(y)]}

wo (v)

= 5(2) [T -
= — 2
82 \y +1 J
2 _
mg (49) [2y+1 T ( y—1 )]
- PRy —-5-4=——+3d . .
47 3 Img 2y =5 4y+1+3M (48)

The next step is.to expand this sum rule in inverse powers of the heavy-quark mass.
In leading order one immediately recovers (3.12). At order 1/m( we separate the
spin-symmetry conserving and violating terms to obtain the two sum rules

2 Yy —1 Gl 6A1
>\1(y)+§——-y+1€(y)+ [7+2—~—T ]é(y)
x(T) y»-—l) 97 ( 2 )2 30, el1-F (@) wo/T
= 2 -_ hnd — - = v
5 (32 -5 4erl 7 (T i f(y)e :
(4.9)
Gy 6A, _ &(T) 5(T)( 2 )2 3(,)) 1= (W)]wo/T
)+ [ 5 - 57 dw = T - S (=) Fwe ,
where
_ 3 6wl heweyr . _ bW
e(T) = i iR © , T = T (4.10)

One can use the zero-recoil normalization conditions (2.18) for the universal form
factors to obtain sum rules for the parameters G; and G,. Setting y = 1 in the above
equations gives

% 2_%—1—=2[/€(T)—r5(T)]7
G 6
A2 _ E%g:% [K(T) ___5(T)] . (4.11)

_The same sum rules have recently been derived from the study of a two-point correla-
“tor of heavy-light currents in HQET [21], and the agreement of the results provides a
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check of our calculation. From the structure of (4.11) one can deduce simple relations
between the spin-symmetry conserving and violating parameters, namely [21]

r=1 & ébw; = 96w, R
5A1 - 95/\2 B
G,=18G; — 2A . (4.12)

It thus suffices to analyze the second sum rule in (4.11) and its derivative with re-
spect to T™1 to determine the parameters éw;, 6A; and G;. In particular, one finds
excellent stability inside the “sum rule window” for 6w, ~ —(0.10 F 0.02) GeV [21],
corresponding to e(Ty) =~ 0.403932 evaluated at the center of the “sum rule window”,
Tp = 0.8 GeV. As the parameter (T"), both éw, and £(T) are proportional to the
mixed quark-gluon condensate.

We now insert (4.11) into (4.9) to eliminate the parameters G; and §A; from the

final result

xi(y) = % z +1 [(43/ + ;) K(T) = €(y)} +18x3(y) ,
xa(y) = hsT) 1 -ew) - % [<y+1) Foy) e~/ gy, (4.13)

which explicitly exhibits the normalization conditions x1(1) = x3(1) = 0. As dis-
cussed in_Sec. III, the renormalized functions x7**(y) can be simply obtained from
the sum rule results by multiplying with appropriate powers of a,(2A) as shown in
(2.20), for instance X5™(y) = [a,s(2A)]72t=%8 x4(y). The resulting curves are shown
i Fig. 2. We note that in this case the results are rather insensitive to the con-
tinuum model employed. The function x7**(y) induces sizeable corrections to the
infinite quark-mass limit for large recoil. However, these corrections respect the spin
symmetry and thus affect all B — D and B — D* form factors in the same way.
They are therefore irrelevant. The spin-symmetry violating corrections described by
x5 (y), on the other hand, are much smaller, typically x3*(y) < 0.1 x;¢"(y). This,
together with the sum rule prediction x;*(y) ~ 0, indicates that the heavy-quark
spin symmetry is predominantly broken by the higher-dimensional current operators
n (2.5), t.e. by the universal functions £7*"(y).

It has been pointed out in Ref. [21] that the relation éw; = 96w, is subject to
large higher-order corrections in the 1/mg expansion, leading to an effective value
ress # 1. The difference (1 —r.sy) is formally of order 1/mp, but numerically of order
unity for the case of charmed and beauty mesons. This induces large higher-order
corrections (of order 1/mg}) to the decay constants of heavy mesons. Let us show
that there is no such effect in the case of heavy-meson form factors. If r.;; # 1 one
has to replace x1(y) in (4.13) by x1(y) + (1 — ress) 6x1(y) with

9&(T)
4

§x1(y) = 1= €w)] - 18 xay) - (4.14)
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Numerically one finds that |6x1(y)| < 0.1 x1(y), such that even for an effective value
(1 — resy) of order unity the higher-order correction is very small and can safely be
neglected. This is in fact not a coincidence. Consider, for simplicity, the continuum
model 2 in (3.11), i.e. f(y) = 1. It then follows from (3.12) that &(y) ~ [2/(y + 1)}?
up to corrections from vacuum condensates. Therefore the contribution involving
¢(T') in (4.13) is formally proportional to a product of condensates and can as well be
neglected. In fact, this term is much smaller than the contribution involving «(T').
In this approximation, however,

_w(T)
8

and dx1(y) = 0, such that the value of r.;; becomes irrelevant.

xs(v) [1-¢w)] (4.15)

V. SUMMARY AND PHENOMENOLOGICAL APPLICATIONS

In the previous sections we have presented an analysis of the universal functions
that appear in leading and subleading order in the heavy quark expansion of current
matrix elements between two heavy mesons, using QCD sum rules in HQET. The
results for the subleading form factors &;(v-v') and x,(v-v’) given in (3.18) and (4.13)
involve the Isgur-Wise function £(v - v’) and two nonperturbative parameters, « and
e, which are proportional to the mixed quark-gluon condensate. It is worthwhile to
summarize the advantages of such an approach over previous sum rule calculations
for heavy.meson form factors.

e The most important distinction is that our approach incorporates the Ward
identities of HQET in the sum rule analysis, i.e., the zero-recoil conditions (2.18)
are ezactly reproduced. In the standard formulation of QCD sum rules, on the
other hand, these relations would only be satisfied approrimately as a result of
the self-consistent numerical analysis.?

e By relating the sum rules for the subleading form factors to that for the Isgur-
Wise function we derived the paramter-free predictions £3(1) = 1/3 and x2(y) =
0, which could only receive corrections from diagrams usually not included in
the sum rule analysis of a three-point function. These predictions should have a
higher accuracy than sum rule results in general, which suffer from uncertainties
in various parameters and in the numerical analysis. In particular, since the
remaining two subleading form factors, x;(v - v') and xs(v - v'), are known to
vanish at zero recoil, we conclude that for v = v’ the leading power corrections

3Therefore, the conclusion of Ref. [37] that the ratio of a standard sum rule for the axial
form factor A;(¢?) over the sum rule for the Isgur-Wise function would provide a measure
of 1/772222 corrections has no foundation.



to the infinite quark-mass limit can be predicted with good accuracy, and in an
almost model-independent way.

o By constructing separate sum rules for the universal functions which appear in
<different orders of the heavy-quark expansion one increases the accuracy in the
description of symmetry-breaking corrections to quantities which become equal
in the infinite quark-mass limit. Examples are the very accurate calculation of
the B*— B mass difference in Ref. [21], or ratios of the various form factors de-
scribing B — D*¢ 7 decays, which will be discussed below. For instance, even a
30% uncertainty in the sum rule analysis of a subleading universal function cor-
responds to an uncertainty of only a few percent once this function is multiplied

by 1—\/2m’“Q.

¢ Finally, it is an appealing feature of our approach that certain universal functions

are related to a particular type of diagrams. For instance, the leading contribu-

tion to the spin-symmetry violating form factor xz(v - v’) comes from diagrams

involving the mixed quark-gluon condensate, and it was immediate to find that

- x2(v-v') = 0 when higher-dimensional condensates and radiative corrections are
neglected.

Let us now discuss the application of our results to the theoretical description
of the semileptonic processes B — D®){ . Following Refs. [18, 26, 38] we define
heavy-meson form factors k(v - v') by

(DI |V, 1B(0) = VRETD [ha (v ') (0 4+ ) + (v ') (0= o),
(D*(v")| V. |B(v)) =i/mpmps hy(v-0") €uap € 007 | (5.1)

(D" (v)] Au|B(v)) = v/mpmpe [hay(v-0) (v 0" + 1) €]

by (0 0) € v, — by (v 0) €0l

where V, = ¢v,b and A, = ¢7,75b. In order to make the heavy-quark symmetry-
limit and the leading symmetry-breaking corrections to it explicit we write (y = v-v')

h(y) = [oi+ Bi(y) + %) + ... €(w) (5.2)

where, according to (2.11), ay = ay = a4, = a4, = 1 and a- = a4, = 0 [2].
The functions f;(y) are short-distance perturbative corrections, and v;(y) contain the
1/m} and 1/m;} corrections. The ellipses represent terms of order 1/ m"Q?.

In leading order in the heavy-quark expansion the renormalization of the form
factors is known in next-to-leading order in renormalization-group-improved pertur-
-bation theory. Explicit expressions for the functions 8;(y) are given in Refs. [18]. For
the numerical evaluation we use the quark masses m? = 1.44 GeV and m} = 4.80 GeV
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(m?/m; = 0.3), as well as Agg = 0.2 GeV for ny = 4. Over the kinematical range
accessible in semileptonic B decays (yYmar >~ 1.59 for B — D and ymer =~ 1.50 for
B — D~ transitions, respectively), the resulting coefficients are compiled in Table I.
They are accurate up to terms of order [a,(m?)/7]? ~ 1%.

In this paper we are mainly interested in the leading power corrections v;(y). By
evaluating the traces in (2.12) and (2.16) one can relate these functions to the sublead-
ing form factors £5**(y,m) and x;(y, ™), which we renormalize in leading logarithmic
approximation at the scale m = %ﬁ% ~ 2.2 GeV. The explicit expressions are given
in Appendix B. In Table II we present the numerical results obtained from the QCD
sum rule analysis. The numbers refer to continuum model 1 in (3.11), but the results
are not very sensitive to this choice. The theoretical uncertainty is estimated for zero
recoil, assuming a 15% accuracy of the prediction (3.20) and |x3=*(1)] < 2.5%. At
maximum recoil, on the other hand, the sum rule results should have an accuracy of
better than 30%.

The theoretical results summarized in these tables form a solid basis for a com-
prehensive analysis of semileptonic B decays to subleading order in HQET. We shall
restrict ourselves to some specific examples here and perform a more complete analy-
sis elsewhere. As a first application, let us focus on the extraction of the quark-mixing
paramter V; from an extrapolation of the semileptonic B decay rates to zero recoil.
This subject has been discussed in detail in Ref. [35]. In general, one finds that

1 dT(B — D*(p)

. G¥
1 . . —_ 7|2 _ . 2 3' =2
-u~z}’lzl~l [(’U . ,U/)Q _ 1]1/2 d(v . U’) 473 |‘cb | (77ZB mp ) mMp. "N )
= /
v~11}’-rr—1»l [(U K 1?’)2 _ 1]3/2 d(’U . U’) 4877'3 | ‘cb I (7713 + TIZD) mpn , (53)

with 7* = n = 1 in the infinite quark-mass limit. Because of Luke’s theorem [19]
the decay rate for B — D*{ 7 is protected against 1 /mp corrections at zero recoil
(see Appendix B). Thus to subleading order in HQET the coefficient n* deviates from
unity only because of perturbative QCD corrections. One finds that [35, 18]

" =1+46cp+0(1/mZ) . 6hep = Ba,(1) > —0.01. (5.4)

On the other hand, Luke’s theorem does not apply for B — D {7 decays because the
decay rate is helicity-suppressed at zero recoil {26, 35]. In this case

n=1+ 6QCD + 51/m-Q + 0(1/771a2> (55)
with
mp—m
bgcp = B4+(1) — #—niﬂ—(l) ~0.05,
Al 1 mpg — mp? ren
61/7n‘Q =3 (m* + ;) (m) [1-26"(1)] ~0.02. (5.6)
= c b
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Note that, as pointed out by Voloshin and Shifman, the 1/mg corrections are sup-
pressed by the factor [(mp—mp)/(mp+mp)]* ~ 0.23 |1}, and that the corrections to
the sum rule prediction {""( ) = 1/3 are expected to be small. Since the canonical
size of 1/my} corrections is 1 — 5%, we thus conclude that the theoretical uncertainty
in 7 is comparable to that in n*. Hence one should extract V,;, from both decay modes,
using the theoretical numbers

" ~0.99, n~1.07, (5.7)

which are expected to have an accuracy of better than 5%.

As a second example we study symmetry-breaking effects in the form factors which
describe B — D*{ i transitions. In the limit where the lepton mass is neglected, two
axial form factors A;(q?) and A,(g%) as well as one vector form factor V(¢?) are
observable in these decays. They are related to the heavy-quark form factors defined
in (5.1) by [26]

Ai(g®) = [1 (g _fsz J (?j%s%) (v-v),
1 o) )]
Vig*) = %2137—7:’\/% hy(v-2'), (5.8)
where
v-v' = mp + Mp. — ¢ : (5.9)

2mpmps

In the infinite quark-mass limit the form factors h4,, h4, and hy become equal to the
Isgur-Wise function. whereas h 4, vanishes. The ratios

_ g° (¢?) _ hv(v-?))
o= [1 " (ms + m.D.)Z] A(g?)  ha(v-v)’
_ g 2(¢%) _ hag(v V) + T gy (v - o)
o= [1 T (mp+ mD')2] Ai(q?) ha,(v-v') (5.10)

are therefore sensitive measures of symmetry-brea.king effects. To subleading order

in HQET we write

1/mg

Ri=1+4e2P 1m0 i=1.,2 (5.11)

and find, using the expressions given in Appendix B and the results of Ref. [18],
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u Segm
i _ y+1 ( )5::23 2 Ti:-nig){as(m)]m’%%,

where again y = v - v'. The function f(y, z) is given by

flyn2) = — z(1—z) [1+z

1-2yz+2211-2 1n2+(y+l)r(y)] (5.13)

and is very slowly varving with y. At zero recoil and for z = m?/m; = 0.3 its value
1s f(1,0.3) ~ 0.10.

In Table I11-we show the theoretical prediction for R; and ¢;. We propose a
measurement of these quantities as an ideal test of the heavy-quark expansion for
b — c transitions. In particular, note that the large values of R; result from both
large QCD and large 1/mg, corrections, and that the latter ones are to a large extent
model-independent since the subleading form factor £}*"(y) only appears in the 1/m}
correction. Thus the sizeable deviation of R; from the symmetry-limit R, = 1 is an
unambiguous prediction of HQET: A measurement of this ratio at a leval of 10% can
therefore provide valuable information about the size of higher-order corrections. The
ratio Ry, on the other hand, receives only very small QCD corrections and is sensitive
to the subleading form factors &*(y) and x5*"(y). It can be used to test the sum

rule predictions (3.20) and (4.2). For the pratical feasibility of such tests it seems
~ welcome that the theoretical predictions for both ratios are almost independent of g2,
such that it suffices to measure the integrated ratios.
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APPENDIX A: ONE-LOOP TENSOR INTEGRALS IN HQET

The master tensor integral for one-loop diagrams involving two heavy quarks in
HQET is (in D space-time dimensions)

I‘“'"“"(w,w' ’U,’l-)‘/) :/th tlll I (_ l)a( 1 )ﬂ( 1 )—y (Al)
By ’ t2 w+2v-t w20t

b Jau S [ 2

Ku:--.un(u) :

TSR I CY
where
‘ _TI2a+B+y—=D—-n)T(D/2 - a+n)
e Sl = (@) [(6) T (y) |
Qu)=w+uw,
Viu)=(1 +u2—j—21t1?'v’)1/2 . (A2)

For n = 0,1,2 the tensors K#1#» are given by

Ku)=1,
K*(u)=-V*u) ,
N e g%
I\u (U)——‘ “(u) V (U) — m s (A3)
with
. vH 4y
M _
Vi) = *——V(u) (A4)

being a unit vector. In the special case where w’ = w and v’ = v the general expression
(A1) reduces to the tensor integral for one-loop diagrams involving a single heavy

quark,
1\ w B
1 eelin _ D, n [ -
Is (w,v)—/d tt ot ( t2> (w-}-?v-t)
— i7rD/2 In(a,,B) ( _ w)D—2a+n J(HLepn , (A5)
where
I'2a+8—-D—-—n)I'(D/2 —a+n
Inle ) = 01 o ) (A6)

I(a)T(8) ’

and K##n is obtained from (A4) by replacing V#(u) by v*.
_In the sum rule calculation one needs the double spectral densities of the tensor
integrals, which are defined by

O]
8]



— + polynomials in w or W'

—w' — 1€)
(AT)

pﬁ},’,’y’“"(u, v v, ")

(w,w,v,v):/dudu 0 —w-—i

M1 bn
Iaﬁw

A convenient way to compute these is by using Borel] transformations [39]. Defining

- -~ the Borel operator with respect to w by
o 1 ~ w" d\»
o e () :
TT Jim T @) (A8)
—w — 00

T = —'—n“i fixed

where T > 0 is the Borel parameter, it is easy to see that
P (wow' v, 0") = BUZ) BUD BY) BY) 18k (w0, v,0) (A9)
Using
S AW [ o _ z
Bl/:’ Bl/: [—Q(u)] = F((l) 6(”" _;) (A].O)
one finds that
—~ oo~ F D 2 J— . — ﬂ"l _ ! 'Y—l 1
B By I = e e k().
T(@)TB)T(Y) [22 + 272 4 2yz2] P2t/ z
(A11)
where y = v - v’, and
1\'(i) =1,
/ i ZI Ty
I\,u(-z—> = - vt ? 1/2 °
z [22 + 22 + 2yz2']
uy
J (A12)

(zv* 4+ 2 v'™) (20" + 2'v")
224 22 4 2yzz! D—-2a+2"

Let us now specialize to the case « = f# = 4 = 1 and set D = 4. Introducing a

~

o]
N
*
<
—~
1 |
SN
Il

t

hyperbolic angle 8 by coshf = v - v’ = y, and noting that
1 1 1
2+ z'e?

1
(z + z'e®)(z + 2z'¢=%) ~ 2z'sinh O lz + z'e-?
(A13)

|

1
224 212 4 2zz2'y -

.one can eliminate all powers of z’ (or z) in the numerators in (A12) and express the

right-hand side of (A11) in terms of the functions
23



1

Fon(2,2) = (z + 2'e®)™(z + 2'e~f) ’ (A14)
the double Borel transforms of which are readily computed using (¢ > 0)
1 T n—-1 _—fBa
—=——/ﬂﬂ e=be (A15)
~ar T
0
This result is (m,n > 0)
Bl/w Bl/w Frn(z,2") = 0(w) O(w) O(2y ww' — w? — w"?) (A16)
X( 1 )m+n— ( 9)m l(we —U)) -1
2sinh 6 L(m)T(n) ’

where sinh § = /y? — 1.
Using these techniques it is straightforward to work out the various spectral den-
sities. For n = 1,2 we define scalar invariants by

u o
plllzleu‘*‘sz“,

pify=Hig" + Hyv*o” + Hz o™ + Hy (v*0" + v'0”) . (A17)
We find that
. im? , )
P11 = 55 O(w) B(W") ORyYww' — w* — W™,
2v/yc -1
. P111 r_
Gl - 2(3/2 _ 1) (yw UJ) 9
11 / 2 2
H LD e —— 2 ¢ —_— — ]
_ _ P 2 2 2 _ :
Hz——————S(y?'—lV [3w +(2y° + Nw 6yww} :
— P11t 2 ' 2 ?
Hy= Sy 17 [2(23/ + Dww' — 3y(w® +w )] . (A18)

G, and Gy, as well as H3 and Hj, are related by interchange of w and '
For # > 1 or 4 > 1 one can either apply the same technique, or use the recurrence
relation

(—8w)ﬁ_l(_aw')7_l
K. b — Il"l Mn . A
b OG- (A19)

For instance, one finds that

N |
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APPENDIX B: POWER CORRECTIONS TO HEAVY-MESON FORM FACTORS

In leading logarithmic approximation the power corrections in (5.2) are given by
%i(y) = [os(m)]** Fi(y) with [19, 26]

S
-1

ST A=t ) W)
7-(y)= (T: - n/:;) loa(y) - %] ;
A1 A A B
W(y) =3 (m: + mz) o o2(y) + i le1(v) = eaw)] (B1)

%Al(y)=%u(l + 1>+ A o2(y) + A [m(y)—y_lau(y)],

»x * *
m: o mg m?; my y+1

() = [osty) - 22020

m* y+1

[+

Y45 (Y) =% (i—;—% ni + nig) + n/:, [92(3/) — o3(y) — %] + n?; [1(v) — ea(w)] -

The functions p;(y) are related to the renormalized universal form factors of HQET
[cf. (2.21)] by

_ 16 r(y) —
a) ) =n") - 5 (;lly

+2[as (M) 335 (y) — (v - D x5 ())] S

In [as(m)] £ (y)

ex(0) €)= 3" (0) = 32 "L b ()] €77 (9) ~ 2 (57 0)

04(y) " (y) =" (y) (B2)

The zero-recoil conditions (2.18), which follow from the conservation of the vector

current Qv,Q, imply
01(1) = 02(1) =0 = 74(1) =74(1)=0. (B3)

From the QCD sum rule analysis we furthermore predict that
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1
93(3/) ~ 0 ’ 94(1) = g ) (B4)
from which it follows that
Al 1
()= () > -5 (m: - m;) ~ —4%,
A/3 1
’Yv(l)ﬁ—( + *):19%,
6 \m:  my
2A
Ya, (1) g = —-23% . (B5)

From (B3) it is obvious that the hadronic matrix elements in (5.1) are unaffected
from 1/mg corrections at zero recoil, since all form factors other than h,(y) and
ha,(y) are kinematically suppressed at v = v’. This is the content of Luke’s theorem
[19]. It is important to realize, however, that this does not imply that the observable
form factors do not receive 1/my, corrections. If the lepton mass is neglected, four
form factors are measurable in semileptonic B decays, namely f,(¢?) in B — D{v
and V(¢?), A1(¢?), A2(¢?) in B — D*{ i (for the definition of these form factors and
their relation to the functions h;(v - v’) defined in (5.1) see Ref. [26]). At zero recoil
only one of these, 4;(¢2,,), is protected by Luke’s theorem.
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FIGURES

FIG. 1. (a) Numerical evaluation of the sum rule (3.14) for the renormalized Isgur-
Wise form factor. The lower band corresponds to the continuum model 1 in (3.11), the
upper one tomodel 2. We use a,(2A) = 0.34. (b) Sum rule results for the renormalized
form factors £/°"(y). The solid lines refer to continuum model 1, the dashed ones to model 2.
We use the central values for all sum rule parameters, corresponding to x = 0.186.

FIG. 2. Sum rule results for the renormalized form factors x(**(y) and 10 x3*"(y).
The solid lines refer to continuum model 1, the dashed ones to model 2. We use the central
values for all sum rule parameters, corresponding to k = 0.16 and £ = 0.40. The sensitivity
to changes in these parameters is similar as in Fig. 1(a).



TABLES
TABLE I. QCD corrections f;(v - v’) in %.

v B+ B- Bv Ba, Ba, Ba,
1.0 2.6 —5.4 11.9 -1.5 -11.0 2.2
1.1 -0.3 -5.4 8.9 -3.8 -10.3 ~0.2
1.2 -3.1 -5.3 6.1 -5.9 -9.8 -2.5
1.3 -5.6 -5.3 3.5 -7.9 -9.3 ~4.6
1.4 ~8.0 -5.2 1.1 ~9.7 -8.8 -6.6
1.5 ~10.2 ~5.2 ~1.1 ~115 -84 -85
1.59 ~12.1 -5.1

TABLE II. Power corrections v;(v - v') in %.
v T+ 7- v 0 Y4 Y
1.0 0.0 -4.1 19.1 0.0 -23.1 -4.1
1.1 2.7 —4.1 20.7 2.9 ~21.4 -0.7
1.2 6.2 —4.1 23.1 6.5 -19.8 3.4
1.3 10.5 —-4.2 26.3 10.7 —-18.3 8.0
1.4 15.3 —-4.4 - 30.0 154 -17.0 13.0
1.5 20.6 —4.5 34.3 20.5 -15.8 18.5
1.59 25.7 —4.7
67i(1) | 0.0 1.4 2.9 0.0 4.0 2.1
TABLE III. Theoretical predictions for the ratios R; and the symmetry-breaking cor-

rections &;.

1/m

.

1/m?

v-v' g2 [GeVY | Ry 2P (%] 9% R e3P (%] &%)
1.0 10.69 1.31 12.0 19.1 0.90 0.5 —-11.0
1.1 8.57 1.30 11.7 18.2 0.90 0.5 -10.3
1.2 6.45 1.29 11.3 17.5 0.91 0.5 —9.6
1.3 4.33 1.28 11.0 16.8 0.92 0.5 -8.9
1.4 2.21 1.27 10.7 16.2 0.92 0.5 -8.3
1.5 0.09 1.26 10.4 15.6 0.93 0.5 -7.7
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