
- .-- 
SLAC-PUB-5825 

June 1992 
WI 

APPLICATION OF THE FOKKER-PLANCK EQUATION 

TO PARTICLE BEAMS 

INJECTED INTO e’ STORAGE RINGS * 

H. Moshammer 

-” -, Stanford Linear Accelerator Center, 

Stanford University, Stanford, CA 9&?09 

.- 
ABSTRACT 

Nonlinear forces in the longitudinal accelerating field-or in the transverse 

magnetic fields- lead to filamentation of the injected emittance and to the 
. . 

dpcoherence of the center-of-mass motion. The dynamics of the particle 

distribution function in the presence of synchrotron radiation is governed 

by the Fokker-Planck equation. We derive the time evolution of the 

distribution function after injection as an approximate solution to the 

Fokker-Planck equation. The approximation assumes the injected emittance 

to be considerably larger than the equilibrium emittance, which is fulfilled 

for a certain class of storage rings: the damping ringsIn the limit of no 

quantum excitation, this distribution function will then be an exact solution. 

Higher moments of the distribution can be expressed in combinations of 

elementary functions and agree very well with multiparticle simulations. 
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Introduction 

Injection of a bunched beam into the periodic structure of a storage 

ring may lead to the formation of filaments in phase space [l]. It is generally 

assumed that, after some relaxation time, this filamentary structure can 

be described by a smoothly varying distribution function that gradually 

approaches equilibrium. 

In Ref. [2] the time evolution of the distribution function-after 

. . mismatched (the betatron functions of the injected beam ellipsoid and the 

lattice are different) or off-axis injection-was analyzed by means of the 

Vlasov equation. The influence of nonlinear fields was approximated by an 

averaged Hamiltonian that depends only on the action variable. Using this 
.c ..- 
Hamiltonian, the Vlasov equation could be solved exactly. 
-- 

_ 
In order to describe the effects of injection transients for a larger time 

period than a small fraction of the damping time, the effect of synchrotron 

radiation on the beam has to be taken into account. In this paper we 

derive the time evolution of the distribution function as an exact solution 

of the Fokker-Planck equation in the cases of: (a) only linear fields, and 

(b) nonlinear fields and damping, but no quantum excitation. 

In addition we discuss an approximate solution to the Fokker-Planck 

equation where nonlinear fields, damping, and quantum excitation are taken 

into account. The approximation assumes that the injected emittance is 

much larger than the equilibrium emittance-this assumption is typically 
--.- .L -*. 
fulfilled in damping rings. 
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Due to the relatively simple form of the distribution function, first 

and second moments may be derived in closed expressions. These relations 

are then compared to results of multiparticle simulations, where radiation 

damping and the effect of quantum excitation were included. 

1. Time evolution of the distribution function neglecting nonlinear 

. . 
In this section we study the time evolution of the distribution 

.- function in phase space after mismatched or off-axis injection into a periodic 

structure. Neglecting nonlinear fields, the single particle motion may be 

described by the Hamiltonian 

The transformation to the measurable transverse (z, p) and longitudinal 

(c, z) coordinates is given by 

Longitudinal 

v,o * uo a 

where crIoc, rcoo denote the bunch length and 

Transverse 

?b9 
ax+ 
+ , 

vxo , 

(1) 

the energy spread at 

equilibrium, and a in the longitudinal plane denotes the momentum 

-. compaction, whereas a,@ in the transverse plane are the twiss parameters 
--.. -.:- 

WY. 
at a fixed position in the ring [3]. The longitudinal tune V& is defined by 
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the RF potential, the average radius R, and the radiation loss. It is useful 

to be able to work with action-angle variables. We introduce 

q=m cos(~), ( = x4? sin(4) . (2) 

With these variables, the Hamiltonian reduces to 

Electrons receive energy from the accelerating cavities, and loose it again 

.a due to synchrotron radiation. To describe this fluctuating radiation process, 

.- a stochastic term has to be added to Hamilton’s equation leading to a 

set of stochastic differential equations [4]. The dynamics of the phase 

space particle distribution \u(+, I, t) is then described by the Fokker-Planck 

equation. From Ref. [!5] we have 

where the subscripts denote partial differentiation. The oscillation frequency 

wc is equal to the tune times 2n divided by the revolution time; 7 is the 

m- damping time; and c is related either to the transverse equilibrium emittance 

or, in the longitudinal case, to the product of bunch length and energy 

spread: 

Longitudinal Transverse 

Qcca QECO e=u* EXOO ~ (4) 

Qco uzo _ ucl a 6x0 

In analogy to u, we introduce uc, the corresponding term at injection. Before 
--:-A -y. 

we go on to investigate possible solutions of the Fokker-Planck equation, we 
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want to parameterize the distribution function at injection. We assume a 

Gaussian distribution both in longitudinal and in transverse phase space. 

Figure 1 displays the phase space portrait of three different distributions at 

injection. 

(a) Mismatched beam injected on axis 

For the moment, we consider the case shown in Fig. l(a): the 

; e-centered distribution function where the center-of-mass of the distribution 

coincides with the origin of phase space. 

.- In the transverse measurable coordinates (z,p), we parameterize 

the mismatched injected distribution as an ellipse with cye,/Je, cd. In 

the longitudinal case, we assume for simplicity that the injected ellipse is 

upright; i.e., the major axis of the ellipse is aligned with one of the <, r) axes. 

Then the inj&ed longitudinal ellipse is described sufficiently by the bunch 

length &,c and energy spread ucc of the incoming beam. Using Eq. (l), we 

obtain at the moment of injection the distribution function in the variables 

((,q) (see also Ref. [2]) as 

Longitudinal Transverse 

e= co ==+ 
2 .. 

w 0 

(5) 

where a,P denote the Twiss parameters of the ring at the injection point. 
i&gith iA 

= 1, the longitudinal distribution appears circular in phase space. 
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For example, the longitudinal distribution of an electron bunch injected into 

the SLC damping ring is described by g w l/25. With Eq. (2), the injected 

distribution function in action angle variables is given by 

Uo(t = 0) = & exp {-I [bo + CO cos(24 - 2&]} , 

with 

(6) 

Longitudinal Transverse 

. . 0 += tan(24) * -2&Bo/(l+ A; - Bd) 
.~ 

QCOQLO += do * cxo 

(s2 + w(2gQzoQco) &= Co a (I+ A8 + @)/@Bocxo) 

We expect the injected ellipse to start to rotate in phase space. From this 

point of view, we extrapolate from Eq. (6) the assumed time evolution of 

the distribution function. 

’ 60(f) = ~ 
2?rd(t) exp (-I [b(t) + c(t) ca@sl)]} , 

with 

(8) 

where the unknown functions d(t), b(t), and c(t) have to be determined from 

Eq. (3). We realize that we may rearrange the exponent of the distribution 
--: .A 

%nction and write Eq. (8) 
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Wt> =: & w {-I [u(t) cos(R)2 + v(t) sin(n)‘]} , 

. . 

with 

u(t) = b(t) + c(t) , v(t) = b(t) - c(t) . (9) 

The function d(t) has to be determined by the normalization condition of 

.- 

_. 

,-the distribution function. This is done in Appendix A: 

JJ dt$dI il! = 1 * w = &-+ = 

We introduce Eq. (8) into Eq. (3), perform the partial differentiation, and 

order the resulting equation in terms of the canonical variables and their 

combinations: 
c -- 

- . . 
- -Constant : -Td(t)‘/d(t) = 2 - 2ub(t) 

_ 

(10) 

I: 

I cos(2i-q : 

cos(2s2) : 

I cos(252)2 : 

-Tb(t)’ = -2b(t) + 2u(b(t)2 + c(t)2) 

-m(t)’ = -2c(t) + 4ub(t)c(t) 

0 = -2c(t)u + 2c(t)u 

0 = 2c(t)% - 2c(t)% 

(11) 

where the prime denotes differentiation with respect to t. The fourth and 

the fifth of the relations in Eq. (11) are already fulfilled. The first relation 

follows from the second and the third relation using normalization condition 

Eq. (10). The remaining set of two differential equations in b(t), c(t) can be 

solved by introducing the functions u, v defined in Eq. (9), 
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These two equations are of Riccati’s type. The solution is given by 

u(t) = (1 
1 1 

- u. exp{-2t/r}) u and ‘(‘) = (1 - 00 exp(-2t/T]) U ’ 

(13) 

where ~0 and ve are integration constants. We use the initial condition for 

b(t = 0) = bo, c(t = 0) = cc in Eq. (7) and determine ua,vc as 

Longitudinal Transverse -” Cd 

These relations are more transparent in the longitudinal phase space since 

we restricted the initial distribution to an untilted ellipse in phase space. . ..- 
For uzo/uzoo = ucc/u& or g = 1, the functions u(t), v(t) become equal and 

the distribution function no longer depends on the angle variable 4. 

Using Eqs. (13), (14), and (7), we obtain in the transverse plane the 

necessary condition for c(t) = 0: 

1 
bo=G * l=- ; ($+~+$[cto-~ct]2) zpmae, (15) 

The combination of twiss parameters on the right-hand side, ,f3-s, is known 

as the P-magnification factor [6-81. 

The functions u(t), v(t) approach the same equilibrium value:- u(t + 

m),v(t + 00) = l/u. Furthermore, it follows that u(t) is monotonic, 

incre.asing (decreasing) if uo is negative (positive). The same statement 

‘%lds for v(t). The function c(t) = ( u - v)/2 will therefore tend to zero, 
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and the distribution function at equilibrium will be equally distributed with 

respect to the angle variable 4. 

(b) Mismatched beam injected of axis 

Up to this point we have assumed that the center-of-mass of the 

distribution is injected at the origin of phase space (on axis) and will remain 
-” -- 

there throughout the damping process. From Fig. l(c), it is clear that the 

.a off-centered distribution induces an additional angle 4 dependence in the 

.- distribution function which will persist even if the injected beam is matched. 

We denote the position of the injected center-of-mass by (cc, ze) 
__ _ 

or. (~~,pc). In phase space (<,q), we obtain the position of the injected 
- . 

center-of-mass aa 

Longitudinal 

~o&wco 

t .OdW 

e ((t = 0) * 

e= 9j(t = 0) * 

Transverse 

XOIJP 

(f-=0 + PPo)lA/TJ 

(16) 

A natural way to take into account the off-axis injection is by shifting the 

canonical variables 

, - h ave to satisfy the damped oscillator equation where the functions t(t), q(t) 
--.- -.L . . .-. 
associated to the Fokker-Planck equation, (3), with the initial condition 
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given by Eq. (16). Th e corresponding substitution in action-angle variables 

m ight look like 

&OS(n) -+ l/Los(n) - &t)cos(~o - rj) 
(17) 

asin + fisin(0) - fiBin(& - 4) , 

where Cl is defined in Eq. (8), and i(t) and the constant 40 are related to 

the initial values of [i(O), Q(O)], 

i(0) = ftico,l + fi(o)2) and t=(do) = i(W ti(O) . (18) 

We introduce the substitution rules of Eq. (17) into the distribution function 

Eq. (9): 

aft)(t) = 1 
2d(t) exp { [ 

-u(t) aces(n) - ficos(no)] 2 

- -- 4) [&gin(n) - fisin(fIo,l’) , (19) _ 

with 

The distribution function in Eq. (19) has to satisfy Eq. (3). Following 

Sec. l(a) quite closely, we perform  the partial differentiation in Eq. (3), and 

order the result in terms  of canonical variables and their linear independent 

combinations. Thus we obtain the functional dependence of f(t): 

i(t) = f(0) exp{-2t/r} , -. (20) 

and f(0) is given by Eq. (18). Th e normalization function d(t) and the 

functional dependance of u(t), u(t) remain unchanged with respect to the 
--: -2 

%se of on-axis injection, and are given by Eqs. (10),(13),(14). A  result 
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similar to Eq. (19) has been obtained by S. Chandrasekhar in the analysis 

of Brownian motion bounded by a quadratic potential [S]. 

2. Distribution function in the presence of nonlinear fields 

tionlinear fields will induce a tune spread in the bunch population 

and, as a consequence, cause the injected emittance to filament [lo]. When 

injected off-axis, the center-of-mass position observed with a beam position 

‘*monitor will be seen to decohere [II]. This effect is not particular to the 

injection of electron rings. Decoherence was used in proton rings to study 

the influence of higher order multipole fields on the beam [12,13]. 

A convenient way to deal with nonlinear fields is to introduce action 

_ _- angle variables and to average the perturbation over the fast evolving 

variable [14].-This averaged Hsmiltonian is now a function of the action 

variable only, and the tune depends on the action variable. 

H(I) = f$ (I - $12) and v(l) = R y = Vc(1 - fil) . (21) 

In the longitudinal plane p originates from the expansion of the RF wave 

with respect to the longitudinal position, in the transverse case from 

octupole fields. From Ref. [15] we have 

Longitudinal aansverse 

h2a;8Rvao *I.c* -(WV) $ ddW2 K3(4 , 
.. (22) 

, -. 

where h denote the harmonic number and KS(S) contains the distribution of 

magnetic octupoles around the ring. The Fokker-Planck equation is given by 

--.. -.: 
-Y. 1 

s4i=2e+2(1+a)BI+2al\Yrr-7W(I)\Y~+2 CT; Q) (23) 
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with w(l) = 2rv(l)/T 0, where TO denotes the time for one revolution and u 

as defined in Eq. (4). Using Hamilton-Jacobi perturbation method one may 

derive an additional contribution to ~1 that originates from the eextupole 

distribution around the ring. In this case, the action angle variables have 

to be transformed from (4, I) to (#,I’) [16,17]. However, the treatment 

of the Fokker-Planck equation in the canonical variables (#, I’) would be a 

great deal more complicated. -” -- 

We consider on-axis injection, and try to approach the solution with 
.a 

a test function that is very close to Eq. (8). 
.- 

g(t) = & “XP (-1 [b(t) + c(t) c4~~>1~ 9 (24) 

With 
- . . 

-- SI = 4 + h(t) + f(t)1 - i . 

Note that Sl now contains the action variable, and h(t) and f(t) are yet 

unknown functions. We next insert Eq. (24) into Eq. (23), and order the 

resulting equation in terms of canonical variables. We obtain the same set of 

differential- equations that had been derived for the linear case in Eq. (ll), 

plus five additional terms: 

,Isin(2S2) x c(t) [Th’(t) + TWO - 6cf(t)] , 

I2 sin(2SZ) x c(t) [-rf’(t) + rwop + 2f(t) - 4ub(t)f(t)] 

12sin(4S2) x uc(t)2f(t) , 

13ain(2S1)2 x uc(t)2f(t)2 , 
c -. --: -2 

-*. ‘-I2 cos(2fq x uC(t)p(t)2 , 

12 

(25) 

(26) 

(27) 

(28) 

(29) 
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where b(t) and c(t) are given by the corresponding functions of the linear 

case in Sec. 1. We will now show that, under certain assumptions which 

apply for a damping ring, the terms in Eqs. (27)-(29) are small compared 

to the other terms. We mentioned in the discussion at the end of Sec. l(a) 

that the function c(t) goes to zero as t approaches infinity. The initial value 

c(0) = cc is known from Eq. (7) to be in the order of l/uc, and uc was 
-” -- 

defined previously in Eq. (4). W e estimate the magnitude of c(t), b(t) and 

I, which will be different at injection than at equilibrium, 

Injection Equilibrium 

- __ _ 
c(t) - lb0 0 c .- 

- . 
_. w - l/u0 l/u _ 

(30) 

, - 

We are able to estimate the magnitude of the different terms in Eq. (26), 

a - z$tJ + ?d(T)f(t] = TWOP 

f(t) r(t) fWlo0 + r(t) M 

and f(t) will be of the order p. All terms on the left-hand side contribute 

with the same magnitude. ,In the case of Eq. (25) we have 

--.- -.L . . .-. 
=-n&--w 

h(t) 1 olr 
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and h(t) is in the order of 1. For the five terms in Eqs. (25)-(29) we may 

summarize their order of magnitude: 

Injection Equilibrium 

.I- sin(2s2) c(t) rh’(t) - 1 0 

I2 sin(20) c(t) d’(t) - COP 0 

-” Cd U12 sin(lf2) m2 f(t) - UP 0 

u13 sin(2CQ2 CW2 f(t)2 - UoUP2 0 
. . 

uI2 cos(2fl) c(t) f(t)2 - uow2 0 .~ 

Damping rings operate by definition in the regime uc > u. With this 

assumption, we keep only terms of the order 1 and pa0 and neglect all 

other terms of the order up and UOU~~. Since we ignored only terms - . . 

containing pu, it is clear that the solution will be exact in the limit _ 

of no quantum excitation. Furthermore, the solution will reproduce the 

distribution function of the linear problem with p = 0. 

The functions f(t) and h(t) are thus given by the differential 

equations 

rf’(t) - 2f(t) + 4ub(t)f(t) = TWO/J , (31) 

rh’(t) = --7wo . (32) 

Both functions have to satisfy the initial condition h(O) = f(0) = 0. As a 

solution for f(t), we find 

exp{2t/r} - 2(uc + uo)t/T - uouo exp{-2t/r} - 1+ uouo 

exp{2t/r} - uo - uo + uouo exp{ -2t/7} 
f 

(33) 
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with uc, uc defined in Eq. (14). By integrating Eq. (32), we find h(t) = -wet, 

and s1 in Eq. (24) is given by 

n = f$ - wet + f(t)I - 4 , (34) 

A particularly important role will be played by the function f(t), since it is 

the driving term for the filamentation process. Shortly after injection, i.e., 

t a 7, f(t) b e h aves like wpt and increases linearly with time. Then, after 
I -- 

the damping process f(t) approaches the limit, f(t + 00) = wpr/2. The 

functions b(t), c(t), and d(t) are tied via Eqs. (9) and (10) to u(t) and u(t), 

which are given in Eqs. (13) and (14). W  e mentioned previously that the 

distribution function in Eq. (24) is an exact solution to the Fokker-Planck 

equation, if we neglect quantum excitation. In this limit, uc, uc goes to 

iaflnityand the function f(t) becomes 
- . . 

- 
_ No quantum excitation: f(t) = f wc/.4r(exp{2t/r} - 1) . (35) 

It should be stressed that the distribution function in Eq. (24) will loose 

its phase dependance in the limit of t + 00 as c(t) approaches zero. 

Furthermore, it follows from Eq. (30) that the equilibrium distribution will 

be Gaussian and independent of j.~ On the other hand, it is well known that 

nonlinear fields will affect the equilibrium distribution. This was shown, 

for example, in Ref. [5] using the canonical variables <,q and solving the 

Fokker-Planck equation with \Irt = 0. 

In our approach, which is based on action angle variables and 

an averaged Hamiltonian, we loose this asymptotic characteristic of the 

_.di+ribution function. This is probably the price we have to pay in order to 
-*. _ 

‘buy’ the explicit time dependence of the distribution function. 
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So far, we have considered the injected distribution to be centered on 

the closed orbit. In a similar way, we may derive an approximated solution 

to the Fokker-Planck equation for an off-axis injected distribution. The 

distribution function 

-” CL- 

1 
w = Snd(t)exp 

I [ 
-u(t) rIcos(n) - J&f3(*o)] 2 

-u(t) [fisin(n) - fisin(S2c)]‘} (36) 

with 

s2 = 4 - wt + f(t)1 - 4 ) ~o=do-4 > f(t) = f(0) exp { $} 

__ and f(t) given by Eq. (33) satisfies the Fokker Planck equation, if we again 

neglect terms of the order pu. The functions u(t), u(t) and the normalization - . 

function d(t) are defined in Sec. l(a), and are not &ected by the nonlinear _ 

terms in the Hamiltonian. This is not surprising: the normalization function 

d(t) corresponds to the area of the beam ellipsoid, which should remain 

constant in the absence of damping and quantum excitation, as required 

by Liouville’s theorem. Hence, nonlinear terms in the Hamiltonian cannot 

affect the area of the evolution of the injected beam ellipsoid. 

3. Various moments of the distribution function 

By virtue of the relatively simple algebraic form of the distribution 

function, we may evaluate first and second moments. In Appendix A, the 

, - different moments of the mismatched and centered distribution function are 
+-ivei;. It t urns out that the odd moments will vanish because of the 

16 



I 

- .-- 

symmetry: V(I,q5, t) = Q(I,q5 + a,t). We want to compare the analytic 

formula of the second moment (z2) with multiparticle simulation. 

First we discuss the multiparticle simulation. The one-turn map in 

longitudinal phase space includes radiation damping and quantum excitation 

(QE), and consists of three steps: 

Over the ARC: AZ = --a~, 
-” Cd 

RF cavity: Ac = -(eGd&) {sin[d, - (h/R)%] - sin(h)} , 
. . 

Damping + QE : Ar = -X~+u~~~~cj, 
.~ 

where 4, denotes the synchronous phase, a is a random Gaussian variable 

with unit standard deviation,~ and the damping coefficient is defined by 

x-z-exp(-2Tc/~) [18]. One damping time corresponds to about 15,000 
- . 

revolutions; 3000 particles were tracked over 20,000 turns, and the second 
_ 

moment was calculated after every three turns. 

From Appendix A and Eq. (l), we obtain the time evolution of the 

second moment: 

( > 2 = QCOO 
uscx(W2 - cN2) 

x {b(t) - c(t) [cos(2wot + 2&R{ Z(t)3/2} + sin(2wot + 2dQQ{z(t)“/‘}l) 

(37) 

with 

qq = 1 
/( 

1 _ www) + m2 
b(t)2 - c(t)2 

The-comparison between analytic result and simulation is shown in Fig. 2. --.- .L .*, .-. 
The pictures on the bottom and on the top display data belonging to the 
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same run. On the top picture we see a fairly good agreement within the 

first 1000 turns. A slight disagreement shows up as a ‘wiggly’ pattern after 

2000 turns (bottom pictures). However, this pattern does not originate 

from the approximations done in Sec. 2, since it persists in the case without 

quantum excitation, where the above equation is an exact solution of the 

Fokker-Planck equation. 

-” Cd The Hamiltonian formalism is based on differential equations and 

assumes the RF cavity to be spread over the ARC, whereas the mapping 

used in the simulation consists of difference equations. This might be the 

actual source of the small discrepancy in the bottom pictures of Fig. 2. 

Matched beam injected of-axis 
- . . 

- -The phase portrait of this distribution function at injection is 

displayed in Fig. l(b), A matched beam implies c(t) E 0 + u(t) = u(t), and 

the distribution function in Eq. (36) simplifies to 

g(t) = 2 exp {-b(t) [I + i(t) - ZI/F& cos (0 - wt + f(t)1 - +,}I} 

with 

i(t) = i(0) exp{-2t/r} 

A sufficient condition for the beam to be matched to the lattice in the 

transverse plane is Pmae = 1 or, equivalent, bo = l/c,e. In the longitudinal 

plane, g = 1 is required. In Appendix B we derived the first and second 

, -. moments for the general case of a mismatched and off-centered injection. 
--.. -.L .y. -;. 

From Eq. (52) we obtain, with c(t) = 0, A = b(t) and do = no, 

18 
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(0 = 

It= 

(1+ P)2 

exp { _Bylt)) [(l - 8’) ein(Ol) - 219 cos(Q1)] 

Mt) 
w * (1+82)2 

exp { -"yQ} [(I - e2) c~(ol) + 2e6in(al)] (39) 

with 

-” -- 
(9 = f.@ 

w 

From the discussion in Sec. 2, we realize that 0 behaves shortly after 
. 

injection as O(t < 7) = uepwt and will increase with time. The quantity 
.- 

B might be extracted from a given set of beam position measurements 

over successive turns after injection. Thus, the injected emittance may 
__ _ 

be measured if the nonlinear perturbation ~1 is known. The nominator in c -- 
- . 

Eqs. (39) grows with time and causes the decoherence of the center-of-mass 

motion. After a sufficient number of damping times, 0 approaches the limit 

e(t 39 7) = uj.~w7/2. At that time, the center-of-mass motion approaches 

zero, due to f(t 4 00) = 0. The second moments are obtained from Eq. (53): 

( ) p = & + i(t) 
I 

l- 
exp{-[4e2i(t) b(t)]/(l + 4e2)} 

(I+ 482)s 

x [(l - i2e2) c042ip2) + (60 - 803) sin(2@2)]} , 

( > $ = & + f(t) 1+ exp{-[4e2i(t) b(t)]/(l + 482)) 
(I + 48213 

x [(I - 1282) c08(2a2) + (se - 883) sin(202)] f , 

a2 = wot + $0 - 
Oi(t)b(t) 
i +4e2 * 
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At this point, we want to compare the analytic relation for the second 

moment in the longitudinal plane: (r2) - (z)~ to multiparticle simulations 

which were done with 3000 particles. The data of the first 2000 turns in the 

pictures on the bottom of Fig. 3 are expanded in the top picture of Fig. 3. 

The analytic expression is in good agreement with the simulation result. A  

small deviation within the first synchrotron oscillation is a consequence of 

:,&he Hamiltonian-in-action variable, which was obtained by averaging over 

the phase terms. The bottom pictures show the initial growth of the bunch 

length due to filamentation. After turn 2500, the bunch length starts to 

decrease due to radiation damping, and slowly approaches the equilibrium 

value uz(t)/c7zoo = 1. 

c -- 

4 Summay 

In Sec. 2 we presented an approximate solution to the Fokker-Planck 

equation that describes the injection process into a storage ring under the 

influence of nonlinear fields. Explicit time dependence of the first and 

second moments were derived, and compare well to results obtained from 

multiparticle simulations. These simulations included radiation damping 

and the effect of quantum excitation on the particle trajectory. The analytic 

result for the first moment of the particle distribution may be used to 

extract the injected emittance from a set of beam position measurements 

over successive turns after’injection. 
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Appendix A 

Higher-order moments of the centered distribution function 

In this Appendix we derive higher order moments of the distribution 

functions discussed in Sets. 1 and 2. 

aqt) = -2-- 
Pnd(t) exp {-I [b(t) + c(t) cos(2~)]} , (40) 

52 = f$ - wet + f(t)I - 4 . 

. It is important to notice the symmetry Q(I,c$, t) = V(I, 4 + ~,t), which 
.- reflects the invariance of the distribution function under the transformation 

(t, rl) -+ t-6 -t)>- A s a consequence, all moments of odd order will vanish. 

What remains are the moments of even order, which will be treated in 
. ..- 

action-angle variables. -- 

_ (t2m) = JJe2mdtdq = zrn JJIm sin(d)2mdIdd , 

and 

(,,2m) = // r12mdtdrl = zrn // Im cos(tj)2mmtj . 

Let us evaluate first the expression (q2”). We use the above expression for 

the distribution function and obtain: 

($m) = $ irn dI exp{-Ibl Rm(I) , (41) 

with 

&(I) = /,‘” exp{-Iccos(2Q)) cos(f$)2m 

Next we use the identity [19] 

, -. --: -.L- .*. .-- c~(~>2m = & g (2:) cos(2&n - 24k) . (42) 
= 

22 



- .-- 
We introduce this expression in the definition of &(I), integrate with 

respect to 0, and obtain the result in terms of Bessel functions: 

Jm-&IC) COB {2[wot - f(t)I + II) 9 (43) 

where i denotes the imaginary unit. Equation (41) can now be integrated, 

and the result contains hypergeometric functions [19] 

.- (q2”) = gg 2 (m-&1+6,0) [T] . . 
X 

exp {l[w& +.&} F (!G , 9 ; I + 1, -%2J) 

1 JID2lW2 

+ C.C. , 
- ,(t)2]J+m+l 1 

. ..- 

where -cc. denotes the complex conjugate of the preceding term. 

and 61,c is the Kronecker 6. A similar expression may be derived for the 

other canonical variable 

@‘“) = gg 5 (m-r)l&+6ro) [+)I’ 
Jr0 * * 9 

X 
I 

exp { Sil[Wot + J]} F(v 9 9 ; 1 + l 1 -Q[) + c c 

j /C&J@)2 
** I 

- C(t)2)h-m+l 1 
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where a minus at c(t)’ is the only difference to the previous relation. For 

m = 0, we obtain the normalization condition that was used earlier in this 

paper, 

l- $ =- ( > 
1 1 = 

d(t) j/b(t)2 - c(t)2 * w = \/6(t)Z1- c(t)5 - (45) 

The second moment for m = 1 describes the evolution of the bunch length, 

energy spread, or beam size. We obtain after some rearrangements, 
; -- 

( ) $ = 1 
w2 - c(t)2 

[b(t) - c(t) (cae[2(wot + &I %{ Z(t)3’2} 

.- 

__ 

+ sin[2(wet + i)] 9{ Z(Q312}) ] (46) 

( ) t2 = b(t)2 ! c(+ [b(t) + c(t) (cos[2(wot + i)]R{ Z(t)3’2} 

+ iiIl(2[wot + i])Q{ qtp2)) ] (47) c -- 

These-expressions contain the real and the imaginary part of the following _ 
complex function: 

2(t) = 1 1 - 

As mentioned before, the function f(t) will increase shortly after injection 

linearly with time, and Z(t) will act like a damping term. Later, when the 

beam approaches equilibrium, t + co: Z(t) will also approach a limiting 

value. With b(t 400) = l/c and c(t 400) = 0 we find 

The contribution of Z(t) to the beam size scales with c(t) and will be small 

, - as c(t) approaches zero, after a couple of radiation damping times. _: .-- .*. -;. 
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Appendix B: First and second moments of the off-centered, 

mismatched distribution function 

This is the general case shown in Fig. l(c). Analytic expressions for 

the first and second moments can be compared to beam position or beam 

size measurements after injection. These expressions are of practical interest 

in order to understand and to optimize the injection process. It turns out 

L “-that the involved integrals cannot be solved directly by means of integral 

tables [19,20], and the solution can only be given in a power series containing 

.- 
hypergeometric functions. We start with the distribution function given by 

Eq. (1% 

* = g exp{-u[~cos(C2)-~cos(~o)]2-t+/7sin(R)-~sin(~o)]2}, 

with 
- . 

_ 
n=qLwt-tj, cl0 = 40 - 4 . 

We keep in mind that wt = wet - f(t)1 depends on the action variable. In 

the exponent, we substitute u(t), v(t) by b(t), c(t) via Eq. (9) and obtain 

\1’ d= = 2?r exp{-lb - f[b + c cos(2Cl~)] - Ic cos(2Q) + 2 6 If A cos(R - fro)} 

(48) 

with 

tan(do) = 
b-c 
b+c t=Go) 8 A=dm. 

The first and second moments lead to the following type of integrals over 

the angle variable 

ccos(2n) + 2 Ii A cos(!I - i=h$ J- > 
d4 , 
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with 

F(4) = sin(4) 

v* 

We change the integration variable from 4 to C, 

R(I) = ; J’” F(C + wt + 3 + 60) exp { -Ic cos(2C + 2b0)) 
-” -, 0 

x { cos [i21/i?Acos(C)] -isin [i2J;;IAcos(()]} d< . 

_- Either the sines or the cosines of the trigonometric function will give a zero 

contribution in the integration due to symmetry. We expand the remaining 

trigonometric function in a power series, 

. . 
- cos [i2-&f A cos(C)] 

_ 

sin [i2&? Aces(C)] = i Cr=o 1w COST”+’ , 

and substitute for COST the expression given in Eq. (41). The integration 

over the angle C results in Bessel functions. The second integration over the 

action variable leads to a power series containing hypergeometric functions. 

To simplify the notation in the final expressions, we define 

+’ d c(t) 
Gj = - 1 1 (2n - I+ l)! 2Pj(t) @j(t)n+2r(7A - 1 + 1) 

2n-I+3 2 x F 1 
2n-l-l-2 2 ’ 2 ,n-I+l; 1 pjo 44 I) , (49) 

, -. --.where @j(t) is defined in Eq. (45). For the first moments of the distribution 
. . -:. 

we obtain 

26 



- .-- 

(0) + i (0 = ff exp { -f(t)[b + c cos(2Qo)]} 

00 2n (-l)n-k+’ A f(t) 

ac 
[ cl Pn+l 

n=O k=O k!(2n - k + l)! 

x [ exp { i[-(2n - 2k + l)fio + wet + J]} GySk-l 

- exp { i[(2n - 2k + I)% + wet + 31) Gytk ] , (50) 

-” c, 

(51) 

. . The result for the second moments is given by 

= 6 exp { -f[b + ccos(2Sl~))]} 5 2 (-~&-nk(~~)~ 
n=O k=O 

X 
I [ 

co8 2(n - k> “o] c;fik f i [ exp {!&I-(n - k)f& + wet + J]} Gtskml 

. ..- 
+ exp {2i[(n.- k)fio + wet + 61) Gifk+’ + c.c.1 } , (52) 

-- 

where c.c denotes the complex conjugate of the preceding terms. The 

above relations simplify considerable in the case of a centered injection with 

f(t) = 0 or, in the case of a matched injection, with c(t) = 0. 
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Figure Captions 

Fig. 1. (a) Mismatched beam injected on axis, (b) matched beam iqjected 

off axis, and (c) mismatched beam injected off axis. 

Fig. 2. Time evolution of the bunch length. 

Fig. 3. Time evolution of the bunch length after off-axis injection. -” Cd 

30 



- 
- .-- 

Q-92 

Fig. 1 

7263Al 



- 
- .-- 

-” -- 

.- 

- !rom Fokkcr-Planck Equation 
- multi puuclo dmulat.ion 

c -- 

- e ““,““,‘.“,“” 
_ 

6- fFom hkku-Pimock EqlAAticu 

zwvoluuolu 

Fig. 2 



. 

- . ._A 

L c, 

e - frcm Fckka-Fhnck Squatton 
- multl puuclc dmuMion 

a- a 
loom mom 

ravolution8 

I . . . . I .., . I . . . . 
aDo looQ0 mooo mm0 

rwwutioxu 

Fig.3 

- . 

, -. -. _.- ._- 
.y. -;. 



I : 

- -.-C 

SLAG-PUB-5825 
Nov 1992 _ 

(4 

ERRATA 

Application of the Fokker-Planck Equation 
to Particle Beams Injected into Damping Rings l 

H. Moshammer 
i, -- Stanford Linear Accelerator Center 

Stanford University, California 94309 

Page.4, Eq. 15 

Page- 4,. bottom 

where the functionsnsF(t), q(t) _h ave to satisfy the damped oscillator equation associated to the Fokker-Planck 
equation (3) with the initial conditions-given by Eq. 16. 

_ 
Page .9, Eq. 38 

w> = g b(t) exp(-b(t)(l+ i(t) - 2Jlj(t)cos(4 - wt + f(t)1 - 40)) ) with i(t) = i(0)e-2t’T 

Page 9, center 

<t2> = [(I - 1202) c0~(2@2) + (60 - 8d3) sin(2Gz)] 

<q2> = [Cl - 12d2) c0~(2@2) + (68 - 8t93) sin(2@2)] 
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Abstract 

Nonlinear forces in the longitudinal accelerating field, or in the transverse magnetic fields lead to fila- 
.“mentation of the injected emittance and to the decoherence of the center of mass motion. We derive the 

time evolution of the distribution function after injection as an approximate solution to the Fokker-Planck 
equation. The approximation assumes the injected emittance to be considerably larger than the equilibrium 

- emittance which is fulfilled for a damping ring. In the limit of no quantum excitation this distribution func- 
tion will then be an exact solution. Higher -moments of the distribution can be expressed in combinations 
of elementary functions and agree very well with multi-particle simulations. 

_ __ _ 

Introduction _ 
- . 

‘Injection of a bunched beam into the periodic structure of a damping ring may lead to the formation of 
filaments in phase space [l]. It is generally assumed that, after some relaxation time, this filamentary structure 
can be described by a smoothly varying distribution function which gradually approaches equilibrium. 

During normal operation a bunch injected into a damping ring will be extracted after a couple of radiation 
damping times. From this point of view, the distribution function never reaches the equilibrium state and 
transient effects from injection might influence the extracted beam distribution. 

Recently the time evolu-tion of the distribution function after mismatched, i.e. the betatron functions of the 
injected beam ellipsoid and the lattice are different, or off-axis injection was analysed by means of the Vlasov 
equation [2]. The influence of nonlinear fields was approximated by an averaged Hamiltonian that depends 
only dn the action variable. Using this Hamiltonian the Vlasov equation could be solved exactly. 

In ordkr to desdribe the effects of injection transients for a larger time period than a small fraction of the 
damping time, radiation. damping and quantum excitation has to be taken into account. In this paper we 
derive the time evolution of the distribution function as an exact solution of the Fokker-Planck equation in 
the case df: a) only linear fields and b) nonlinear fields and damping but no quantum excitation. 

In addition we discuss an approximate solution to the Fokker-Planck equation where nonlinear fields, damp- 
ing and quantum excitation are taken into account. The approximation assumes that the injected emittance 
is much larger than the equilibrium emittance. This assumption is fulfilled since damping rings are designed 
to reduce the emittance of the incoming bunch. 

Due-to the.+@tively simple form of the distribution function, first and second moments may be derived in 
closed express&&. The& relations are then compared to results of multi-particle simulations where radiation 
damping and the effect of quantum excitation were included. 

*Work supported by the Department of-Energy, contract DEAC03-76SF00515. 
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1. Time Evolution of the Distribution Function neglecting Nonlinear Fields 

In this section we study the time evolution of the distribution function in phase space after mismatched or off- 
axis injection into a periodic structure. Neglecting nonlinear fields the single particle motion may be described 
by-the Hamiltonian: 

The transformation to the measurable transverse (z,p) and longitudinal (E, Z) coordinates is given by: 

longitudinal transverse 

(1) 

where uZoo, a;, denote the bunch length and the energy spread at equilibrium, CY in the longitudinal plane 
denotes-the momentum compaction, whereas cr,p in the transverse plane are the twiss parameters at a fixed 
position in the ring. The longitudinal tune v,n is defined by the RF potential, the average radius R and the 
radiation loss. It is useful to be able to work with action-angle variables. We introduce: 

__ 
-7 = dZcos(q5) , 5 = &sin(4) . (2) % -- 

With these variables the Haniiltonian’reduces to 

The dynamics of the phase space particle distribution Q(4,1, t) is described by the Fokker-Planck equation. 
From Ref. [3] we have: 

r!Pt = 2x4 

where the subscripts denote partial 

+ 2(1+ U)!IfI + 2aIQ 
1 1 

II - rwoQl$ + p$Qh$ (3) 

differentiation. r is the damping time and u is related either to the 
transverse-equilibrium emittance or, in the longitudinal case, to the product of bunch length and energy 
spread: 

longitudinal transverse 
UEOO uzco -C==U==+ Gm (4) 

UtOGO -e=== uo ===+ GO 

In analogy to u we introduce uu, the corresponding term at injection. Before we go on to investigate possible 
solutions of the Fokker-Planck equation we want to parameterize the distribution function at injection. We 
assume a Gaussian distribution both in longitudinal and in transverse phase space. For the moment we consider 
a centered, (the center of mass of the distribution coincides with the origin of phase space), and mismatched, 
(the injected b earn distribution has not circular contours in phase space E, q), distribution function. 

1.a Mi&natc-Ji&+ Bea+ Injected On-Axis 

In the transverse measurable coordinates (x,p) we parameterize the mismatched injected distribution as an 
ellipse with au,-,&, c,u. In the longitudinal case we assume for simplicity that the injected ellipse is upright, 
i.e. the major axis of the ellipse is aligned with one of the 5,~ axes. Then the injected longitudinal ellipse is 
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described sufficiently by the bunch length uZn and energy spread uEe of the incoming beam. Using Eq. 1 we 
obtain at the moment of injection the distribution function in the variables ([, 7) as (see also Ref. [2]): _ 

longitudinal transverse 

where cr,p denote the twiss parameters of the ring at the injection point. With g = 1 the longitudinal 
distribution appears circular in phase space. For example the longitudinal distribution of an electron bunch 
injected into the SLC damping ring is described by g M l/25. With Eq. 2 the injected distribution function 
in action angle variables is given by: 

qt = 0) = & exp(-I{bo+ cocos(W- 24))) 
0 

wit-Ii: 
longitudinal transverse 

__ 
0 _ tan(24) * -2AoBo/(l + A; - B;) . .-- 

~dx~zo e do a (7) 

_ (g: + wmo&j = b. = (1 + Ai + B;)/(2B06x0) 
(.I- g2)l(~g~zo~,o) * co ==+ 

We expect the injected ellipse to start to rotate in phase space. From this point of view we extrapolate from 
Eq. 6 the assumed time evolution of the distribution function. 

qo(t) = & exP(-1 {b(i) + c(t) cos(2fi)H with s1 = 4 -wet - C$ (8) 

where the unknown functi.ons d(t), b(t),c(t) have to be determined from Eq. 3. We realize that we may 
rearrange the exponent of the distribution function and write Eq. 8 as: 

Q;(t) = &~=w(-I {U(t) cos(fi)2 + v(t) sin(fl)2}) with U(t) = b(t) + c(t), v(t) = b(t) - c(t) (9) 

The function d(t) has to.be determined by the normalization condition of the distribution function. This is 
done in the appendix. 

We introduce Eq. 8 into Eq. 3, perform the partial differentiation and order the resulting equation in terms 
of the canonical variables and their combinations: 

, - --.. -.:- 
-ai. e constant : -Td(t)‘/d(t) = 2 - 2&(t) 

I: 4(t) = -2b(t) + aa + c(t)2) 
Icos(2R) : -m(t) = -2c(t) + 4ukJ(t)c(t) (11) 
cos(2R) i 0 = -2c(t)u + 2c(t)u 

I cos(2R)2 : 0 = 2c(t)% - 2c(t)% 

where the prime denotes differentiation with respect to t. The fourth and the fifth of the relations in Eq. 
11 are already fulfilled. The first relation follows from the second and the third relation using normalization 
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condition Eq. 10. The remaining set of two differential equations in b(t), c(t) can be solved by introducing the 
functions u, v defined in Ea. 9. - 

- T( 3=2( ;)-24 5) (12) 
These two equations are of Riccati’s type. The solution is given by: 

u(t) = l/(1 - uoe-2t/7)u and v(t) = l/(1 - v~e-~~/~)u . (13) 

where u. and vug are integration constants. We use the initial condition for b(t = 0) = bo, c(t = 0) = co in Eq. 
7 and determine UO,VO as: 

longitudinal transverse 
-” -- 

1 - 40/& e= uo * 1 - 1/(hcl 0 b - c,codm) (14) 

1 - ~;40/4co e vo * l-l/( b GXG 0 + Gm JZ-TS 
These relations are more transparent in the longitudinal phase space since we restricted the initial distribution 
to n untilted ellipse in phase space. For u,o/u~~ = uCo/uCoo or g = 1, the functions u(t), v(t) become equal 
and the distribution function no longer depends on the angle variable 4. 

Using Eqs. 13, 14 and 7 we obtain in the transverse plane the necessary condition for c(t) = 0: 

The combination of twiss parameters on the right hand side, ,Bmag, is known as the P-magnification factor [4], 
[5]and[6]. - 

.The functions u(t), v(t) approach the same equilibrium value: u(t + oo), v(t --+ co) = l/u. Furthermore it 
follows that u(t) is monotonic increasing (decreasing) if ug is negative (positive). The same statement holds 
for v(t). The function c(t) = (u - v)/2 will therefore tend to zero and the distribution function at equilibrium 
will be equally distributed with respect to the angle variable 4. 

1.b Mismatched Beam injected Off-Axis 

Up to this point we have -assumed that the center of mass of the distribution is injected at the origin of 
phase spa& (on-axis) and will remain there throughout the damping process. It is clear that the off-centered 
distribution induces an additional angle 4 dependence in the distribution function which will persist even if 
the injected beam is matched. 

We denote the position of the injected center of mass by (60, ~0) or (xo,po). In phase space (e, 7) we obtain 
the position of the injected center of mass as: 

longitudinal transverse 

60 l/s +== j(t = 0) * XOIJP 
(16) 

zOd= e= fj(t = 0) * @x0 + PPo)/l/p 
A natural way to take into account the off-axis injection is by shifting the canonical variables: 

, - --.. -.:- 
-ai. . 5 + t - i(t) 

17 + rl- f@) 

where the-functions f(t), q(t) h ave to satisfy the Fokker-Planck equation with the initial condition given by 
Eq.16. The corresponding substitution in action-angle variables might look like: 

1/?cos(q + J?cos(cq - &jcos(~o - (5) 
asin + flsin(R) - msin(& - 4) 

(17) 
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where R is defined in Eq. 8 and f(t) and the constant 40 are related to the initial values of (i(O),+(O)): 
- 

i(O) = $0,’ t 7j(q2) and tan(h) = ~(O)/fXO) (18) 

We introduce the substitution rules of Eq. 17 into the distribution function Eq. 9: 

$-j(t) = & exp(-u(t) { ficos(0) - ficos(Ru)}2 - v(t) { asin - fisin(Ru)}2) (19) 

with: 
ckg5-wt-(5, 00 = 40 - 6 

The distribu&% function- in Eq. 19 has to satisfy Eq.3. Following section 1.a quite closely we perform the 
partial differentiation in Eq. 3 and order the result in terms of canonical variables and their linear independent 
combinations. Thus we obtain the functional dependence: of f(t): .a 

_- i(t) = i(0)c2+ ) PO> 

an&i(Q) is given by Eq 18. The normalization function d(t) and the functional dependance of u(t), v(t) remain 
unchanged with respect to the case of on-axisinjection. These functions are given by: Eq. 10, 13 and 14. 

2 I%istribution Function in the -Presence of Nonlinear Fields 
- . . 

Nonlinear fields will induce a tune spread in the bunch population and, as a consequence, cause the injected 
emittance to filament [7]. Wh en injected off-axis, the center of mass position observed with a beam position 
monitor will be seen to decohere [8]. This effect is not particular to the injection of electron rings. Decoherence 
was used in proton rings to study the influence of higher order multipole fields on the beam [9], [lo]. 

A convenient way to deal with nonlinear fields is to introduce action angle variables and to average the 
perturbation over the angle variable [12]. This averaged Hamiltonian is now a function of the action variable 
only and the tune depends on the action variable. 

H(1) = %(I- ipI’) and dH(I) v(I) = Rcll = vo(l - j-J> * (21) 
In the longitudinal plane p originates from the expansion of the RF wave with respect to the longitudinal 
position, in the transverse case from octupole fields. From Ref. [ll] we have: 

longitudinal transverse 

h (22) 
SRvso -+=PL - ii& f w(592~~3(4~ . . 

where h denote the harmonic number and KS(S) contains the distribution of magnetic octupoles around the 
ring. The Fokker-Planck equation is given by: 

_ I .  (23) 
--: .i- 

with w(l) = $%(1)/T- n where TO denotes the time for one revolution and u as defined in Eq. 4. Using 
Hamilton-Jacobi perturbation method one may derive an additional contribution to p which originates from 
the sextupole distribution around the ring. In this case the action angle variables have to be transformed from 
($,I) to @&I’) [131, P41. H owever, the Fokker-Planck equation in the canonical variables (#, 1’) would be 
even more difficult to solve. 

We consider on-axis injection and try to approach the solution with a test function which is very close to 
Eq. 8. 
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W) = 27r@) 
I exp(-1 {b(t) + c(t) cos(2fl)}) with R = 4 + h(t) + f(t)1 - 4 (243 

Note that R now contains the action variable and h(t) and f(t) are yet unknown functions. Next we insert 
Eq. 24 into Eq. 23 and order the resulting equation in terms of canonical variables. We obtain the same set 
of -differential equations which had been derived for the linear case in Eq. 11 plus five additional terms: 

Isin(2R) x c(t) (rh’(l) + 7~~0 - 60f(t)) (25) 

I2 sin(2R) x c(t) (+-f(t) + rwup + 2f(t) - 4ab(t)f(t)) (26) 

I2 sin(4Q) x ~c(t)~f(t) (27) 
-” -, I3 sin(2R)2 x aloft (28) 

I2 cos(2R) x uC(t)f(t)2 w-9 

where b(t) and c(t) are given by the corresponding functions of the linear case in section 1. We will now show 
that, under certain assumptions which apply for a damping ring, the terms in Eqs. 27, 28 and 29 are small 
compared to the other terms. We mentioned in the discussion at the end of section 1.a that the function c(t) 
goesto.zero as t approaches infinity. The initial value c(0) = ce is known from Eq. 7 to be in the order of l/cro 
and cru was defined previously in Eq. 4. We estimate the magnitude of c(t), b(t) and 1, which will be different 
at injection than’at equilibrium: 

._ ..- injection equilibrium 
- 

CKJ N l/u0 0 
- w N l/u0 lb (30) 

_ I- 00 u 

We are able to estimate the magnitude of the different terms in Eq. 26: 

T.?(t) - 2f(t) + Jub(t)f(t) = rwop 
v-v- 

r(t) f(f) r(tbl~o-f(t) P 

and f(t) will be of the order p. All terms on the left hand side contribute with the same magnitude. In the 
case of Eq. 25 we have: 

rh’( t) = - rwO - 6uf( t) 

h(t) Y- UP 
and h(t) is in the order of 1. For the five terms in Eqs. 25 to 29 we may summarize their order of magnitude: 

injection equilibrium 

1’2 
sin(2R) c(t)rh’(t) N 1 0 .’ 
sin(2R) c(t)rf’(t) N OOP 0 

uI2 sin(4fl) c(t)2f(t) N UP 0 
uI3 sin(2R)2 c(t)2f(t)2 N uov2 0 
U12 cos(2R) c(t)j(t)2 N uow2 0 

c -. 
Since dampin&j$gs operate by definition in the regime au >> u we keep only terms of the order 1 and puu. All 
other terms of the order up and UOU~~ will be neglected in this approximations. Since we ignored only terms 
containing pa it is clear that the solution will be exact in the limit of no quantum excitation. Furthermore 
the solution will reproduce the distribution function of the linear problem with p = 0. 

The functions f(t) and h(t) are thus given by the differential equations: 

r?(t) - 2f(t) + 4ub(t)f(t) = rwop (31) 
r/L’(t) = --TWO (34 
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Both.functions have to satisfy the initial condition h(0) = f(0) = 0. As a solution for f(t) we find: 

1 
f(t) = -Woc1T 

e2t/T - 2(~n + vo)t/r - ugvge --2v7 - 1 + uovu 
2 e2tf7 - uo - vo + uovoe -2t/r 

with uo, v. defined in Eq. 14. By integrating Eq. 32 we find h(t) = -wet and R in Eq. 24 is given by: 

R = q5 - wet + f(t)I - (3 (34) 

A particularly important role will be played by the function f(t) since it is the driving term for the filamentation 
process. Shortly after injection, i.e. t << r, f(t) b e h aves like wpt and increases linearly with time. Then 
after tlmdamping process f(t) approaches the limit f(t + oo) = w/~/2. The functions b(t),c(t) and d(t) are 
tied via Eqs. 9 and 10 to u(t) and v(t), which are given in Eqs. 13 and 14. We mentioned previously that 
the distribut&%’ function in Eq. 24 is an exact solution to the Fokker-Planck equation if we neglect quantum 
excitation. In this limit uu, vu goes to infinity and the function f(t) becomes: 

. . no quantum excitation: f(t) = ;wopT(e2t/T - 1) (35) 

It should be stressed that the distribution function in Eq. 24 will loose it’s phase dependance in the limit 
of t+ po as c(t) approaches zero. Furthermore it follows from Eq. 30, that the equilibrium distribution will 
be Gaussian and independent of p. On the other hand, it is well known that nonlinear fields will affect the 
equilibrium distribution. This was shown for example in Ref. [3] using the canonical variables 5, q and solving 
the Fokker-Planck equation with qt. = 0. 

In our approach which ig based on action angle variables and an averaged Hamiltonian we loose this 
asymptotic characteristic of the distribution function. This is probably the price we have to pay in order to 
‘buy’ the explicit. time dependence of the distribution function. 

So far, we have considered the injected distribution to be centered on the closed orbit. In a similar way we 
may derive an approximated solution to the Fokker-Planck equation for an off-axis injected distribution. The 
distribution function 

qt> = +) exP(-u(t> { fi COS(fl) - ficos(Ck~)}~ - v(t) { asin - *sin(Re)}‘) (36) 

with: 
0 = qs - wt + f(t)I - (3, 00 = $0 - 4% i(t) = f(0)e-2t/T 

and f(t) given by Eq. 33 satisfies the Fokker Planck equation if we neglect again terms of the order pa. The 
functions -u(t), v(t)-and th e normalization function d(t) are defined in section 1.a and are not affected by 
the nonlinear terms in the Hamiltonian. This is not surprising: The normalization function d(t) corresponds 
to the area of the beam- ellipsoid, which should remain constant in the absence of damping and quantum 
excitation, as required by Liouville’s theorem. Hence, the whole filamentation process cannot affect the area 
of the injected beam and thus the emittance of the distribution. 

3 Various Moments of the Distribution Function: 

By virtue of the relatively simple algebraic form of the distribution function we may evaluate first and 
second m-oments. Inthe appendix the different moments of the mismatched and centered distribution function 
are derived. It&?ns out-that the odd moments will vanish because of the symmetry: !&(I, 4, t) = !&(I, 4+7r, t). 
We want to compare the analytic formula of the second moment <z2> with multi-particle simulation. 

First we discuss the multi-particle simulation. The one turn map in longitudinal phase space includes 
radiation damping and quantum excitation (QE) and consists of three steps: 

over the ARC : AZ= --(YE 
RF cavity : AC = --* [sin(4, - AZ) - sin(4,)] 
Damping+QE : AC = -Xt + u,-&-m@ 
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where & denotes the synchronous phase, Q is a random Gaussian variable with unit standard deviation and 
the damping coefficient is defined by: X = exp(-2Tu/r) [15]. One damping time corresponds to about 15000 
revolutions. 3000 particles were tracked over 20000 turns and the second moment were calculated after every 
3 turns. 

From the appendix we obtain with Eq. 1 the time evolution of the second moment: 

<z2>= UECO 
uzco(b(t)2 - c(tj2> [b(t) - c(t) (cos(Sa(t) - 2q)R{ Z(t)3/2} - sin(2h(t) - 2J)q~(t)~/“}) ] (37) : 

with 

; .ed 
2(t) = l/(1 - WttMt) -t f(t)” > 

b(t)2 - c(t)2 
The comparison between analytic result and simulation is shown in Figure 1. The pictures on the bottom and 
on the top display data belonging to the same run. On the top picture we see a fairly good agreement within 
the first 1000 turns. A slight disagreement shows up as a ‘wiggly’ pattern after 2000 turns (bottom pictures). 
However,.this pattern does not originate from the approximations done in section 2, since it persists in the 
case without quantum excitation where the above equation is an exact solution of the Fokker-Planck equation. 

‘The Hamiltonian formalism is based on differential equations and assumes the RF cavity to be spread over 
the ARC, whereas the mapping used in the simulation consists of difference equations. This might be the 
actual source of ‘the small discrepancy-in the bottom pictures of Figure 1. 

.- .-- 
-Figure l’- Time evolution of the bunch length 
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A matched beam implies c(t) E .O -+ u(t) = v(t) and the distribution function in Eq. 36 simplifies to: 

qt> = & exp(-b(t)(1+ f(t) - 2dscos(4 - wt •l- f(t)I - 40))) with i(t) = j(0)e-2t/7 (38) 

A sufficient condition for the beam to be matched to the lattice in the transverse plane is ,Bmag = 1, or 
equivalent: bo = l/c,u. In the longitudinal plane g = 1 is required. The integration over phase space leads to 
the following expressions for the first moments of the distribution function: 

-” CL- -e> = (1 f (92)2 d2’(t) e-W [(l - 0”) sin($) - 28COS(@1)] 

<rj> = J- 2’(t) e-W [( 1 - 0”) cos(+r) + 20 sin(@r)] (1 t @ )2 (39) 

with: -- 
0 = f(t> 

b(t) 
an& i& = wt + 4. _ ei(t>b(t> 

1 + 92 

From- the discussion in section 2 we realize that 8 behaves short after injection as t9(t << r) = uopwt and will 
increase-with time. The nominator in Eqs. 39 grows with time and causes the decoherence of the center of \ -- 
mass motion. After a sufficient numher of damping times 8 approaches the limit: O(t >> r) = upwr/2. At 
that time the center of mass motion approaches zero due to f(t + oo) = 0. The second moments are given by: 

_ 
<E2> = g) t f(t) 

i 
1 - e 

-w 
(1 + 4893 

[(l - i2e2) c0s(2Q2) t (ae - 8e3) sin(2@2)] 
1 

<rj2> = J- + j(t) 1+ e 

{ 

4e:$tp 

w (1 + 482)s [(l - 1282) c0s(2a2) - (ae - 803) sin(2@2)] 

1 

and: _ 

a2 = wt t 40 - ei(t)b(t) 
i + 482 

At this point we *ant to compare the analytic relation for the second moment in the longitudinal plane: 
<z2 > - < z >2 to multi-particle simulations which were done with 3000 particles. The data of first 2000 
turns in the pictures on the bottom of figure 2 are expanded in the top picture of figure 2. The analytic 
expression is in good agreement with the simulation result. A small deviation within the first synchrotron 
oscillation is a consequence of the Hamiltonian in action variable which was obtained by averaging over the 
phase terms. The bottom pictures show the initial growth of the bunch length due to filamentation. After 
turn 2500 the bunch length starts to decrease due to radiation damping and approaches slowly the equilibrium 
value: u,(t)/u,, = 1. 

, - 
4 Summary&- -; 

In section -2 we. presented an approximate solution to the Fokker-Planck equation which describes the injection 
process into a-damping ring under the influence of nonlinear fields. Explicit time dependence of the first and 
second moments were derived and compare well to results obtained from multi-particle simulations. These 
simulations included radiation damping and the effect of quantum excitation on the particle trajectory. It is 
hoped that the analytic results may help us to better understand and to optimize the performance of existing 
damping rings. 
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Appendix: Higher-order Moments of the Centered Distribution Function 

In this paEt we want to derive higher order moments of the distribution functions discussed in section 1 and 2. 

ID(t) = & exP(-I Wj + 4 ~042W) with R = 4 + h(t) + f(t)I - C$ (40) 

It is important to notice the symmetry !&(I, 4, t) = q(1, ~#+n, t) which reflects the invariance of the distribution 
function under. the transformation (6,~) ---f (-f, -q). A s a consequence all moments of odd order will vanish. 
What remains&gthe’tioments of even order which will be treated in action-angle variables. 

< J2m>=- //f2”d[dq = 2m I/ I” sin(+)2md!d+ and: < r12m>= J/ q2”d/dT = 

Let us evaluate first the expression < q2m >. We use the above expression for the 

2m JJ I” cos(+)2mdIdqS 

distribution function and 
obtain: 

2m cu J J 2T 

-=12m>= F&&j o dIe-zbR,(I) with: R,(1) = e-Zcc42n) COs(4)2m 
0 

(41) 
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Next  w e  u s e  th e  i d e n tity [1 6 ]: 
2 m  - 

C O s ( ~ ) 2 m  =  &  
E c  )  

2 ; c o s ( 2 & 7 2  -  2 4 % )  
k = O  

W e  in t roduce  th is express ion  in  th e  d e fin i t ion o f R ,(I), in tegra te  with respect  to  s1  a n d  o b ta in  th e  resul t  in  
te r m s  o f Besse l  fu n c tio n s : 

J,-k(iIc) co@ h ( t) +  2 f(t)I -  2 6 >  (42)  

w h e r e  i d e n o tes  th e  imag ina ry  unit.  E q u a tio n  4 1  c a n  n o w  b e  in tegra ted  a n d  th e  resul t  c o n ta ins  H y p e r g e o m e tric 
fu n c tio n s  -[lS b + _  

< q 2 m >  =  -  1  
( m  -  l)! I! (If &,o)  

( -4)  

2  . 
1  e2h( t )1+2&[F  l+  m  +  1  l -  m  X  (  2  7 -p  I +  1, --xl)/ ( /A(t)” -  c(t)2)( l  +  m  +  1 )  .- 

-  +p( t )z+2497(  E + m + l l -m 
2  7 7 ; 2  +  1 , -z-1)/J@ -l(t)” -  c(t)2)( l  +  m  +  I)} , ( 4 3 )  

w h e r e : 
_ - . pi( t)  = - b ( t) -  iaqt),  2 1  =  c(t> “/( P @ > ” -  C ( q 2 > , 

a n d  S l,u  is th e  K r o n e c k e r  6 . A  sim i lar  express ion  m a y  b e  de r i ved  fo r  th e  o th e r  canon ica l  var iab le :  -  . 

1  e2h( t )~+2q1F  l+  m  
(  2  

+  1  1  -  m  
X  ,2 ; l+  1 , -zl)/ (b( t )” -  c( t )2)(Z +  m  +  1 )  

+e-2h( t )z -2Qy l+ m + l l -m 
2  ,2 ; I+  1 , -U)/J(E- l ( t )2 -  c( t )2)(Z +  m  +  1 ) }  ( 4 4 )  . 

W h e r e  a  m inus  a t c(t)” is th e  on ly  d i f ference to  th e  p rev ious  re lat ion.  Fo r  m  =  0  w e  o b ta in  th e  normal iza t ion  
cond i t ion  wh ich  was  u s e d  ear l ie r  in  th is  p a p e r . 

1  1  
’ = < “> =  d ( t) ,/b ( t)2 -  c( t)2 = = a  d ( t) =  I/ Ji@ - Q @  (45)  

T h e  s e c o n d  m o m e n t fo r  m  =  1  descr ibes  th e  evo lu t ion  o f th e  b u n c h  l e n g th , e n e r g y  s p r e a d  o r  b e a m  size. W e  
o b ta in  a fte r  s o m e  r e a r r a n g e m e n ts: 

1 ‘ 
- 5  q 2  > =  b(t)2 -  C( t )2  [b ( t) -  c(t) (cos(2h( t )  -  2 & S {  Z( t )3’2 }  -  s in(2h( t )  -  2 i )$z( t )““})  ] ( 4 6 )  -  

1  
_  < t2 > =  b(t)2 -  c(t)2 

[b ( t) +  c(t) (cos(2h( t )  -  2 4 ) R {  2 ( t)3/2} -  s in(% (t) -  2&s {  z(t)““})  ] ( 4 7 )  

T h e s e  express ions  c o n ta in  th e  rea l  a n d  th e  imag ina ry  p a r t o f th e  fo l low ing  comp lex  fu n c tio n : 

, -  
--.- - .L 

W Y . . 
z(t) =  l/(1 -  i? f (+o)  +  f(t)“)  

b(t )2 -  c(t)2 

As  m e n tio n e d  b e fo r e  th e  fu n c tio n  f(t) W I ‘1 1  inc rease  short ly a fte r  in ject ion l inear ly  wi th tim e  a n d  Z(t) will act 
l ike a  d a m p ing- term.  L a te r , w h e n  th e  b e a m  a p p r o a c h e s  equ i l ib r ium t - - -+ co: Z(t) will a lso  a p p r o a c h  a  lim itin g  
va lue.  W ith  b ( t+rx,)  =  l/c a n d : c(f+ o o )  =  0  w e  fin d : 

Z(t +  0 0 )  =  l /(1 -  i 2woprc r  -  b $ p 2 T 2 a 2 /4 )  

T h e  c o n tr ibut ion o f Z(t) to  th e  b e a m  size scales with c(t) a n d  wil l  b e  smal l  as  c(t) a p p r o a c h e s  ze ro  a fte r  a  
coup le  o f r ad ia tio n  d a m p ing  tim e s . 
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