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ABSTR.ACT 

In the hea.vy-qua.& effective theory, current matrix elements between two heavy 
pseudosca1a.r or vector mesons a.re pa.ra.metrized by a. set of universa.1 form factors. 
These functions are calcula.ted to. suhlea.ding order in the l/nz~ expansion using 
QCD sum rules. The equa.tions of motion and Wa.rd ident,ities of the effective theory 
are incorpora,ted in the analysis. Within this approa.ch, pa.ra.meter-free predictions 
are obtained for all form fa.ctors a.t zero recoil. The results allow for an almost 
model-independent analysis of current-induced transitions between heavy mesons. 
As an a.pplica.tion, the l/rnC a.nd l/m* corrections to the ha.dronic form factors 
describing semileptonic B + D !u and B + D*Cu decays are computed. The 
possibility of extra.cting I& from these processes is discussed, and the importance 
of a measurement of symmetry-viola.ting effects in ratios of factors is pointed out. 
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I. INTRODUCTION 

I 

The theoretical description of hadronic processes invol\.ing the decay of a heavy 
quark Q has recently experienced great simplification due to the discovery of new .- 

symmetries of QCD in the limit where ??zQ + 00 [l, 21. The properties of a hadron 
~_ ..,, conta.ining the heavy quark become then independent of its mass and spin, and the 

_ complexity of-the ha.dronic dyna,mics results from the strong interactions among the 
- .; - light degrees of freedom only. A covariant effective-field-theory approach provides an 

elegant framework to a,nalyze such processes. It allows an expansion of decay ampli- 
tudes in powers of 1 /??l.Q in such a wa.y tha.t the spin-fla.vor symmetry rela.tions become 
explicit [3-S]. H d a ronic matrix element,s in the effect,ive theory are pa.rametrized in 
terms of form factors which cha.racterize the properties of the light degrees of free- 
dom. They are universa.l in the sense tl1a.t they do not depend on the properties of 
the hea.vy qua.rk itself. 

The hea.vy-qua.rk symmetries impose restrictive constraints on weak decay ampli- 
tudes. In pa.rt,icular, the description of semileptonic transitions between two hea,vy 
mesons or ba.ryons becomes very simple in the forn1a.l limit of infinite hea.vy-qua.rk 
ma.sses. Both for- mesonic and baryonic processes, the la.rge set of ha,dronic form 
fact,ors is then reduced to a small nilmber of universal functions, which depend on 
the quantum numbers of the light, degrees of freedom hit not on the heavy-quark 
ma.sses and spins [‘L, Y-111. These so-called Isgur-Wise form fa.ctors a,re functions of 
t.he kinemat,ical \.ariable 1’ . l”, which measures the change of velocities tha.t the heavy 
ha.drons undergo during the transit,ion. 

The reduction of form factors greatly simplify the phenomenology of heavy-quark 
decays in the limit where the the heavy-quark ma.sses caa be considered very large 
compared t’o any other hadronic scale in the process. But clea.rly, a careful analysis 
of at lea.st the leading s?~mmetry-hrea.killg corrections is essential for any phenomeno- 
logical application. hluch at,tent ion 1la.s been devot,ed to this subject. Already in 
lea.ding order in the heavy.-qua.rk expansion the spin-flavor symmetries are violated 
by hard-gluon exchange. The corresponding perturbative corrections have been cal- 
culated first in leading logarithmic approximat,ion [12-141, and more recently in next- 
t,o-leading order in renormaliza.tion-group improved pert.urbation theory [15-181. At 
order l/?nQ, one is generally forced to introduce a. la.rger set of universal form factors. 
The equations of motion a.nd the Ward identities of the effective theory impose con- 
straint,s on some of these form factors. The structures that a.rise have been worked 
out’ for matrix elements l)etween two heavy mesons [19] or A-baryons [20], as well as 
for the decay constaats of heavy mesons 1211. 

Generally, the effective theory allows one to derived in a. concise wa.y the va,rious 
symmetry rela.tions among form factors t.o a given order in the l/mQ expansion. Hav- 
ing esta.blished these rela.tions, the non-trivial dynamical informa.tion is parametrized 
in terms of a. set of universal functions, \vhich cha,ract,erize the properties of the light 
degrees of freedom in the background of the sta.tic color source provided by the heavy 
quark. An understanding of these funct,ions is a.t the hea.rt of nonperturbative QCD. 
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Ultimately, they may be computable using a formulation of t,he effective theory on a 
space-t,ime la.tt,ice [ 22-2.51. However, a,n); other consistent, analysis is interesting in it,s 
on right, and severa.l model-ca.lcula,tions ha.ve been discussed in the literature [26-291. 
QCD sum rules a.re particukrly suited for this purpose. They have been recently 
a.da.pted to study matris elements in the effective theory and ha.ve been employed to 

.-. ca,lcula.te the asymptotic value of the scaled pseudoscalar decay consta.nt fpJm’np [31, 
r 321, the l/nx~ corrections to this quantity [21], and the universal Isgur-Wise form 

-; - fa.ctor [30,31]. 
In this paper we extend the sum rule a.nalysis to the sublea.ding form factors 

which a.ppear at order l/m~ in the desciption of matrix elements between two heavy 
mesons. In Sec. II we review the formalism of deriving the structure of l/mQ correc- 
tions in the effective theory, define a. minimal set of universal functions and discuss 
their properties under renorma.lization. The QCD sum rule analysis of the subleading 
form factors is presented in Sets. III and IV. We show how to satisfy t,he equations of 
mot,ion and the \I‘ard ident,ities of t,he effective t’heory, which lead to relations among 
cert’ain form factors a.nd require others t,o vanish a.t. zero recoil. hlost importa.ntly, 
under the approximations usua.llJ. made in QCD sum rules we obta.in para.meter-free 
predictions at zerb recoil for a.11 form factors not constrained by symmetries. These 
predictions are expected to be quite accura.te. When combined with the rather elab- 
orate computations of the perturbative corrections to t,lie heavy-qua.rk form factors 
tl1a.t have been performed recently. our results form a solid basis for a detailled analy- 
sis of semileptonic B decays to subleading order in the l/n?~ expansion. Some specific 
a.pplications, a.s well as a summary of the results, are presented in Sec. V. We empha- 
size t,lia.t a ‘measkement of s~~mmet.~~~-l~~ealii~ig corre&ons t,o the infinite quark-ma.ss 
limit, does not 0111~. test the hea\.!:-quark espansion a.t nest-to-leading order, but also 
provides valuable information a.bout strong int’eraction d>.namics. 

II. THE HE.L\VY-Qll.ARIi EXPAA4NSIOK 

The construction of the so-called hea,\:y-quark effect’i1.e theory (HQET) is based 
on the observation that, in the limit, ???Q >> AQco. the vel0cit.y 2! of a hea.vy qua.rk 
is conserved with respect t,o soft processes [5]. It is then possible to remove the 
mass-dependent piece of the momentum opera.tor b?; a field redefinition. To this 
end, one introduces a field hQ(2), x), which annihilates a heal-y quark with velocity 2) 
(7l2 = l,vO 2 I), by 

Then if P is t.he t,ot,al moment.um of the heavy quark. t*he new field ca.rries only the 
residual monient’um k = P - ?nQv, which is of order :jQco. In the limit ?nQ 4 00, 
the effective Lagraagian for the strong interactions of the heavy quark becomes [5-71 

(2.2) 
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where D, = 8, - ig,Azt” is the gauge-covariant derivative, and 6m is the residual 
mass of the heavy quark in the effective theory [33]. 

Note that there is some ambiguity associated with the construction of HQET .b 
since the heavy-quark mass used in the definition of the fields hQ is not uniquely 

._ ..._ defined. In fact, for HQET to be consistent it is only necessary that k and Sm be of 
_ order &CD,-- i. e., stay finite in the limit rn~ -+ 00. A redefinition of mQ by a small 

-; -- amount A induces changes’,in- these qua.ntities 

mQ-W?2Q+A + 
kt k-Av 7 
lim-ttim-A , (2.3) 

such that only the combinations (mQ + 6m) and (k - 6m v) remain unchanged. This 
suffices, however, to guarantee that physical quantities computed in HQET are inde- 
pendent of the choice of the expansion paramater. The reason is that the heavy-quark 
expansion ca,n be organized a.s a,n expansion in powers of l/(mQ+bm) with coefficients 
being the ma.trix elements of operators containing the covariant derivative acting on 
the heavy-quark fields only in the combination (iD - hz v) [33]. 

It is c1ea.r from this discussion that there exist a. unique choice nz; for the hea.vy- 
qua.rk ma.ss in the construction of the effective theory such tl1a.t the residual mass 
vanishes, 6772 = 0, and the heavy-qua.rk expa.nsion becomes an expa.nsion in powers of 
iDIm;. This prescription provides a, nonperturba.tive definition of the heavy-quark 
ma.ss, which has been implicitly a.dopted in most previous a.nalyses based on HQET. 
yet it is important to notice tl1a.t the ma.ss 172* Q is a. nontrivial parameter of the theory. 
For insta.nce, one can a.ssocia.te the difference A between this mass and the mass of 
a. meson A4 (or ba.ryon) containing the hea.vy qua.rk with the energy carried by the 
light, constituents in the restfra.me of the hadron. Tha.t iz is in fact a parameter 
cha.ra.cterizing the properties of the light degrees of freedom becomes explicit in the 
relation 

which can be derived from the equa.tions of motion of HQET [21,33]. Here r is an 
appropriate Dirac ma.trix such tha.t the currents interpolate the heavy meson M. 

The scale il determines the canonical size of power corrections to the infinite 
quark-ma.ss limit [19, 201. QCD sum rules predict A 21 0.50 GeV [32, 211, corre- 
sponding to the quark masses 172: 21 4.8 GeV and n7.z 2: 1.4 GeV. For the leading 
power corrections relevant to processes involving B and/or D mesons one thus ex- 
pects i/2nzb+ N 5% and i/v ,772: N 20%, respectively. It is the aim of this paper to 
put this estima.te on a more quantita.tive basis. 

Let us now review the construction of the heavy-quark expansion for current ma- 
trix elements between two heavy mesons. The hea.vy-quark current &’ r Q, where 
l? = yP or r = y1,y,5 for the vector or axial vector current, has a short-distance expan- 
sion in terms of opera.tors in the effective theory. In leading loga.rithmic approximation 
it reads 
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+ & [c;cp) hQI (--i$F) r hQ + c;cp) hQI (-iv.17) r ho] 
Q’ 

+... ‘. P-5) 

The effective current operators renormalize differently from their QCD counterparts. 
In particular, they have non-zero anomalous dimensions, such that matrix elements 
in the effective theory depend on the renormalization scheme. The short-distance 
coefficients Ci (p) ensure that the final result for any physical quantity is independent 
of the renormalization procedure. If, for simplicity, QCD is matched onto the effective 
theory at a scale 1-1 = 6, which is some avera.ge of the heavy-quark masses, the 
coefficients are given by [13,8,33] 0,(??1) OL .C,(p) = C,(p) = C,‘(p) = - [ 1 Q4 ’ 

-16 
C,(p) = c;(p) = -p Cl-J(p) yly 111 s 1 1 , 

where y = u . ~1’ denotes the product of the hea.vy-qua.rk velocities, and 

(2.6) 

w = & ‘ln (Y + Jy2 - 1) , 

UL = ; [y r(y) - I] ) p = 33 - 2q . (2.7) 

Here l?,j is the number of light qua.rk fla.vors in the low-energy theory. More sophis- 
ticated expressions for the short-dista.nce coefficients, which include the full one-loop 
matching conditions, a summation of logarithms between m;Z and rn;, to resolve the 
ambiguity in ITZ, or higher-order corrections in perturba.tion theory, are discussed in 
the literature [14-183. H owever, the structure of the operators in the effective theory 
rema.ins the sa.me a.s in (2.5). 

Similar to the appearance of higher-dimensional opera.tors in the expansion of the 
current, there a.re also a.dditi0na.l terms in the effective La,grangian at 

6L ejj = & [&Q (io)" hQ + $ z(p) hQ apuG@" hQ] . 
Q 

In leading logarithmic approximation, the renormalization constant 
magnetic moment” operator is 

order l/m; (81 

(2.8) 

for the “color- 

1 1 9lP 
Z(fd = 

dmQ> 

&4 . 
(2.9) 
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At subleading order in the heavy-qua.rk expansion, matrix elements in HQET 
receive power corrections from both the higher-dimensional effective current operators 
in (2.5), and from insertions of S&j into dia.grams involving the leading-order current 
[19]. These matrix elements are constrained by the heavy-quark symmetries and can 
be parametrized in terms of few universal functions. The number of independent 
form factors and the relations among matrix elements become most transparent in a 
compact trace-foi-malism 113; 341. In HQET, a heavy meson M is represented by a 
spin wave-function 

._ 

(2.10) 

which satisfies $ M(u) = M(v) = -M(o) 6. H a ronic matrix elements of the leading- d 
order current a.re written as 

(Ad’(d)l hQJ rh.Q [A{(V)) = -[(y,p)Tr { M’(2,‘)rM(V)} (2.11) 

with {(y, p) being the universa.l Isgur-K’ise form factor [2]. It is the “reduced matrix 
element” of the tra.nsition and describes the over1a.p of the wave functions of the 
light degrees of freedom in the two mesons moving a.t velocities 2, and v’. The fact 
that there is a single reduced matrix element in this ca.se is a consequence of the 
projection properties of the spin wa.ve-functions, which in turn reflect the heavy-quark 
spin symmetry. 

At order 1 /nz;) one encounters. ma.trix elements of higher-dimensional operators. 
The corrections to the current in (2.5) ha.ve the structure ’ 

(jt4’(2:‘)/hQ,1‘iDp h,Q jn4(v)) = -iTr{ JIL(V,ll’~)(L)M’(V’)rM(v)} . (2.12) 

The most general decomposition of the form factor is 

LbJd4 = <+(Y&) (v + v’), + MY44 b - V’LL - <3(Y,P)YI, , (2.13) 

and because of T-invariance of the strong interactions the functions &(y, cl) are real. 
An expressions for the corresponding matrix element with the derivative acting to the 
left can be obtained from (2.12) by complex conjugation. Imposing the equation of 
motion iv.D hQ to the matrix element and to its conjuga,te, one derives the constraints 

WI 

(2.14) . 

‘In contrast to Ref. [19] \ve have inserted a. power of ;i in order for the universal functions 
‘i,( y, p) to be dimensionless. 
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Thus only one of these funtions, say &(y,p), is independent. Insertions of 6&j into 
diagrams involving the lea.ding-order current yield to matrix elements of the operators 

01 =i J dy T { thQ( r hQ),, t&Q tiD12 hQ)a, > ) (2.15) ‘* 
~_ 

..: 02=i -1 J dY T { (hQ# r hQJO) t&Q 9s%G’” hQly 1 . -; - 
Those give rise to new fur%ons defined by [19] 

(M’(v’)lOl I~(~))=-~~xI(Y,~)T~{~‘(v’)~M(~)} , 
(A~‘(v’)[ O2 p’M(v)) = -2ii Tr { J+(Z), v’, p) M’(v’) V+(v) c?’ M(V) } , (2.16) 

where P+(v) = (1 + ;Fs)/2. Th e most general decomposition of the form factor xPV is 

Ypvh I,‘, fd = ix2(Y, P) ($-iv - v;Yp) + fzX3(Y, P> gpv . (2.17) 

The universal functions [i(y) I-1) a.nd xi(y) 1 ) I can b e interpreted a.s higher-dimensional 
structure functions of the light constit,uents in an infinitely heavy meson. As the 
Isgur-Wise form-factor itself they a.re fundamental qua.ntities of QCD. 

At subleading order in the heavy-quark expa.nsion, any current matrix element 
between two ground-state heavy mesons can be expressed in terms of the Isgur- 
Wise funct,ions aad the four subleading form fa.ctors &(y, CL) and xi(y) p). Using the 
conserva.tion of the vector current &T~Q it is then possible to derive normalization 
conditions for some of t,hese functions at zero recoil. They are [2,19] 

W,f4 = 1 7 

XdLf4 = x3u,f4 = 0 f (2.18) 

The normalization of the Isgur-Wise function allows model-independent predictions 
for decay rates close to the kinematical endpoint region. The fact that two of the 
subleading form factors vanish at y = 1 implies tha.t some of these predictions are 
protected against lea.ding power corrections. This fa.ct plays an important role in the 
determina.tion of the wea.k mixing angle I& from semileptonic decays [35]. 

Before we present the calculation of the universa.1 form factors from QCD sum 
rules, let us discuss their behavior under renorma.liza.tion. The scale dependence of 
ma.trix elements in HQET is such that it combines with tha.t of the short-distance 
coefficients Ci(/l) t,o give scale independent results for physical matrix elements. Thus, 
e.g., the p-dependence of the Isgur-Wise function <(y, 14) is opposite to that of Co(p) 
in (2.5). This is the content of the renormalization group equation which C&L) is the 
solution of. In general, it can be shown that the combina.tions 

UY 7 *> = Co(f4 t(Y) cd 7 

<3(Y) 4 = Cl(P) [3(Y) f4 ? 

. . ~,(Y,177)=cIo(f1);1(Y,f1) + (Y - W2(f4~(Y,f4 , 

\i(y.1) = C(J(fL) 2(/C) ,xi(y, fL> ; i = 233 (2.19) 
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are renormalization-group invariant quantities [33]. It is convenient to split these 
functions into a mass dependent part and renormalized form factors which are inde- 
pendent of ~1 and 172. We thus define 

._ r”(Y) = bstf41-aL ttY3 f4 3 
. . . . 

GYY) = bstf41-aL t3(Y7 4 7 
~- -;. - 

x~‘“(Y I= [441’Lai { X~Y, f4 + ; ‘(fly ’ ln M41 t(y, 4) 7 
Xie”(TJ) = [~s(p)]-““-g’p Xi(yy /L) ; i = 2,3. (2.20) 

In this way the renormalized form factors are still universal functions with respect to 
heavy-quark symmetry transformations. Their relation to the physical form factors 
evaluated at the scale /.L = fiz is 

[(y,m) = [Q,(?iz)]a~ y”“(y) , 

13(Y,4 = [Q&qaL t;‘“(Y) % 

xi(y) Cz) = [cY~(~~~)]~~+~‘~ X’““(Y) ; i = 2,3. (2.21) 

Note that at zero recoil a~ = 0, such tha.t the renormalized form factors still obey the 
normalization conditions (2.18). If more ela.borated expressions for the short-distance 
functions C;(p) a.re used, the renorinaliied universal functions (in leading logarithmic 
a.pproximation) sta.y the same as in ( 2.20). However, in this case eqs. (2.21) become 
more complicated. 

III. QCD SUM R.ULES FOR t AND &, 

The a.pplica.tion of the QclD sum rules developed by Shifman, Vainshtein and 
Za.kharov [36] to the calculation of universal heavy-qua.rk form factors has been re- 
cently worked out and is described in detail in Refs. [30-32,211. Here we shall only 
briefly outline the procedure by reviewing the analysis of the Isgur-Wise function. 
The idea is to study the analytic properties of correlators of heavy-quark currents in 
the effective theory. Specifically, consider the three-point function 

Z= d.rdye J i(k”z-k’y) (0 1 ~{[Q&,&Ql(2~‘)]z, [Hal r hQ(t7)]o, [&Q(V) rM &,}I 0) . 

The heavy-light currents interpola.te hea,vy pseudoscalar or vector mesons M(v) and 
M’(v’), which is achieved by choosing respectivel) 

rnd = -7.5 ; Jp = 0- , 
YP - VP ;Jp=l- . (3.2) 
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In leading order in HQET the correlator Z is an analytic function in w = 2v - k 
and w’ = 2v’ . k’ with discontinuities for positive values of these variables. It can be 
written as a double dispersion integral over physical intermediate states. Separating . . 

the double-pole from the resonance contributions one obta.ins the phenomenological 
representation . ..- 

Ephen = zpo,e + Jdti dv’ Pres ( v, v’) 
(v-w- it) (v’ - w’ - ic) 

+ subtractions. (3.3) .. 

Using the fact tha.t the total external momenta are P = m;jv+ k and P’ = m&v’+ k’, 
as well as the definition of i in (2.4)) one finds for the double-pole contribution in 
the infinite qua.rk-ma.ss limit 

=poie = - 
( 1 

c (0 1 gMjhQJ IM’(V’)) (M’(d)1 hQ# r hQ IM(V)) (Mb>1 64 rM Q 10) 

pd. (P2 - 172h + if) (P’2 - 172L, + if) 

F25(Y) 
= (w - 2A + ic) (w’ - 2;i + ic) T~{~A~,p,(v’)rP,tv)r~), (34 

where again P+(v) = (1 + $)/2. Tl le sum over polarizations applies if M or M’ is a 
vector meson. For the evaluation of the hadronic ma.trix elements one uses (2.11) as 
well a.s 

(OlqrhQ Iz!.il(vJ) = $Tr{ rM(v)} , (3.5) 

where F denot,es the a.symptotic value of the scaled decay constant of M, F = 
foe [31]. We suppress, for the moment, the p-dependence of t(y) and F. It 
will be discussed later. The tra,ces in the numera.tor in (3.4) can be combined by use 
of the rela.tion 

( ) 2, Tr{~nd~M’(v’)}Tr{ AM’(2:‘)I’M(~~)}Tr(M(2:)IYM} 

= 4~77.~~~172~~~ Tr { A TM’ P+ (v’) r P+ (v) rM } , (3.6) 

which is valid for a.rbitrary matrices A a.nd l?. Note that the product P+(v) I’M has 
the same projection properties as M(v). 

For large negative values of w and w’ (i.e., AQcD < -w(‘) << m;,,,) the three-point 
function can be ca.lcula.ted in perturbation theory using the Feynman rules of HQET. 
The idea. of QCD sum rules is that, at the transition from the perturbative to the 
nonperturbative regime, nonperturbative effects ca.n be accounted for by including 
the lea,ding power corrections in the opera.tor product expansion of the correlator. 
They a.re proporti0na.l to va.cuum expecta.tion values of local quark-gluon operators, 

.fhe so-called condensates [36]. Hence one approxima.tes 
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= 
-&eo 2: J Pper&, 4 

du dv’ tu _ w _ iE) tul _ w, _ iE) + subtractions + Econd . (3.7) 

For our purposes it is sufficient to consider the corrections proportional to the quark 
condensate (dimension d = 3) and the mixed quark-gluon condensate (d = 5), which 

. ..- have values -1 

” (44) N -(230 MeV)3 , 

(ijgsactvGp” q) = Ini (ijq) , rni z 0.8 GeV2 . P-8) 

The contribution involving the gluon condensate (d = 4) is tiny and can safely be 
neglected [31]. 

The QCD sum rule is obtained by matching the phenomenological and theoretical 
expressions for E. In doing this, one assumes quark-hadron duality to model the 
contributions of higher-resona.nce sta.tes described by pres in (3.3) by the perturbative 
continuum above some threshold w,-,. Furthermore, in order to reduce the importance 
of higher-resona.nce sta.tes a. double Bore1 transforma.tion w(‘) + ~(‘1 is applied to both 
sides of the sum rule. This yields to a.n exponentia.l da.mping factor in the dispersion 
integra.ls a.nd a.lso eliminates possible subtraction terms. Because of the heavy-quark 
symmetries the Bore1 pa.ra.mt(ers are equal, and we set 7 = 7’ = 2T. After the Bore1 
transformation it is convenient to cha.nge variables in the dispersion integral according 
to 

u+ = (u-t 4. *_ = y + 1 1/2(Y - v’) 
2 ’ ( 1 Y-1 2 - (3.9) 

To one-loop order in perturbation theory the double discontinuities of the correlator 
are confined to the region 2yvu’ - y2 - Y’~ > 0 a.nd v, v’ 2 0, which then transforms 

- into v: 2 vz and v+ 2 0, such that [31] 

J du du, Ppe&, 4 - Pres(? 4 
(u - w - if) (u’ - w’ - if) 

+ subtra.ctions 

9’ & (5) 1’2 y’iu+ c-‘+/~ 7 dv- ppert(V+, v-) . 
0 -“t 

(3.10) 

Facing the lack of informa.tion on the structure of resonance contributions to the 
three-point function E, the separation between pole and continuum states in the sum 
rule has an unavoidable arbitrariness which leads to the dominant uncertainty in the 
prediction for the Isgur-Wise function. We shall, therefore, explore two simple models 
for the continuum threshold we(y) in (3.10)) namely 

(Y-f-1) 

WO(Y) = .~(Y)LJO with f(y) = 2l-J 
; model 1, 

1 ; model 2. 

(3.11) 
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It has been argued in Ref. [31] that the second choice leads to a conservative upper 
bound for the form factor, while the first one might be more realistic. Both forms of 
f(y) have the non-trivial property tha.t the slope of the Isgur-Wise function at zero .v 

recoil is finite. 

..: Putting everything together one obtains the Laplace sum rule [30,31] 

-;. -- 
F2 J(y) e-2il/T”-. 3 - -&J2 qv)dv+ vy+lT 

0 

- (qq) + c2y; l) mi$J) E K&T-',wo;y) . (3.12) 

The first term on the right-hand side arises from the perturbative triangle diagram 
(bare quark loop), while th e remaining terms are the leading nonperturbative cor- 
rections. A rema.rk is in order concerning the large-recoil behavior of the Isgur-Wise 
function. For y >> 1 the form fa.ctor should tend to zero, whereas the power cor- 
rections in the above sum rule stay finite or even increase. It is then necessary to 
sum the series of higher-dimensional condensates. This can be simulated by using 
so-called soft condensa.tes which exponentially decrease for y >> 1 [30,31]. However, 
the corresponding effects are very small for values of y accessible in semileptonic B 
decays, and we shall neglect them here. 

At zero recoil (3.12) reduces to the sum rule F2 e-2;i/T = K,(T-‘,~a; l), from 
which the parameters .i,wa and F can be extracted in a self-consistent way by re- 
quiring optimal stability a.gainst va.riations of the Bore1 parameter T inside the “sum 
rule window” 0.6 < T < 1.0 GeV, where the theoretica. ca,lculation of Z is reliable 
[Zl]. One finds good stability for 

ii ~0.50 f 0.07 GeV, 
~0~2.00 f 0.30 GeV, 
FE 0.30 f 0.05 GeV3i2 3 (3.13) 

with correlated errors. Once the value of wc is determined, one can compute the 
Isgur-Wise function from the ratio t(y) = K,(T-',wo; y)/K,(T-',wo; l), which is 
independent of A and F and explicitly exhibits the zero-recoil normalization t( 1) = 1. 
Before we present the result let us discuss the renormalization-group improvement of 
the sum rule a,nalysis. In lea.ding loga.rithmic a.pproxima.tion this is accomplished in 
a trivia.1 wa,y, since there are no large ra.tios of ma.ss parameters that enter the sum 
rule ca.lculation. Both A and the Bore1 parameter T are low-energy parameters. If 
the subtra.ction point p is identified with one of them it is guaranteed that the sum 
rule is free of la.rge loga.rithms even if ra.diative corrections were included. To be 
specific we choose p = 2A 2 1 GeV, which still allows for a. perturbative treatment. 
Hence in lea.ding logarithmic a.pproxima.tion it is the function [(y, 2A) which can be 

.extra.cted from the sum rule analysis, and the renormalized form factor defined in 
(2.20) is obtained from 



(3.14) 

This is in fact consistent with the result of a more detailled calculation of radiative 
corrections [31]. 

In Fig. .,1(a) we show the sum rule predictions for the renromalized Isgur-Wise 
function for the .two continuum models defined in (3.11). Inside the “sum rule win- 
dow” the dependence on the precise values of T, w. and the vacuum condensates is 
rather weak, as indicated by the width of the bands. The largest uncertainty arises 
from the arbitra.riness in the choice of f(y). 

Let us now turn to the derivation of the QCD sum rules for the subleading form 
factor tP(v,o’) defined in (2.12). To this end, we study the correlator Z,, that is ob- 
tained from Z in (3.1) by repla.cing the heavy-quark current by [her I’iD, h~(v)]a. 
The double-pole contribution to Z, is of the same form as in (3.4), but with t(y) 
replaced by A &,(v, u’), i.e. 

=pole - AF2 
-CL - (w - 2ll + ie) (w’ - 2;i + ic) 

Tr{ r,(z,,~‘)~~njrP+(o’)rP+(v)r~} . 

(3.15) 

In the theoretical calculation of the correlator it is convenient to choose the external 
momentum P = nz;jzr + k pa.rallel to v, such that k, = (k . V)V, (and similar for k’). 
In the analysis of the triangle diagra.m one encounters tensor one-loop integrals in 
HQET, which are collect,ed in Appendix A. After the double Bore1 transformation 
the dispersion integrals are evalua.ted according to (3.10). Decomposing ~,(zJ, v’) as 
in (2.13) we find the sum rules 

1 d 
ii F2 t-(y) c’-~“~ = -; dT-’ Ii-m(T-l,wo; y) , 

1 d 
A F2t3(y) e-2;i’T = -; dT-’ ILJT-l,wo; y) + 

n2: (@?> 
lsT (y - 1) , (3.16) 

which a.re expressed in terms of the derivative of the function I<, with respect to 
the inverse Bore1 parameter. The form factor t+(y) is related to E-(y) and &(y) as 
shown in the first equation in (2.14), in accordance with the equations of motion of 
HQET. Using the sum rule (3.12) for the Isgur-Wise function we identify 

& K,(T-’ ,wo; y) = -2ii F2 t(y) CZ-*“~ , 

which leads to 

. . [S(Y) = 3 [t(y) - 4”) (Y - l)] , 

(3.17) 

(3.18) 

where 
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mi kid 2&/T 
dT) = - 6;iTF2 e ’ (3.19) 

We have recovered the second relation in (2.14), which states that the equations of 
motion require that t-(y) b e a multiple of the Isgur-Wise function. In good ap- 

‘;’ proximation, this is also true for the form factor <s(y), since K(T) is small. For 

.; - T = To = 0.8 GeV, corresponding to the center of the “sum rule window”, one finds 
tc(To) N 0.16 F 0.04 with errors anticorrelated with those in (3.13). 

In leading logarithmic approximation the renormalization-group improvement of 
the universal functions is again accomplished by writing C:““(y) = [cx~(~;~)]-~L t;(y). 
For the two continuum models specified in (3.11) th e renormalized form factors are 
shown in Fig. l(b). Th e sensitivity of these curves to changes in the sum rule pa- 
rameters is similar as shown in Fig. l(a). The most important observation is that, 
independent of all sum rule pa.rameters, we obtain the zero-recoil normalization 

{ien = f . (3.20) 

Since there is no restriction on the-value of this form fa.ctor from heavy-quark sym- 
metries (in contrast to the exa.ct rela.tion tYn(l) = l/2) one expects corrections to 
a. simple result like (3.20). In the context of QCD sum rules, however, these could 
only come from next-to-lea.ding-loga.rithmic radiative corrections to the triangle dia- 
gram, or from higher-dimensional condensa,tes not included in our analysis. They are 
expected to be small. 

IV. QCD SUM RULES FOR. s; 

In order to derive sum rules for the sublea.ding universal functions xi(y) one ha.s 
to repea.t the a.nalysis of the three-point correla.tor Z ’ in (3.1) taking into account in- 
sertions of vertices from the higher-order effective Lagra.ngia.n 61c,fj in (2.S). Because 
of the spin-flavor symmetry it. is sufficient to consider the special case of equal heavy 
mesons ($j, = nab and M’ = Al), h t ereby simplifying t,he presentation. In the calcu- 
lation it is of a.dvantage to sum the insertions of the operator (l/21$) highs in 
Sceff to all orders by using i ($+ l)/w~ for the heavy-quark propagator in momentum 
space, and WQ = 2~. k + k2/nzb instea.d of w = 2v . k as dispersive variable.* 

The spin-symmetry violating operator (g,/4m;2) ~QO,,G~““~Q in 6,Ceff needs some 
special consideration. Since we do not consider radia.tive corrections (beyond the 
lea.ding logarithmic approximation), insertions of this operator only contribute to 
dia.grams involving gluonic condensa.tes. The lea.ding ones are proportional to the 
mixed quark-gluon condensate, a.nd noting that 

. . 2sinCe WQ = ( P2 - nx~2)/n2;, this treatlnent insures that there is no left-hand cut in the 
complex WQ-phe. 
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(44 
it can be readily seen from (2.17) that there is no such contribution to x2(y). Thus 
within the standard approximations made in QCD sum rules we find that 

-1 X2(Y) = 0 * (4.2) ,. 
Corrections to this result are again expected to be small. The more complicated 
trace structure associated with the xs-term in (2.16) can be reduced to that of the 
remaining terms in the sum rule by use of the identity 

p+(v) u,, M(v) upv = 2dM M(v) , (4.3) 
where dnd = 3 for a pseudoscalar meson, and dM = -1 for a vector meson. 

After these remarks we present the expression for the theoretical side of the sum 
rule (3.12) which includes the l/172; corrections. Using the tensor integrals collected 
in Appendix A we find 

On the phenomenological side one now has to include the l/m; corrections to the 
Isgur-Wise function a.s well a.s to t.he “decay constant” F. Using the fa.ct that x2(y) = 
0 to the order we are working, the left-hand side of (3.12) is replaced by 

(4.5) 
where the mass ra.tio a,rises from the factor 172;,, in (3.6) and l/ma from the meson 
propa.ga.tors. The consta.nts Gr and G2 have been defined in Ref. [21]. They are the 
a.nalogues of xi(y) a.nd x3(y) for th e ca.se of meson decay constants. In the above 
expressions it is important to realize that, in a.ddition to the explicit l/m6 corrections, 

also the sum rule pa.ramters i = (mK - m;62)/3nx~ and Go(y) = f(y) Wa contain both 
spin-symmetry conserving a.nd violating corrections, i.e. [21] 

;I = il { 1 + --$ [c% + d,v ,,,l} , 

J,=,,{l + & [6w +d,6w2,}. 

. . Before evalua.ting the sum rule it is convenient to eliminate the explicit l/m; 
correction in the dispersion integral by a. redefinition of the Bore1 para.meter, 
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1 1 -+--- 
T T 

Using mM = 172; + i in (4.5) we then obtain 

F~es2’jr{~+~[G~+2~+2dj,,~G2]} 

x t(Y)+ = 1 m;2 [ x1(y)+ ; s t(Y) + 2&f X3(Y)]} 

= &(-$--)2 yy\v+ ~:ewUtfT - (44) 

0 

T 
+ --- 32y - 

4T2 9m ;i 
5 - 4 2 + 3dM)] . 

WI 

(44 

The next step is-to expand this sum rule in inverse powers of the hea.vy-quark mass. 
In leading order one immedia.tely recovers (3.12). At order l/m; we separate the 
spin-symmetry conserving and violating terms to obta.in the two sum rules 

‘f3cy) eW(~~lwlT , 

where 

SW1 E(T) = --$ &$e(ZB-wo)/3 , 1’ = - . 
96w2 

(4.10) 

One can use the zero-recoil normaliza.tion conditions (2.18) for the universal form 
factors to obtain sum rules for the para.meters G1 and G2. Setting y = 1 in the above 
equa.tions gives 

G1 7+2- T s= ; [K(T) - M(T)] , 

G2 6A2 1 -- 
A 2T = g [G) - E(T)] * (4.11) 

The same sum rules ha,ve recently been derived from the study of a two-point correla- 
‘ior of heavy-light currents in HQET [21], a,nd the a.greement of the results provides a 

15 



check of our calculation. From the structure of (4.11) one can deduce simple relations 
between the spin-symmetry conserving and violating parameters, namely [21] 

.- 

(4.12) 1 

It thus suffices to analyze the second sum rule in (4.11) and its derivative with re- 
spect to T-l to determine the parameters 6wi, 612; and G;. In pa.rticular, one finds 
excellent.stability inside the “sum rule window” for 6wz N -(O.lO T 0.02) GeV [21], 
corresponding to E(TO) N 0.40;~:~~ evaluated at the center of the “sum rule window”, 
To = 0.8 GeV. As the pa.rameter K(T), both 6wz a.nd C(T) are proportional to the 
mixed quark-gluon condensa.te. 

We now insert (4.11) into (4.9) to elimina.te the parameters G; and 6A; from the 
final result 

x1(y) = ? y - l - [ (4~ + ;) y(T) - t(Y)] + 18 x3(~) , 3ySl 
4T) 

X3(Y) = F [l -I(Y)] - - 8 
*f”(y) e[l-f(y)lwo’T - t(y)] ) (4.13) 

which explicitly exhibits the normaliza.tion conditions xl(l) = x3(1) = 0. As dis- 
cussed in Sec. III, the renormalized fu,nctions x:‘“(y) can be simply obtained from 
the sum iule results by multiplying with a.ppropriate powers of c~,(2i) as shown in 
(2.20), for insta.nce ~7~ (y) = [cc~( 2iZ)]+~-‘/~ ys( y). The resulting curves are shown 
in Fig. 2. We note tha.t in this ca.se the resu1t.s a.re ra.ther insensitive to the con- 
tinuum model employed. The function A;“” (y) induces sizeable corrections to the 
infinite quark-mass limit for large recoil. However, these corrections respect the spin 
symmetry and thus affect all B -+ D a.nd B -+ D* form factors in the same way. 
They are therefore irrelevant. The spin-symmetry violating corrections described by 
XT”(Y), on the other hand, are much smaller, typically XT”(~) 5 0.1 x;““(y). This, 
together with the sum rule prediction xi’“(y) 3 0, indicates that the heavy-quark 
spin symmetry is predominantly broken by the higher-dimensional current operators 
in (2.5), i.e. by the universal functions [ien( 

It has been pointed out in Ref. [21] that) the rektion 6wl = %W2 is subject to 
large higher-order corrections in the l/m; expansion, leading to an e$ective value 
refj # 1. The d’ff 1 erence (1 - re,f) is forma.lly of order l/m;2, but numerically of order 
unity for the case of charmed a.nd beauty mesons. This induces large higher-order 
corrections (of order l/m$‘) to the deca.y constants of heavy mesons. Let us show 
that there is no such effect in the case of heavy-meson form factors. If reff # 1 one 
has to replace xl(y) in (4.13) by xl(y) + (1 - reff)6x1(y) with 

. . 
btl(y) = F [l - UY)] - 18 x3(~) . (4.14) 



Numerically one finds that /6x1(y)/ < 0.1 xl(y), such that even for an effective value 
(1 - re,f) of order unity the higher-order correction is very small and can safely be 
neglected. This is in fact not a coincidence. Consider, for simplicity, the continuum IV 

model 2 in (3.11), i.e. f(y) = 1. It then follows from (3.12) that t(y) N [2/(y + l)]’ 
~. 

.-: up to corrections from vacuum condensates. Therefore the contribution involving 
e(T) in (4.13) ’ f 1s ormally proportional to a product of condensates and can as well be 

.: - neglected. In fa.dt, this term is much smaller than the contribution involving n(T). 
In this approxima.tion, however, 

X3(Y) = fp [l - t(Y)] , (4.15) 

and 6x1(y) = 0, such tha.t the value of reff becomes irrelevant. 

V. SUMMARY AND PHENOMENOLOGICAL APPLICATIONS 

In the previous sections we ha,ve presented an analysis of the universal functions 
that appear in leading and subleading order in the heavy quark expansion of current 
matrix elements between two heavy mesons, using QCD sum rules in HQET. The 
results for the sublea.ding form fa.ctors [;(v.v’) and x;(v.zJ’) given in (3.18) and (4.13) 
involve the Isgur-Wise function <(v . .u’) and two nonperturbative parameters, K. and 
E, which are pro1~orGona.l to the mixed qua.rk-gluon condensa,te. It is worthwhile to 
summa.rize the a.dvanta.ges of such an a,pproa.ch over previous sum rule calculations 
for heavy.meson form factors. 

l The most important distinction is that our a.pproa.ch incorporates the Ward 
identities of HQET in the sum rule analysis, i.e., the zero-recoil conditions (2.18) 
are esactly reproduced. In the sta.ndard formulation of QCD sum rules, on the 
other hand, these relations would only be satisfied approximately as a result of 
the self-consistent numerical ana.lysis.3 

l By rela.ting the sum rules for the subleading form factors to that for the Isgur- 
Wise function we derived the paramter-free predictions [3( 1) = l/3 and x*(y) = 
0, which could only receive corrections from diagra.ms usually not included in 
the sum rule analysis of a three-point function. These predictions should have a 
higher accuracy tha.n sum rule results in general, which suffer from uncertainties 
in various parameters and in the numerical analysis. In particular, since the 
remaining two subleading form fa.ctors, xl(v . 0’) and x3(2, . ZJ’), are known to 
vanish at zero recoil, we conclude that for v = v’ the leading power corrections 

3Therefore the conclusion of R.ef. [37] tha.t the ra.tio of a, standard sum rule for the axial 
*form factor ‘,4l(q*) over the sum rule for the Isgur-Wise function would provide a measure 
of l/1125* corrections 1la.s no founda.tion. 
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to the infinite quark-mass limit can be predicted with good accuracy, and in an 
almost model-independent way. .- 

l By constructing separate sum rules for the universal functions which appear in 
~. 

.-., different orders of the heavy-quark expansion one increases the accuracy in the 
description of symmetry-breaking corrections to quantities which become equal 

.; - in the infinite quark-mass limit. Examples are the very accurate calculation of 
the B* -B ma.ss difference in Ref. [21], or ra,tios of the various form factors de- 
scribing B t D*eC decays, which will be discussed below. For instance, even a 
30% uncertainty in the sum rule analysis of a subleading universal function cor- 
responds to an uncerta.inty of only a few percent once this function is multiplied 
by ii/2mb. 

l Finally, it is an appealing feature of our approach tha.t certain universal functions 
are related to a particular t’ype of diagrams. For instance, the leading contribu- 
tion to the spin-symmetry violating form factor y3(v . v’) comes from diagrams 
involving the mixed quark-gluon condensate, aad it wa.s immediate to find that 
x*(v au’) = 0 1 w len higher-dimensional condensa.tes and radiative corrections are 
neglected. 

Let us now discuss the application of our results to the theoretical description 
of the semileptonic processes B t D(*)ez?. Following Refs. [18, 26, 383 we define 
hea.vy-meson fo:m fa.ctors h;(zy . v’) by 

(D(v’)l rv;, I&)) = d= [h+(v . 7,‘) (v + 2qp + h-(v * v’) (v - v’)J ) 

(D*(v’)l A, [B(v)) = JE [h,+ (2) - v’) (v . v’ + 1) C; 

- h,‘& * 2~‘) e*-7! v/, - h,&(7) * 2)‘) E**vv; 1 ) 
where I/‘, = EyP b a.nd A, = cyPy5 b. In order to ma.ke the heavy-quark symmetry- 
limit and the lea.ding symmet,ry-breaking corrections to it explicit we write (y = v.v’) 

h(Y) = [Qi + Pi(Y) + Yi(Y) + . * .] E’““(Y) , (5.2) 

where, according to (2.11), Q+ = ov = QA, = aA3 = 1 and Q’- = a& = 0 [2]. 
The functions ,f3;( y) a.re short-dista,nce perturba.tive corrections, and ri( y) contain the 
l/m: a.nd l/m; corrections. The ellipses represent terms of order l/nz$. 

In leading order in the heavy-quark expansion the renormalization of the form 
factors is known in next-to-leading order in renormaliza.tion-group-improved pertur- 

*bation theory. Explicit expressions for the functions p;(y) are given in Refs. [18]. For 
the numerical eva.luation we use the qua.rk ma.sses nz,+ = 1.44 GeV and rn; = 4.80 GeV 

18 



(m,*/m; = 0.3), as well as Am = 0.2 GeV for nf = 4. Over the kinematical range 
accessible in semileptonic B decays ( ymaz 2: 1.59 for B + D and ymaz N 1.50 for 
B + D’ transitions, respectively), the resulting coefficients are compiled in Table I. 
They are accurate up to terms of order [c~~(nz~)/~]’ z 1%. 

.-., In this paper we are mainly interested in the leading power corrections y;(y). By 
evaluating the traces in (2.12) and (2.16) one can relate these functions to the sublead- 

- ing form factors [g’“(y, fi)‘afid xi(y, ISZ), w NC I * h we renormalize in leading logarithmic 

approximation at the scale fiz = iy$‘$ 241 2.2 GeV. The explicit expressions are given 

in Appendix B. In Ta.ble II we prebseni the numerical results obtained from the QCD 
sum rule analysis. The numbers refer to continuum model 1 in (3.11), but the results 
are not very sensitive to this choice. The theoretical uncertainty is estimated for zero 
recoil, assuming a. 15% accuracy of the prediction (3.20) and I&““(l)l < 2.5%. At 
maximum recoil, on the other hand, the sum rule results should ha.ve an accuracy of 
better than 30%. 

The theoretical results summarized in these tables form a solid basis for a com- 
prehensive analysis of semileptonic B deca.ys to sublea.ding order in HQET. We shall 
restrict ourselves to some specific examples here and perform a more complete analy- 
sis elsewhere. As a first a.pplica.tion, let us focus on the extraction of the quark-mixing 
pa.ra.mter Vcb from a.n extrapola.tion of the semileptonic fi decay rates to zero recoil. 
This subject has been discussed in deta.il in Ref. [35]. In general, one finds that 

with q* = q = 1 in th e infinite quark-mass limit. Because of Luke’s theorem [19] 
the decay rate for B -+ D*~?Y is protected against l/772; corrections at zero recoil 
(see Appendix B). Tl lus to subleading order in HQET the coefficient v* deviates from 
unity only because of perturbative QCD corrections. One finds that [35,18] 

On the other hand, Luke’s theorem does not apply for B + D C v decays because the 
decay rate is helicity-suppressed at zero recoil [26,35]. In this case 

with 

6QCD = P+(l) - ;I ; ;; p-(l) N 0.05 ) 



Note that, as pointed out by Voloshin and Shifman, the l/m;2 corrections are sup- 
pressed by the fa.ctor [(mu -rn~)/(m~ +mo)12 ‘v 0.23 [l], and that the corrections to 
the sum rule prediction [j’“(l) = l/3 are expected to be small. Since the canonical .- 

size of l/m; corrections is 1 - 5%, we thus conclude that the theoretical uncertainty 
,.., in 77 is comparable to that in 7’. Hence one should extract Vcb from both decay modes, 
- using the theoretical numbers 

2 - ,. 
lj* 2 0.99 ) lj 21 1.07 ) (5.7) - 

I 

which are expected to have an accuracy of better than 5%. 
As a second example we study symmetry-breaking effects in the form factors which 

describe B --+ D*.!fi transitions. In the limit where the lepton mass is neglected, two 
axial form fa.ctors Al(q2) and A2(q2) as well as one vector form factor V( q2) are 
observable in these deca.ys. They a.re rela,ted to the heavy-quark form factors defined 
in (5.1) by [26] 

A1(q2) = [I - (1728 :ymp,2 1 @B + n-.0*> 
2&3zjyT hAI (v * u’) , 

A2(q*) = bw3 + Ino*) 
2dW 1 

32& (1, . v’) + !z!x 1,2B hAz(Z’ * 2)‘) 3 1 

where 

2, . u’ = 
in,; + in& - q2 

2inBn2De ’ (5.9) 

In the infinite quark-mass limit the form fa.ctors hAI, h,dQ and hv become equal to the 
Isgur- Wise function, whereas hAz vanishes. The ra,tios 

g’) 
1n.g $ I-I~D*)~~ Al(q2) = 

h\/(U . I!‘) 
h,+ (I, * v’) ’ 

q2 1 A2(4’)= hAg (2, * 21’) + z hAz (2, - v’) 

(mB + ?nD*>2 h(q2) hAI (u * 2)‘) 
(5.10) 

are therefore sensitive measures of symmetry-brea.king effects. To subleading order 
in HQET we write 

R. = 1 + ,QcD + ET’“;1 ; I t * i = 1 ‘7 ,- (5.11) 

a.nd find, using the expressions given in Appendix B and the results of Ref. [18], 
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QCD = 4cus(m:) 
El 

37T 
r(y) 7 

(5.12) 

where a.ga.in y = v . v’. The function f(y, z) is given by 

Z(1 - Z) 
f(YG) = -1 _ 2y* + 3 [+g lnz + (Y-t- 1)r(Y)] (5.13) 

a.nd is very slowly va.rying with y. At zero recoil and for z = my/ml = 0.3 its value 
is f(1,0.3) Z 0.10. 

In Table III- we show the theoretical prediction for R; and E;. We propose a 
measurement of these quantities as an ideal test of the heavy-quark expansion for 
b --f c tra.nsitions. In pa.rt.icular, note that the large va.lues of Rr result from both 
large QCD and large l/n26 corrections, and that the latter ones are to a large extent 
model-independent since the subleading form factor t:““(y) only appears in the l/m; 
correction. Thus the sizeable deviation of Ri from the symmetry-limit Rr = 1 is an 
unambiguous prediction of HQET: A measurement of this ratio at a leval of 10% can 
therefore provide valua.ble informa,tion a.bout the size of higher-order corrections. The 
ratio RZ, on the other ha.nd, receives only very small QCD corrections and is sensitive 
to the subleading form fa.ctors [jen(y) and x;‘“(y). It ca.n be used to test the sum 
rule predictions (3.20) and (4.2). For the pratical feasibility of such tests it seems 
welcome that the theoretical predictions for both ratios are almost independent of q2, 
such that it suffices to measure the integrated ratios. 
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APPENDIXA:ONE-LOOPTENSORINTEGRALSINHQET 

The master tensor integral for one-loop diagrams involving two heavy quarks in 
-^ HQET is (in D space-time dimensions) 

.I 

q&““(w, WI, v, v’) = 
I 

dDSt ttil . . . tl”” ( -~)~(wt:v.t)p(w’tl,,/.t)~ CA1) : 

= i.rrDf2 I,,(cx, p, 7) Tdu 
uY--l w4 [ 1 D-2+-n 

- - 
0 w~lp+’ VW 

I-c”’ . ..h ( u) ) 

where 

I&r PI Y) = r(2a t ,d t y - D - n) r( D/2 - cy t n) 

b) w w 
> 

R(u)=w -I- uw’ ) 
- V(u)=(l + u2 t 21L27 * v')l'2 . 

For 11, = 0, 1,2 the tensors J<pl..+n a.re given by 

II-(u) = 1 ) 

Ii’“(u) = -C”(u) , 

Iiyu) = ffP(u)‘PV(u) - D -9, + 3 ) 
u’ Y 

with 

(A21 

(A3) 

being a. unit vector. In the special ca.se where w’ = w a.nd v’ = v the general expression 
(Al) reduces to the tensor integral for one-loop dia.gra.ms involving a single heavy 
qua.rk, 

Ipl+‘(w, v) = 1 dDt tp’ . . . Y” ( - $)a (w t;v OP t)” 

= inD/2 ~,(cy, p) ( _ w)D-za+n I~PI...ML~ , ( w 

where 

LhP) = 
r(2atp- D 3) r(D/2 -&a) 

w> r(P) 
7 W) 

and IC~I.+~ is obta.ined from (A4) by replacing i/p(u) by v@. 
In the sum rule calculation one needs the double spectral densities of the tensor 

‘mtegra,ls, which are defined by 
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P+yW, w’, v, 2)‘) = 
I 

p$qy u, u’, v, v’) 
ffPr dv dv’ (u _ w _ ie) (u, _ w, _ iE) t polynomials in w or w’. 

(A7) ‘- 

-^ A convenient wa,y to compute these is by using Bore1 transformations [39]. Defining 
the Bore1 operator with respect to w by 

.; - 

(4 

-W--to0 

T = T fixed 

where T > 0 is the Bore1 parameter, it is easy to see that 

GA.“” (w, w’, v, 21’) = B;7w;:) B$;) S$! P$j I$yyW, w’, v, v’) . 

Using 

W) 

one finds that 

3;;‘) #;) p;.yn = irD/2 r(D/2 - a + 12) 
(-q-1 ( -z’)Y-l I 

2’ I 
z rya) r(p) ryr) p + z’2 + 2yzZ~~(D-2a+4/* 

Ii’/4 . ..h ( > z ’ 
(All) 

where y = 2) . TV’, and 

z VP $ 2' V'P) (2 v" $ 2' V'U) 9 w 

z2 + tf2 t 2yzz’ - D - 2a + 2 * (Al21 

Let us now specialize to the case Q = p = y = 1 and set D = 4. Introducing a 
hyperbolic angle 19 by cash 13 = v. v’ = y, and noting that 

1 1 z + z’ee ’ 

one ca.n eliminate all powers of z’ (or z) in the numerators in (A12) and express the 
righthand side of (All) in terms of the functions 
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the double Bore1 transforms of which are readily computed using (u > 0) 

1 1 O” 
an= m. d/W’-‘e I 

-Pa . 

This result is (nz, n > 0) 

S$? iq;“’ F,,(z 2) = O(w) O(w) O(2y ww’ - w2 - W’Z) w 9 

W4) 

(AW 

W6) 
x (2siiho)m+n-1 (w’-wem;:G1$$-w’)nsl , 

where sin11 0 = dm. 
Using these techniques it is straightforward to work out the various spectral den- 

sities. For n, = 1,2 we define sca1a.r inva.riants by 

pt;,, = Gl v” i- G2 v’j’ ,- 

P% = HI 9” t Hz vbvv + H3v'%'" + Hz&fd" + VW') . (W 
We find that 

i7r2 
P1ll = &/jT-q- O(w) O(w’) O(2yww’ - w2 - w’2) ) 

G1 = -qy2 - 1) 
plll (yw’-w) ) 

H, = - f,(;y 1> (2yw‘d’ - “)’ - Wf2) , 

Hz= Plll 

8(y2 - Q2 

Hc,= Pill 
8(y2 - 1)’ 

G2 and Gr, a.s well as H3 and Hz. 

[3w2 t (2y2 + 1)~‘~ - Gyww’] , 

1 2(2y2 + 1)ww’ - 3y(w2 $ w’,)] . 

are related by interchange of w and w’. 
For p > 1 or y > 1 one can either a.pply the same technique, or use the recurrence 

relation 

W8) 

For instance, one finds that 

i7r2 
p121 = -&/7 O(w) O(w’) [6(w’ - wese) - S(w’ - wee)] . 

W9) 

(A20) 
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APPENDIX B: POWER CORRECTIONS TO HEAVY-MESON FORM FACTORS 

In leading logarithmic approximation the power corrections in (5.2) are given by 
-^ r;(y) = [as(fi)laL T;(Y) with [lg, 261 

- i 
T+(Y) = (; t.-$) &(A 7 

c 

5(Yk(-$ - $) [e4(y) - fl 7 

-iv(Y)=; ci:t~)t~~2(Y)t~[~l(Y)-~4(Y)] 7 

- 

'ial(Y)=ly-l 2 ys1 ($ + &) + $e*cY)t 2 [e1(v) - 34(Y)] 7 

Pl) 

?AP~) = $ [03(Y) - e4;;; ‘1 7 
c 

- 
- - + --$) t f [e2(y) - e3(y) - y+l 

b c e&d - dd] - 

The functions e;(y) are rela.ted to the renormalized universal form factors of HQET 
[cf. (3.3-l)] by 

16 r(Y) - Y edy) t"""(Y) = A;'"(Y) - - 
27 y-l-l 111 [Qs@)] r”(y) 

+‘r![Qq]“” [3$=(y) - (y - l)&‘“(y)] ) 

16 r(y) - Y e2(y) t'""(y) = xi""(y) - 27 y t 1 h[4772>1 t’““(Y) - 2 [4?~)l1’3 X?“(Y) T 

e3(y) t’““(y) = 2 [~s(f#‘3 x;““(y) , 

e4(y) t’““(Y) = Gen(Y) . P2) 

The zero-recoil conditions (2.18), which follow from the conservation of the vector 
current &rP&, imply 

&(I) = e2(1) = 0 * y+(l) = y&(l) = 0 . VW 

From the QCD sum rule analysis we furthermore predict that 
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from which it follows that 

Pw 

From (B3) it is obvious that the hadronic matrix elements in (5.1) are unaffected 
from l/m;3 correct.ions at. zero recoil, since all form factors other than h+(y) and 
h.,~~ (y) are kinematically suppressed at u = v’. This is the content of Luke’s theorem 
[19]. It is important to realize, however, that this does not imply that the observable 
form factors do not receive l/m;2 corrections. If the lepton mass is neglected, four 
form factors are measurable m semileptonic B decays, namely f+(q2) in B + De6 
and V(q’), Adq2), A2(q2) in B ---t D*efi (for the definition of these form factors and 
their relation to the functions hi(~ . v’) defined in (5.1) see Ref. [26]). At zero recoil 
only one of these, A,(q k,,), is protected by Luke’s theorem. 
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FIGURES 

FIG. 1. (a) Numerical evaluation of the sum rule (3.14) for the renormalized Isgur- 
-^ Wise form factor. The lower band corresponds to the continuum model 1 in (3.11), the 
r upper -one to-‘model 2. We use (r,(2;i) = 0.34. (b) S urn rule results for the renormalized 

form factors <fen(y). Th e solid lines refer to continuum model 1, the dashed ones to model 2. 
We use the central values for all sum rule parameters, corresponding to K = 0.16. 

FIG. 2. Sum rule results for the renormalized form factors x;‘“(y) and lOxy”(y). 
The solid lines refer to continuum model 1, the dashed ones to model 2. We use the central 
values for all sum rule para.meters, corresponding to K = 0.16 and E = 0.40. The sensitivity 
to chaages in these parameters is similar as in Fig. l(a). 
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TABLES 

.v  

TABLE I. QCD corrections ,f3;(v. d) in %. 

-^ v * vu’ 

~- 1.0 - 
1.1 
1.2 
1.3 
1.4 
1.5 

1.59 

PA2 PA3 -. 
2:G ..-5.4 11.9 -1.5 -11.0 2.2 

-0.3 -5.4 8.9 -3.8 -10.3 -0.2 
-3.1 -5.3 6.1 -5.9 -9.8 -2.5 
-5.6 -5.3 3.5 -7.9 -9.3 -4.6 
-8.0 -5.2 1.1 -9.7 -8.8 -6.6 

- 10.2 -5.2 -1.1 -11.5 -8.4 -8.5 
-12.1 -5.1 

TABLE II. Power corrections yi(v - v’) in %. 

v * v’ ++ Y- - YV YAI Y-42 7.43 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 

1.59 

‘!jYi(l) 

I 0.0 -4.1 19.1 0.0 -23.1 -4.1 
2.i -4.1 20.7 2.9 -21.4 -0.7 
6.2 -4.1 23.1 6.5 -19.8 3.4 

10.5 -4.2 26.3 10.7 -18.3 8.0 
l-5.3 -4.4 30.0 15.4 -17.0 13.0 
20.6 -4.5 34.3 20.5 -15.8 18.5 
25.7 -4.7 

0.0 1.4 2.9 0.0 4.0 2.1 

TABLE III. Theoretical predictions for the ratios Ri a,nd the symmetry-breaking cor- 
rections E;. 

v * v’ q2 [GeV2] 1 RI EyD [%] E;‘~; [%] 1 R2 &fCD [%] p- [%] 

1.0 10.69 1.31 12.0 19.1 0.90 0.5 -11.0 
1.1 8.57 1.30 11.7 18.2 0.90 0.5 -10.3 
1.2 6.45 1.29 11.3 17.5 0.91 0.5 -9.6 
1.3 4.33 1.28 11.0 16.8 0.92 0.5 -8.9 
1.4 2.21 1.27 10.7 16.2 0.92 0.5 -8.3 
1.5 0.09 1.26 10.4 15.6 0.93 0.5 -7.7 

. . 
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