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ABSTRACT

. Nonlinear forces in the loﬁgitudina.l accelerating field—or in the tramsverse
magnetic fields—lead to filamentation of the injected emittance and to the
decoherence of the ceﬁ;ter-of-mass motion. The dynamics of the particle
diétri‘but;ion function in the presence of synchrotron radiation is governed
by the Fokker-Planck equation. We derive the time evolution of the
distribution function after injection as an approximate solution to the
Fokker-Planck equation. The approximation assumes the injected emittance
to be consi&era.bly larger than the equilibrium emittance, which is fulfilled
for a certain class of storage rings: the damping rings.In the limit of no
quantum excitation, this distribution function will then be an exact solution.
Higher moments of the distribution can be expressed in combinations of

elementary functions and agree very well with multiparticle simulations.
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Introduction

Injection of a bunched beam into the periodic structure of a storage
ring may lead to the formation of filaments in phase space [1}. It is generally
assumed that, after some relaxation time, this filamentary structure can
be described by a smoothly varying distribution function that gradually

approaches equilibrium.

o,

Iﬁ Ref. [2] the time evolution of the distribution function—after
mismatched {the betatron functions of the injected beam ellipsoid and the
lattice are different) or off-axis injection—was analyzed by means of the
Vlasov equation. The influence of nonlinear fields was approximated by an

| averaged Hamiltonian that depends only on the action variable. Using this

Hamiltonian, the Vlasov equation could be solved exactly.

Iﬁ order to describe the effects of injection transients for & larger time
period than a small fraction of the damping time, the effect of synchrotron
radiation on the beam has to be taken into account. In this paper we
derive the time evolution of the distribution function as an exact solution
of the Fokker-Planck equation in the cases of: (a) only linear fields, and

(b) nonlinear fields and damping, but no quantum excitation.

In .a.dditic;n we discuss an approximate solution o the Fokker-Planck
equation where nonlinear fields, damping, and quantum excitaﬁion a.r;, taken
into account. The approximation assumes that the injected emittance is

~much larger than the equilibrium emittance—this assumption is typically

ST
fulfilled in damping rings.



Due to the relatively simple form of the distribution function, first
and second moments may be derived in closed expressions. These relations
are then compared to results of multiparticle simulations, where radiation

damping and the effect of quantum excitation were included.

1. Time evolution of the distribution function neglecting nonlinear

. fields

In this section we study the time evolution of the distribution
- function in phase space after mismatched or off-axis injection into a periodic
structure. Neglecting nonlinear fields, the single particle motion may be

* described by the Hamiltonian

T T HeEm = o €+ Y

The transformation to the measurable transverse (z,p) and longitudinal

(¢, 2) coordinates is given by

Longitudinal Transverse
]
(IR=afEm == v R
v, a ar +
WER=nEE == o

(1)

where ¢;00,Cene denote the bunch length and the energy spread at
equilibrium, and o in the longitudinal plane denoies the momentum
_c_o_mpact_:ion, whereas a, # in the transverse plane are the twiss parameters

\.*:,- ’ .-
at a fixed position in the ring [3]. The longitudinal tune v, is defined by
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the RF potential, the average radius R, and the radiation loss. It is useful

to be able to work with action-angle variables. We introduce
n=V2Il cos(¢), &=V2I sin(¢). (2)

With these variables, the Hamiltonian reduces to

[

Electroﬁa receive energy from the accelerating cavities, and loose it again
due to synchrotron radiation. To describe this Suctuating radiation process,
& stochastic term has to be added to Hamilton’s equation leading to a
set of stochastic differential equations [4]. The dynamics of the phase
R space particle distribution ‘I’(cf, I,t) is then described by the Fokker-Planck

equation. From Ref. [5] we have

: 1
f‘I’g=2‘1’+2(I+6)'1’1+20[‘I‘;;~1’u0‘1‘¢+§O'-}‘I’“,, (3)

where the subscripts denote partial differentiation. The oscillation frequency
wo is equal to the tune times 27 divided by the revolution time; 7 is the
damping time; and ¢ is related either to the transverse equilibrium emittance

or, in the longitudinal case, to the product of bunch length and energy

spread:
Longitudinal Transverse
Teco Tzo0 . = ¢ = €roo ’ (4)
T3 020 &« g = €20

In analogy to ¢, we introduce oo, the corresponding term at injection. Before
o
we go on to investigate possible solutions of the Fokker-Planck equation, we
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want to parameterize the distribution function atf injection. We assume a
Gaussian distribution both in longitudinal and in transverse phase space.
Figure 1 displays the phase space portrait of three different distributions at

Injection.
(a) Mismatiched beam injected on axis

For the moment, we comsider the case shown in Fig. 1(a): the
+ -centered distribution function where the center-of-mass of the distribution

coincides with the origin of phase space.

In the transverse measurable coordinates (z,p), we parameterize

the mismatched injected distribution as an ellipse with ag, fp,€0. In

. the longitudinal case, We-assume for simplicity that the injected ellipse is
upright; i.e., the major axis of the ellipse is aligned with one of the £, 5 axes.
Then the inj&:ted 1onéitudina.l ellipse is described sufficiently by the bunch
length ¢;5 and energy spread o, of the incoming beam. Using Eq. (1), we
obtain at the moment of injection the distribution function in the variables

(€,1) (see also Ref. [2]) as

Longitudinal Transverse
; {_coe°+22AoEn+Ben’} . {_coc’+2;to£n+sen’}
Troao0em © 73090 — ‘I‘G(t = 0) = Fmes © €0
1l = a0 ]
g T Cs0fe — BO = %
] = Ay = g — é%g
) ;
— 0300 AL+ 1
§= TzeaTed ' G = _%0_

{8)

whe;e a, # denote the Twiss parameters of the ring at the injection point.

“¥ith g = 1, the longitudinal distribution appears circular in phase space.
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For example, the longitudinal distzibution of an electron bunch injected into
the SLC damping ring is described by ¢ s 1/25. With Eq. (2), the injected

distribution function in action angle variables is given by

Wolt = 0) = 5o exp {~1 [bo+cocos(26 — 28)]} , (6)
with
” Léngitﬁdina.l Transverse
0 <= tan(24) = —240Bs/(1+ A3 - BE)
G010 = dy = €20
(@ +1)/(20n000) = b = (1+A%+ B8)/(2Boexo)

(- ¢/ (20m000) = co => — /88— 1/¢2,

(7)
We expect the injected ellipse to start to rotate in phase space. From this
point of view, we extrapolate from Eq. (6) the assumed time evolution of

the distribution function,

Wo(t) = 5—— exp {—I [b(t) + c(t) cos(2Q)]} , (8)

2m d(t)
with

Q=¢-—wit—¢,
where the unknown functions d(t), b(t), and ¢(t) have to be determined from

Eq. (3). We realize that we may rearrange the exponent of the distribution

ﬁ'unct.xon a.nd write Eq. (8)



Wo(t) = exp { I [u(t) cos(f2)? + v(t) sm(Q)’] }

27 d(t)
with

u(t) = b(t) +¢(t) , v(t) = b(t) — (1) . (9)

The function d(t) has to be determined by the normalization condition of

. -the distribution function. This is done in Appendix A:

1 1
f fd¢df\lr =1 = )= s = om0

We introduce Eq. (8) into Eq. (3), perform the partial differentiation, and

order the resulting equation in terms of the canonical variables and their

 combinations:
 Comstant:  —rd(t)/d(t) =2 - 20b(2)
- I: —rh(t) = —2b(t) + 20(b(1)? + c()?)
I cos(202) : —re(t)y = =2c(t) + 4ob(t)e(t) (11)
cos(2Q2) : 0 =-~2c(t)o + 2(t)c
T cos(202)? : 0 = 2(t)?c - 2(t)0

where the prime denotes differentiation with respect to . The fourth and
the fifth of the relations in Eq. (11) are already fulfilled. The first relation
follows from the second and the third relation using normalization condition
Eq. (10). The remaining set of two differential equations in b(t), c(t) can be

solved by introducing the functions u,v defined in Eq. (9),

S () =2(Y) (%), 02
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These two equations are of Riccati’s type. The solution is given by

1 i
u() = (1—up exp{-2t/7}) o aad v(t) = (1-vo exp{-2t/r}) o

(13)

where o and vp are integration constants. We use the initial condition for

bt = 0) = bp, c(t = 0) = ¢p in Eq. (7) and determine up, vp as

Longitudinal Transverse
1-02/02, <<= tg => 1—1/(zo0bo — €200\/b3 — 1/€%,)

1—cdjo, <¢= v = 1 = 1/(€z00b0 + €z00y/b3 — 1/€25) -

(14)

v o—

~ These relations are more transparent in the longitudinal phase space since
we restricted the initial distribution to an untilted ellipse in phase space.
For ¢30/0xe0 = 0e0/Teco O ¢ = 1, the functions u(t), (¢} become equal and

the distribution function no longer depends on the angle variable ¢.

Using Eqs. (13), (14), and (7), we obtain in the transverse plane the

necessary condition for ¢(t) = O:

bo= — = 1= (ﬁ+5—0+— a])sﬁm, (15)

The combination of twiss parameters on the right-hand side, fmag, is known

as the #-magnification factor [6-8].

The functions u(t), v(t) approach the same equilibrium.value:-‘ u(t —
o), v{t — o0) = 1/o. Furthermore, it follows that u(f) is monotonic,
increasing (decreasing) if up is negative (positive). The same statement

“¥olds for v{t). The function ¢(t) = (u — v)/2 will therefore tend to zero,
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and the distribution function at equilibrium will be equally distributed with

respect to the angle variable ¢.

(3} Mismaiched beam injecled off azis

Up to this point we have assumed that the center-of-mass of the
distribution is injected at the origin of phase space {on axis) and will remain
there thfbughout the damping process. From Fig. 1{c), it i8 clear that the

off-centered distribution induces an additional angle ¢ dependence in the

distribution function which will persist even if the injected beam is matched.

We denote the position of the imjected center-of-mass by (¢o,20)
or. (zo,p0). In phase space {£,7), we obtain the position of the injected

center-of-mass as

Longitudinal Transverse
covVaRve — é(t =0) = zo/ VB (186)

20\/Vso/aR = #t=0) = {azo + Bro)/ VB

A natural way to take into account the off-axis injection is by shifting the
ca.nc-anical .variabl_es

¢ - =80

n — n-i),

where the functions £(2), n(t) have to satisfy the damped oscillator equation

\%‘, . .
associated to the Fokker-Planck equation, (3), with the initial condition
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given by Eq. (16). The corresponding substitution in action-angle variables

might look like

VIcos(@) — VIcos(®)— y/E(t) cos(o - 9) a7)

VIsn(Q) — sin(@) - /(t)sin(éo - ) ,
where £ is defined in Eq. (8), and J(2) and the constant ¢ are related to

the initial values of [£(0), #(0)],

o—

10) = 5(E(0)° + 7(0)") and tan(go) =O)/3(0) . (18)

- We introduce the substitution rules of Eq. (17) into the distribution function

Eq. (9):

. 2
Wolt) = ﬁ(t) exp {—u(t) [\/fcos(ﬁ) - Viw cos(ﬂg)]

_o(t) [ﬁsin(sz)- Viw sin(ﬂo)]z} , (19)

with

R=¢-wt—¢, Qo=¢s—¢.

The distribution function in Eq. (19) has to satisfy Eq. (3). Following
Sec. 1(a} quite closely, we perform the partial differentiation in Eq. (3), and
order the result in terms of caponical variables and their linear independent

combinations. Thus we obtain the functional dependence of | (t):
I(t) = I{0) exp{-2t/7}, _ . (20)

and {0} is given by Eq. (18). The normalization function d(t) and the
functional dependance of u(t),v(t) remain unchanged with respect to the

“Nase of on-axis injection, and are given by Egs. (10),(13),(14). A result
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similar to Eq. {19) has been obtained by S. Chandrasekhar in the analysis

of Brownian motion bounded by a quadratic potential [9].
2. Distribution function in the presence of nonlinear fields

. Nonlinear fields will induce a tune spread in the bunch population
and, as a consequence, cause the injected emittance to filament {10]. When

injected off-axis, the center-of-mass position observed with a beam position

“ “Inonitor will be seen to decohere [11]. This effect is not particular to the

injection of electron rings. Decoherence was used in proton rings to study

- the influence of higher order multipole fields on the beam [12,13].

A convenient way to deal with nonlinear fields is to introduce action

E angle variables and to average the perturbation over the fast evolving

variable [14]. This averaged Hamiltonian is now a function of the action

\Fq.fia._ble_ only, and the tune depends on the action variable.

dH(I)

v 1
H(I) = EO (I- 5;:1'-’) and (=R —;

=w(l—pl}. (21)

In the longitudinal plane p originates from the expansion of the RF wave
with respect to the longitudinal position, in the iransverse case from

octupole fields. From Ref. [15] we have

-Longitudinal Transverse
ha[8Rve <= p =>  —(1/16w;7) § dsB(s)? Ka(s),
(22)
where A denote the harmonic number and K3(s) contains the distribution of

magnetic octupoles around the ring. The Fokker-Planck equation is given by

1
¥ =28+ 2T+ o) ¥+ 2018 —Tw() ¥y + 5 0 %, Yo, (23)
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with w(I) = 2xv(I)/Tp, where Ty denotes the time for one revolution and o
as defined in Eq. {4). Using Hamilton-Jacobi perturbation method one may
derive an additional contribution to u that originates from the sextupole
distribution around the ring. In this case, the action angle variables have
to be iransformed from (¢, I} to (¢',I') [168,17]. However, the treatment
of the Fokker-Planck equation in the canonical variables (¢/,I') would be a

great deal more complicated.

T ,—

We consider on-axis injection, and try to approach the solution with

a test function that is very close to Eq. (8).

¥(t) = ﬁ(t—) exp {~T [b(t) + eft) cos(2)]} , (24)

with

Q=9 +ht)+ 7} -¢.
Note that {2 now contains the action variable, and h(t) and f(Z) are yet
unknown functions. We next insert Eq. (24) into Eq. (23), and order the
resulting equation in terms of canonical variables. We obtain the same set of

differential equations that had been derived for the linear case in Eq. (11),

plus five additional terms:

Isin(20) x oft)[rh(t) + rwo — 6 (1)) , (25)

Psin(2Q) x e(t)[-77'() + rwos + 2£() - 40b()F(1)] ,.  (26)

Psin(4Q) x oc()?f(t), (27)
_ Pein(2Q): x  ee(t)?f(2), (28)
N U Peos(20) x oc®fE) (29)
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wher;a b(t) and c(¢) are given by the corresponding functions of the linear
case in Sec., 1. We will now show t.-ha.t., under certain assumptions which
apply for a dambing ring, the terms in Egs. (27)-(29) are small compared
to the other terms. We mentioned in the discussion at the end of Sec. 1(a)
that the function ¢(t) goes to zero as ¢ approaches infinity. The initial value
c(0) = cp is known from Eq. (7) to be in the order of 1/¢p, and oo was

defined previously in Eq. (4). We estimate the magnitude of ¢(t), b(t) and

I, which will be different at injection than at equilibrium,

Injection Equilibrium
e(t) ~ /oo 0
_ - (30)
b(t) ~ 1/ 4] 1 / o
I ~ oo c.

We are able to estimate the magnitude of the different terms in Eq. (26},

") - 2f(t 4eb(t) F(1) =
Tf'(t) f(t) +  4ob(t)f(t) TWou
$10) £ f(tyofoo = F(1) &

and f(¢) will be of the order #. All terms on the left-hand side contribute

with the same magnitude. In the case of Eq. (25) we have

R 4 — —
o h'(t) = Tw 6o £(1)
' A(t) 1 op
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and A(t) is in the order of 1. For the five terms in Egs. (25)-(29) we may

summarize their order of magnitude:

1'2
el®

cl?

oI*

sin(20)
sin(20)
sin(4Q)
sin(202)

cos(2(2)

e(t) Th'(t)
() rf'(t)
e(t)? f(2)
e(t)® £(2)°
oft) f(t)?

gl

Injection
1
ool
ou
coou?

600p2

Equilibrium

0

0

Damping rings operate by definition in the regime op » ¢. With this

" assymption, we keep only terms of the order 1 and pop and neglect all

other terms of the order ou and cgopu®. Since we ignored only terms

containing pe, it is clear that the solution will be exact in the limit

of no quantum excitation. Furthermore, the solution will reproduce the

distribution function of the linear problem with 4 = 0.

The functions f(t) and h(t) are thus given by the differential

equations -

Tf(£) — 2f(2) + 40b(t} S (t)

Th'({t) = —71wo.

Tuol ,

(31)

(32)

Both functions have {o satisfy the initial condition A(0) = f(0) = 0. As a

solution for f{t), we find

S

=3

WopT

exp{2t/7} — 2(ug + vo)t/T — uovgexp{—2¢t/7} — 1 + uowo

exp{2t/r} — up — vo + uovoexp{—2¢/7}

14
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with ug, vg defined in Eq. (14). By integrating Eq. (32), we find (1) = —wot,

and Q in Eq. (24) is given by
R=¢—-wot+ f)-¢, (34)

A pa.rticularly important role will be played by the function f(t), since it is
the driving term for the filamentation process. Shortly after injection, i.e.,

t € 1, J{t) behaves like wut and increases linearly with time. Then, after

o —

the damping process f(t) approaches the limit, f{t — oo) = wur/2. The

functions b(t),e(t), and d(t} are tied via Eqs. (9) and (10) to u(¢) and v{2),

" which are given in Eqs. (13) and (14). We mentioned previously that the

distribution function in Eq. (24) is an exact solution to the Fokker-Planck

" equation, if we neglect quantum excitation. In this limit, up,vo goes to

i-nﬁnity'tmd the function f(f) becomes
 No quantum excitation:  f(t) = % wopur{exp{2t/r} —1). (35)

It should be stressed that the distribution function in Eq. (24) will loose
its phase dependance in the limit of ¢ — oo as c(t) approaches zero.
Furthermore, it follows from Eq. {30) that the equilibrium distribution will
be Gaussian and independent of 4. On the other hand, it is well known that
nonlinear fields will affect the equilibrium distribution. This was shown,
for example, in Ref. [5] using the canonical variables ¢, and solving the

Fokker-Pfanck equation with ¥y = 0.

In our approach, which is based on action angle variables and
an averaged Hamiltonian, we loose this asymptotic characteristic of the

. distribution function. This is probably the price we have to pay in order to

5,

‘buy’ the explicit time dependence of the distribution function.
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So far, we have considered the injected distribution to be centered on
the closed orbit. In a similar way, we may derive an approximated solution
to the Fokker-Planck equation for an off-axis injected distribution. The

distribution function

2
w(t) = ﬁ@) exp {—u(t) [\/f con(Q) — /I (2) cos(ﬂg)]

N | —o(t) [ﬁsin(a) - i@ sin(Qo)]z} (36)

with

Q=g-wt+fOI-3, =do=¢, [0=I0) ew{ 2]

~and f(t) given by Eq. (33) satisfies the Fokker Planck equation, if we again
:;eglect terms Ef the oréer po. The functions u(t), v{t) and the normalization
fn_lici':ioq d(t) are defined in Sec. 1(a), and are not affected by the nonlinear
terms in the Hamiltonian. This is not surprising: the normalization function
d(t) corresponds to the area of the beam ellipsoid, which should remain
constant in the absence of damping and quantum excitation, as required
by Liouville’s theorem. Hence, nonlinear terms in the Hamiltonian cannot

affect the area of the evolution of the injected beam ellipsoid.

3. Various moments of the distribution function

By virtue of the relatively simple algebraic form of the distribution
function, we may evaluate first and second moments. In Appendix A, the
different moments of the mismatched and centered distribution function are

‘ﬁ'erived'._' It turns out that the odd moments will vanish because of the
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symmetry: ¥(I,¢,t) = ¥(I,¢ + x,t). We want to compare the analytic

formula of the second moment {z?) with multiparticle simulation.

First we discuss the multiparticle simulation. The one-turn map in
longitudinal phase space includes radiation damping and quantum excitation

(QE), and consists of three steps:

" Over the ARC: Az = ~—ae,

- -—

Rf cavity: Ae = —(eVrr/Ep) {sin[¢, — (R/R)z] —sin(¢,)} ,

Damping + QE : Ae = “de+ 00Vl A2,
where ¢, denotes the synchronous phase, § is a random Gaussian variable
" with unit standard devia.lt.ion,' and the damping coeflicient is defined by
A =-exp{—2T5/7) [18] One damping time corresponds to about 15,000
revolutions; 3500 parti-cles were tracked over 20,000 turns, and the second

moment was calculated after every three turns.

From Appendix A and Eq. (1), we obtain the time evolution of the

second moment:

() = ety =0
x {b(2) — c(t) [cos(2wot + 20)R{ 2()**} + sin(2wot + 2H)2{ (1) }{ }
| (37)

with

_ 45 ()b(t) + F(t)?
Z0) =1 /(1 b+ 1 )

~ The comparison between analytic result and simulation is shown in Fig. 2.

N
The pictures on the bottom and on the top display data belonging to the
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same run. On the top picture we see a fairly good agreement within the
first 1000 turns. A slight disagreeme-:nt shows up as & ‘wiggly’ pattern after
2000 turns (botiom pictures). However, this pattern does not originate
{from the approximations done in Sec. 2, since it persists in the case without
quantum excitation, where the above equation is an exact solution of the

Fokker-Planck equation.

v The Hamiltonian formalism is based on differential equations and

assumes the RF cavity to be spread over the ARC, whereas the mapping
used in the simulation consists of difference equations. This might be the

actual source of the small discrepancy in the bottom pictures of Fig. 2.

Matched beam injected off-azris

The phase portrait of this distribution function at injection is
dlspla.yed in Fig. 1(b). A matched beam implies ¢() = 0 — u(t) = v(t), and

the distribution function in Eq. (36) simplifies to

¥(t) = Q exp {—b(t) [I + 1) = 2/ 1) cos{¢ — wt + F)I — éo}] }
' (38)
with

I(t) = [(0) exp{—2¢/7}

A sufﬁment condition for the beam to be matched to the lattice in the
transverse plane is Gmsg = 1 orf, equivalent, by = 1/e,0. In the longxtudmal

plane, ¢ = 1 is required. In Appendix B we derived the first and second

_ moments for the general case of & mismatched and off-centered injection.

From Eq (52) we obtain, with c(t) =0, A = b(t) and $o = Gy,

18



© = V21t exp{_&’f(t)b(t)

(m = VAQ exp{—w-(ﬁ} [(1-9=)cos(¢1)+2asin(¢1)] (39)

01692 1489
with
_f@) _ 81()b(t)
. | d= b(t) and Q1—Wot+¢o——-———-—1+92 .

From the discussion in Sec. 2, we realize that & behaves shortly after
injection as 8(t & 1) = gouwt and will increase with time. The quantity
# might be extracted from a given set of beam position measurements
over successive turns after injection. Thus, the injected emittance may
'Ige_l_rf:easured if the nonlinear perturbation u is known. The nominator in
Egs. (39) gro;vs with time and causes the decoherence of the center-of-mass
motion. After a sufficient number of damping times, § approaches the limit
6(t > t) = cuwr/2. At that time, the center-of-mass motion approaches

zero, due to /(¢ — o0) = 0. The second moments are obtained from Eq. (53):

1 . exp{~[4821(t) 5(1))/(1 + 48*
<£2>_ -—+I(t){1— p{~{ (1(24(921)ﬁ( + 46%)}

5(2)
x [(1 - 126%) cos(282) + (66 - 86°)sin(222)] }

: 1 . exp{—[4621(t)b g2
<n2> _ —+I(t){1+ p{~| (1(24(;2]){1(1+4 )}

b(t) o
x [(1 - 126%) cos(2®2) + (68 — 86%) sin(22)| }

and

81 (2)b(2)

&~ 0 = wet -
. @2 =wot + o T+ 487
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At this point, we want to compare the analytic relation for the second
moment in the longitudinal plane: (2?) — {2} to multiparticle simulations
which were done ﬁith 3000 particles. The data of the first 2000 turns in the
pictures on the bottom of Fig. 3 are expanded in the top picture of Fig. 3.
The ;malytic expression is in good agreement with the simulation result. A
small deviation within the first synchrotron oscillation is a consequence of
. ~the Hamiltonian-in-action variable, which was obtained by averaging over
the phase terms. The bottom pictures show the initial growth of the bunch
~ length due to filamentation. After turn 2500, the bunch length starts to
decrease due to radiation damping, and slowly approaches the equilibrium

_ value :(t) /000 = 1.
4 Summary-

- In Sec. 2 we presented an approximate solution to the Fokker-Planck
equation that describes the injection process into & storage ring under the
influence of nonlinear fields. Explicit time dependence of the first and
second moments were derived, and compare well to results obtained from
multiparticle simulations. These simulations included radiation damping
and the effect of quantum excitation on the particle trajectory. The analytic
result for the first moment of the particle distribution may be used to

extract the injected emittance from 2 set of beam position measurements

over successive turns after injection.

&<
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Appendix A

Higher-order moments of the centered distribution function

In this Appendix we derive higher order moments of the distribution

functions discussed in Secs. 1 and 2.

¥(t) = exp {—1I [b(t) + e(t) cos(2)]} , {(40)

1
27d(1)
with

Q=¢—wet+ f(t)I—¢.
It is important to notice the symmetry ¥(I,¢,1} = ¥(I,¢ + =,t), which
| reflects the invariance of the distribution function under the transformation
(¢,n) — (—§, —n). As a consequence, all moments of odd order will vanish.
‘What remains are the moments of even order, which will be treated in

aé-tiéiz-angle variables. -

(@)= [[emdean=2m [ [ 1msin@ymaras,

and

()= [[oimdean=2m [ [ 17 costoymards .

Let us evaluate first the expression (n®™). We use the above expression for

the distribution function and obtain:

m 2m o0
.<'?2 >= m./e dI exp{—Ib} Rn(I), (41)
with
2r

R (I) = ./e exp{—Iccos(2Q)} cos(¢)*™

Next we use the identity [19]

R cos(¢)*™ = 22% > (2k ) cos(2¢m — 2¢k) . (42}

k=0

22



We introduce this expression in the definition of R.s(I), integrate with

respect to §, and obtain the result in terms of Bessel functions:

2m
Bn(D =22 5~ (P Jmoslile) con (2ot = SO+ 31}, (43

k=0

where { denotes the imaginary unit. Equation (41) can now be integrated,

o—

and the result contains hypergeometric functions [19)

m (2m) 1 —c(t)

y { exp{?:f[wgt+_¢]}F(—'-L# m.s1, —321) tec }
VIBu(®? — eyt e

v:v_ﬁe:e ¢.c. denotes the complex conjugate of the preceding term.

= ] z= —-—-—---——-—-—c(t)z
Bt =B +SW),  B= s (49)

and §;q is the Kronecker 6. A similar expression may be derived for the

other canonical variable

- {(2m)! 1 c(?)
&) = FOR Z (m =D I (1 + 610) [ ]
{exp {2ilfwot + ¢} F(—*—z"'— =m e 141, —zy) }
X + c.c. .
V/(Bult)? ~ c(t)*)“m“

&
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where a minus at c(t)’ is the only difference to the previous relation. For

m = 0, we obtain the normalization condition that was used earlier in this

paper,

1 1 1
- <"0> P OV OET04 = ) = B{t)2 —c(i)? (45)

M
It

The second moment for m = 1 describes the evolution of the bunch length,

energy spread, or beam size. We obtain after some rearrangements,

.

('? ) b(t)* 1) [b(t) c(t)(coe[z(wot + ¢)] 3?{2(1)3;2}
+ sinf2(wpt + @)] 3‘{2(1)3;2 }) ] (46)

<62> (1) — e(t)? c(t)2 [b(t) + (1) (003[2(w0t + ¢’)]5?{Z(t)3"2}

+sin(2lwot + SDI{2(1)**}) | (47)

These expressions contain the real and the imaginary part of the following

complex function:

_ i4f(1)5(t) + £(1)°
01 (1 MO 107

As mentioned before, the function f(f) will increase shortly after injection
linearly with time, and Z(¢) will act like a damping term. Later, when the
beam approaches equilibrium, t — o0: Z {(2) will also approach a limiting

value. With b(t —o0) = 1/¢ and c{t —o0) = 0 we find

i .
1 — i2wopte — (wip?rio?/4)

Z{t - o) =
The contribution of Z(t) to the beam size scales with ¢(t) and will be small

a8 cft) approa.ches zero, after a couple of radiation damping times.
\.‘ .
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Appendix B: First and second moments of the off-centered,

mismatched distribution function

This is the general case shown in Fig. 1(c). Analytic expressions for
the _ﬁrst and second moments can be compared to beam position or beam
size measurements after injection. These expressions are of practical interest
in order to understand and to optimize the injection process. It turns out

~~=-that the involved integrals cannot be solved directly by means of integral
tables [19,20], and the solution can only be given in a power series containing
hypergeometric functions. We start with the distribution function given by

Eq. (19),

= Y (—ulVT cos(@)~ VT cos(20) - oIV I sin()—V Tsin(@0) '}

with

R=¢-wit—¢, Q=¢o—¢.

We keep in mind that wt = wet — f(t)I depends on the action variable. In

the exponent, we substitute u(t), v(t) by b(1),¢(f) via Eq. (9) and obtain

¥= —-";:’ exp{—Ib — I[b + ccos(20)] — Iceos(29) + 2y IT A cos(Q ~ )}

(48}
with

tan({o) = z;: tan(Q), A=V +c2.

The first and second moments lead to the following type of integrals over

the angle variable

A;_R(I)= % _/:ﬂ F(¢) exp {—Ic cos(202) + 2\/1_1? A cos(S2 — o) } 4@
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with
cos(¢)

F(¢) = sin{¢)

1+ cos(24)) .

We change the integration variable from ¢ to {,

r - - =
R(I) = -21; ./0 F({ +wt+ ¢+ ) exp {-—Ic cos(2( + 290)}

X {cos [52 1 Acos(c)] — isin [52 .rfAcos(c)]} d¢ .

Either the sines or the cosines of the trigonometric function will give a zero
contribution in the integration due to symmetry. We expand the remaining

trigonometric function in a power series,

]

'~ -cos [i?:/ﬁ Ac;:)s(C)] co  (@VIIApn cos({)* ,

n=0 2njl

sin [:'2\/ Ii Acos(()] = i ¥%, % cos{{)2" 1!
and substitute for cos(¢)” the expression given in Eq. (41). The integration
over the angle { results in Bessel functions. The second integration over the

action variable leads to a power series containing hypergeometric functions.

To simplify the notation in the final expressions, we define

o _ [ <) = @n—l+1)
i T {26() Bi(t)*+3(n -1+ 1)

n—-1+2 2n—1+3 T
X F{ 3 , 7 ,yn—14+1; ﬁj(t)] } , (49)

- "_:;j;efe B;(t) is defined in Eq. (45). For the first moments of the distribution

we obtain
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(m+ig) = \/t;E exp {—f(t)[b + ccos(?ﬂa)]}

o 2n (—l)ﬂ—k-bl [A\/%] n+1
nzu:o fg k(20 ~ &+ 1)!
x [ exp {:'[-(21'1 — 2k + 1) + wot + é]} Gk

X

— exp {i{(2n — 2k + )0 +wot + o} Gk, (50)
{51)

The result for the second moments is given by

oo 2n ne— -
€) s o s o) 5 U0

S E(2n - k)
X { cOB [2(:3 - k) ﬁo] GI,'”" * % [ exp {2:’[—(n — B + wot + 5]} le/unt
4 exp {2i[(ﬂ--— k) + wot + 3]} Gy**1 + c.c.] } , (52)
where c.c denotes the complex conjugate of the preceding terms. The

above relations simplify considerable in the case of 2 centered injection with

I(t) = 0 or, in the case of a matched injection, with ¢(¢) = 0.

<N
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Figure Captions

Fig. 1. (a) Mismatched beam injected on axis, (b) matched beam injected

off axis, and (c) mismatched beam injected off axis.
Fig. 2. Time evolution of the bunch length.

Fig. 3. Time evolution of the bunch length after off-axis injection.
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Page 4, Eq. 15

(Bt 24 2fay - 2o]") = ey

Page 4, bottom

where the functib“hS'E(tj,n(t) have to satisfy the damped oscillator equation associated to the Fokker-Planck
equation (3) with the initial conditions giver by Eq. 16.

Page 9, Eq. 38

V(1) = —(—) exp(—b()(I + 1(t) — 2y/ T1(1) cos(¢ — wt + f(1)T — o))} with  J(t) = [(0)e /"

Page 9, center

92;!'1; )
(1 + 492)3 [(

8”{:1; }
(14487

<t*> = +I(y 1 -

b(t) 1 126%) cos{2®;) + (60 — 893)5311(2@2)]

- <> = v R {1+ S [(1 - 126?) cos(2@2) + (68 - 86%) sin(29,)]

b(t)
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Abstract

Nonlinear forces in the longitudinal accelerating field, or in the transverse magnetic fields lead to fila-
‘mentation of the injected emittance and to the decoherence of the center of mass motion. We derive the
time evolution of the distribution function after injection as an approximate soluiion to the Fokker-Planck
equation. The approximation assumes the injected emittance to be considerably larger than the equilibrium
emittance which is fulfilled for a damping ring. In the limit of no quantum excitation this distribution func-
tion will then be an exact solution. Higher moments of the distribution can be expressed in combinations
of elementary functions and agree very well with multi-particle simulations.

Introduction

‘Injection of a bunched beam into the periodic structure of a damping ring may lead to the formation of
filaments in phase space {1]. It is generally assumed that, after some relaxation time, this filamentary structure
can be described by a smoothly varying distribution function which gradually approaches equilibrium.

During normal operation a bunch injected into a damping ring will be extracted after a couple of radiation
damping times. From this point of view, the distribution function never reaches the equilibrium state and
transient effects from injection might influence the extracted beam distribution.

Recently the time evolution of the distribution function after mismaiched, i.e. the betatron functions of the
injected beam ellipsoid and the lattice are different, or off-axis injection was analysed by means of the Viasov
equation [2]. The influence of nonlinear fields was approximated by an averaged Hamiltonian that depends
only on the action variable. Using this Hamiltonian the Vlasov equation could be solved exactly.

In order to describe the effects of injection transients for a larger time period than a small fraction of the
damping time, radiation damping and quantum excitation has to be taken into account. In this paper we
derive the time evolution of the distribution function as an exact solution of the Fokker-Planck equation in
the case of: a) only linear fields and b) nonlinear fields and damping but no quantum excitation.

In addition we discuss an approximate solution to the Fokker-Planck equation where nonlinear fields, damp-
ing and guantum excitation are taken into account. The approximation assumes that the injected emittance
is much larger than the equilibrium emittance. This assumption is fulfilled since damping rings are designed
to reduce the emittance of the incoming bunch.

Due-to the relatively simple form of the distribution function, first and second moments may be derived in
closed expressidms. These relations are then compared to results of multi-particle simulations where radiation
damping and the effect of quantum excitation were included.

*Work supported by the Department of Energy, contract DE-AC03-765F00515.



1. Time Evolution of the Distribution Function neglecting Nonlinear Fields

-

In this section we study the time evolution of the distribution function in phase space after mismatched or off-
axis injection into a periodic structure. Neglecting nonlinear fields the single particle motion may be described
by the Hamiltonian:

Ho(§m) = 55(€ +7°) -

The transformation to Lthe measurable transverse (z,p) and longitudinal (€, z) coordinates is given by:

longitudinal transverse
v e/OR 0 = €/ Cr00 [ Teoo — § — z//B (1)
Zy/ VsO/aR = 2N/ ocoo/o'zoo - N = (O.’iL‘ +ﬁp)/\/B
Vso — Vo — Vzo

where 0,00, 0¢so denote the bunch length and the energy spread at equilibrium, a in the longitudinal plane
denotes the momentum compaction, whereas «, 3 in the transverse plane are the twiss parameters at a fixed
position in the ring. The longitudinal tune vy is defined by the RF potential, the average radius R and the
radiation loss. It is useful to be able to work with action-angle variables. We introduce:

7= V2 cos(¢) , &=V2Isin(¢). (2)

With these variablgs the Hamiltonian teduces to

Ho(I) = %OI .

The dynamics of the phase space particle distribution ¥(¢, 7,1) is described by the Fokker-Planck equation.
From Ref. [3] we have:

i
T, = 2¥ + Q(I + G)‘I’I + 207% 5 — Two¥y + —éo}f‘I',M, (3)
where the subscripts denote partial differentiation. 7 is the damping time and ¢ is related either to the

transverse equilibrium emittance or, in the longitudinal case, to the product of bunch length and energy
spread:

longitudinal transverse
CeooCro0 = o = €200 (4}
000 &= g9 = €20 '

In analogy to o we introduce og, the corresponding term at injection. Before we go on to investigate possible
solutions of the Fokker-Planck equation we want to parameterize the distribution function at injection. We
assume a Gaussian distribution both in longitudinal and in transverse phase space. For the moment we consider
a centered, (the center of mass of the distribution coincides with the origin of phase space), and mismatched,
{the injected beam distribution has not circular contours in phase space &, 7), distribution function.

i.a Miéﬁmtc@@glr Beain Injected Oun-Axis

In the transverse measurable coordinates (z,p) we parameterize the mismatched injected distribution as an
ellipse with ag, 0, €xo. In the longitudinal case we assume for simplicity that the injected ellipse is upright,
i.e. theé major axis of the ellipse is aligned with one of the £, 7 axes. Then the injected longitudinal ellipse is



-3

described sufficiently by the bunch lengih o,y and energy spread o, of the incoming beam. Using Eq. 1 we

obtain at the moment of injection the distribution function in the variables (£, 7) as {see also Ref. [2]): -
longitudinal transverse
1 e—(coﬁ2+2AeE‘-‘?+Bof?2)f20z00c0 — @U(g — 0) — _1 e—(coﬁg*l-zﬁoﬁﬁ?*}-Bc??g)f?Ezo
2MT 0T 0 : 2mezp (5)
1/9 = ozmoeo/gz{)acm — By —= ﬁO/ﬁ
0 — A() — g — ﬁg&’/ﬁ
g = GZQGCDO/UZOOUEO — (o = (A% + 1)/30

where o, denote the twiss parameters of the ring at the injection point. With g = 1 the longitudinal
distribution appears circular in phase space. For example the longitudinal distribution of an electron bunch
injected into the SLC damping ring is deseribed by g = 1/25. With Eq. 2 the injected distribution function
in action angle variables is given by:

Yo(t =0) = exp(—1 {bo + g cos(2¢ — 2¢)}) (6)
Q?Fdo
with: _
longitudinal ) _ transverse
0 ' < tan(2¢) = —24¢B/(1+ A}~ B?)
T 0720 - — d{} — €20 (7)
. (P +1)/(299:000) = by = (1 + A% + B2)/(2Boexo)

(1 - g°}/(299200.0) = ¢ = B2 — 1/

We expect the injected ellipse to start to rotate in phase space. From this point of view we extrapolate from
Bq. 6 the assumed iime evolution of the distribution functioxn.

To(t) = mexp(-f{b(z) +o(t) cos(2Q)}) with Q= ¢ —wol — & (8)

where the unknown functions d(t),5(t),c(t) have to be determined from Eq. 3. We realize that we may
rearrange the exponent of the distribution function and write Eq. 8 as:

We(t) = ‘—?—?r—ji-(-a_exp(—f {u(t) cos(R)? + v(t)sin(Q)z}) with  u{t) = b(1) + (1), »(t) =b(t)—c(t) (9)

The function d(t) has to be determined by the normalization condition of the distribution function. This is
done in the appendix.

g //dqbdf‘l' =1 = d(l) = 1/ B()? — c(8)? = ]/Ju(t)v(ﬁz). (10)

We introduce Eq. 8 into Eq. 3, perform the partial differentiation and order the resulting equation in terms
of the canonical variables and iheir combinations:

<% 0. comstant:  —7d(t)/d(t) =2- 20b(t)
I: —7b(ty = —2b{t)+ 20(b(t)? + c(£)?)
Tcos(29) : —re(ty = —2¢(t) + dob{t)e(t) {11)
cos(2Q2) : 0 = —2¢(t)o+ 2¢c(t)o
I cos{20)? : 0 = 2c(t)?0 — 2¢(t)%0

where the prime denotes differentiation with respect to {. The fourth and the fifth of the relations in Eq.
11 are already fulfilled. The first relation follows from the second and the third relation using normalization



condition Eq. 10. The remaining set of two differential equations in b(t), c¢{t) can be solved by introducing the
functions u, v defined in Eq. 9. -

u! u u?
():2()_2() (12

These two equations are of Riccati’s type. The solution is given by:
w(t) = 1/{1 — woe™M)o and  v(t) = 1/{1 — vge /) . (13)

where ug and vg are integration constants. We use the initial condition for &(t = 0) = bo,c(t = 0) = ¢o in Eq.
7 and determine Up, Vg 2S:

longitudinal fransverse

1—02 /o, <= ug = 1 —=1/{€roobo — €zeor/bE — 1/€%,) (14)

1—0%/o, < v = 1=1/(€zoobo + €zeoy/3 — 1/2y)

b ,—

These relations are more transparent in the longitudinal phase space since we restricted the initial distribution
to an untilted ellipse in phase space. For 0,0/0z00 = 0e0/Tcco OF § = 1, the functions u{t), v{t) become equal
and the distribution function no longer depends on the angle variable ¢.

Using Eqs. 13, 14 and 7 we obtain in the transverse plane the necessary condition for ¢{t) = 0:
1 . =1 (ﬁo B, Be Bo

2
-boz-i—x-{; ) 3 F-I—ﬁ_o‘f‘_ao—ga{)])Eﬁmag; (15)

The combination of twiss parameters on the right hand side, 3,,,,, is known as the S-magnification factor [4],
[5] and [6]. :

‘The functions u(t}), v(t) approach the same equilibrium value: u(t — oo), »(¢ — 00} = 1/0. Furthermore it
follows that u(t) is monotonic increasing (decreasing) if up is negative (positive). The same statement holds
for v(t). The function ¢(t) = (v — v}/2 will therefore tend to zero and the distribution function at equilibrium
will be equally distributed with respect to the angle variable ¢.

1.b Mismatched Beam injecied Off-Axis

Up to this point we have assumed that the center of mass of the distribution is injected at the origin of
phase space (on-axis) and will remain there throughout the damping process. It is clear that the off-centered
distribution induces an additional angle ¢ dependence in the distribution function which will persist even if
the injected beam is matched.

We denote the position of the injected center of mass by (¢, 25) or (20, pe). In phase space (£, 7) we obtain
the position of the injected center of mass as: '

longitudinal transverse

Eg\/Q‘R/.ng <: (c:(t = 0) — .'I.‘()/\/H (16)
2o\/vsof/aR —= Ht=0) = {azo + Bpo)/ VB

A natural way to take into account the off-axis injection is by shifting the canonical variables:

w5 o £ - £-€@)

7 — n-i)
where the functions £(¢),7(t) have to satisfy the Fokker-Planck equation with the initial condition given by
Eq.16. The corresponding substitution in action-angle variables might look like:

VIcos(Q) — Tcos() -~ mc03(¢o - &)

Py - 17
VIsin(Q) — VTsin(Q) - \/@sin(qbg - ) ()



—5-
where € is defined in Eq. 8 and [{t) and the constant ¢q are related to the initial values of {(£(0),7(0)):

1(0) = (5(0)2+n(0)2) and tan{¢o) = £(6)/7(0) (18)

We introduce the substitution rules of Eq. 17 into the distribution function Eq. 9:

Wolt) = 77 d(f) exp( —u(?) {\/_cos(ﬁ) MCOS(QQ)}Q — vt} {\/fsin(f?) - msin(ﬂg)}z) (19)

with: _ _
Q=¢-wt—¢, Qo=d¢—¢

The distribufion function in Eq. 19 has to satisfy Eq.3. Following section l.a quite closely we perform the
partial differentiation in Eq. 3 and order the result in terms of canonical variables and their linear independent
combinations. Thus we obtain the functional dependence: of I(1):

I8y = (o) 2/ (20)

and~f(0) is given by Eq 18. The normalization function d(t) and the functional dependance of u(t), v(t) remain
unchanged with respect to the case of on-axis injection. These functions are given by: Eq. 10, 13 and 14.

2 Distribution Function in the Presence of Nonlinear Fields

Nonlinear fields will induce a tune spread in the bunch population and, as a consequence, cause the injected
emittance to filament [7]. When injected off-axis, the center of mass position observed with a beam position
monitor will be seen to decohere [8]. This effect is not particular to the injection of electron rings. Decoherence
was used in proton rings to study the influence of higher order multipole fields on the beam [9], [10].

A convenient way to deal with nonlinear fields is to introduce action angle variables and to average the
perturbation over the angle variable [12]. This averaged Hamiltonian is now a function of the action variable
only and the tune depends on the action variable.

d}I(I)

H(I)= 221~ 5uI?) and (1) = vofl — ul) (21)

In the longitudinal plane p originates {from the expansion of the RF wave with respect to the longitudinal
position, in the transverse case from octupole fields. From Ref. [11] we have:

longitudinal transverse _
| B2 . (22)
&} EUC:O — # = T 16w f d36(3)21(3(‘3)?..

where h denote the harmonic number and K3(s) contains the distribution of magnetic octupoles around the
ring. The Fokker-Planck equation is given by:

7%, "'2‘1’-!-2(.{-{-0')11’[-!-20'1‘1‘11—T&)(I)‘I’¢+ 2 }‘I’Ms (23)
with w(]) = é:r‘v(f)/Tg where Tp denotes the time for one revolution and ¢ as defined in Eq. 4. Using
Hamilton-Jacobi perturbation method one may derive an additional contribution to u which originates from
the sextupole distribution around the ring. In this case the action angle variables have to be transformed from
(¢,1) to (¢, 1') (13], [14]. However, the Fokker-Planck equation in the canonical variables (¢',I’) would be
even more difficult to solve.

We consider on-axis injection and try to approach the solution with a test function which is very close to

Eq. 8.



1
2w d(t)
Note that (! now contains the action variable and h(t) and f(¢} are yet unknown functions. Next we insert
Eq. 24 into Eq. 23 and order the resulting equation in terms of canonical variables. We obtain the same set
of differential equations which had been derived for the linear case in Eq. 11 plus five additional terms:

¥(1) = exp(—1 {b(2) + () cos(2Q)}} with Q=+ A{t) + fF(I) - ¢ (243

Isin(2Q) x  ot)(rh'(t) + rwo - 60 f(1)) (25)
Psin(20) x ot)(~7f'(t) + rwon + 2(t) — 40b6(1) f(1)) (26)
%sin(4Q) x  oc(t)f(H) (27)
[ CPsin(20)? x ac(t) f(1)? (28)
2cos(2Q) x  oc(t)f(t)? (29)

where b(t) and ¢(?) are given by the corresponding functions of the linear case in section 1. We will now show
that, under certain assumptions which apply for a damping ring, the terms in Eqs. 27, 28 and 29 are small
compared to the other terms. We mentioned in the discussion at the end of section 1.2 that the function e(?)
goes {0 zero as ¢ approaches infinity. The initial value ¢(0) = ¢ is known from Eq. 7 to be in the order of 1/0¢
and g¢ was defined previously in Eq. 4. We estimate the magnitude of ¢(t),5(¢) and I, which will be different
at injection than at equilibrium:

e o injection equilibrium
- e(t) ~ 1/oe 0
B(t) ~ 1/c6 /o (30)
I~ g fod

We are able to estimate the magnitude of the different terms in Eq. 26:
TF(t) = 2f(t) + 40b(2) f(t) = Twop
e N it S e’
£t} 18 fDafoe—i(t) M

and f(f) will be of the order y. All terms on the left hand side contribute with the same magnitude. In the
case of Eq. 25 we have:

Th(t) = — rwo — 60 f(1)
N’ S N e
R{£) 1 o

and h({t) 15 in the order of 1. For the five terms in Egs. 25 to 29 we may summarize their order of magnitude:

injection equilibrium
I sin(2Q) c(O)7h{t) ~ 1 0
" I sin(2Q) O f(t) ~ Ooft 0
. oI sin(4Q) (1) f(t) ~ op 0
ol? sin(2Q)? e(t)2f(1)? ~ o0 12 0
ol? cos(2Q)  e(t}f(1)? ~ oo pt? 0

Since damping iiEs operate by definition in the regime oo >> o we keep only terms of the order 1 and pog. All
other terms of the order o and goou® will be neglecied in this approximations. Since we ignored only terms
containing uo it is clear that the solution will be exact in the limit of no quanium excitation. Furthermore
the solution will reproduce the distribution function of the linear problem with y = 0.

The functions f(t) and A(t) are thus given by the differential equations:

7f'(8) — 2f(1) + 40b(t}F (1)
. Th (1)

TWolt (31)
—Twy (32)



Both functions have to satisfy the initial condition A{0) = f(0) = 0. As a solution for f{¢} we find:

2fr —2tfr

— 2(ug + vo)t/T — uotoe — 14 ugvo
e/ — g — vo + upvpe 2T

€

1ty = gonr (39)

with ug, 79 defined in Eq. 14. By integrating Eq. 32 we find A(f) = —wpt and @ in Eq. 24 is given by:
' Q=¢-wet+ f()I - ¢ (34)

A particularly important role will be played by the function f(f) since it is the driving term for the filamentation
process. Shortly after injection, i.e. t << T, f() behaves like wut and increases linearly with time. Then
after the damping process f(t) approaches the limit f(f — 00) = wur /2. The functions b(t}, ¢(t) and d(1) are
tied via Eqs. 9 and 10 to u{¢) and v{¢), which are given in Eqs. 13 and 14. We mentioned previously that
the distribution funetion in Eq. 24 is an exact solution to the Fokker-Planck equation if we neglect quantum
excitation. In this limit ug, vo goes to infinity and the function f(t) becomes:

1
no quantum excitation: J(= 5&9‘0#7(6%;? - 1) (35)

it should be stressed that the distribution function in Eq. 24 will loose it’s phase dependance in the limit
of = 00 as ¢(t) approaches zero. Furthermore it follows from Eq. 30, that the equilibrium distribution will
be Gaussian and independent of u. On the other hand, it is well known that nonlinear fields will affect the
equilibrium distribution. This was shown for example in Ref. [3] using the canonical variables £, n and solving
the Fokker-Planck equation with ¥, = 0.

In our approach which is based on action angle variables and an averaged Hamiltonian we loose this
asymptotic characteristic of the distribution function. This is probably the price we have to pay in order to
‘buy’ the explicii. time dependence of the distribuiion function.

'So far, we have considered the injected distribution to be centered on the closed orbit. In a similar way we
may derive an approximated solution to the Fokker-Planck equation for an off-axis injected distribution. The
distribution function

¥(1) - zwi,(t) exp{—u(t) {\/Tcos(fz) - \/ﬁcosmn)}? (1) {ﬁsin(ﬂ) - \/.f(_t)sin(szg)}?) (36)

with: ’

Q=¢—wt+ f()I - ¢, Q=¢o-¢, [(t) =Koy 2"

and f(f) given by Eq. 33 satisfies the Fokker Planck equation if we neglect again terms of the order uo. The
functions u(t), v(¢)-and the normalization function d(f) are defined in section 1.a and are not affected by
the nonlinear terms in the Hamiltonian. This is not surprising: The normalization function d(¢) corresponds
to the area of the beam ellipsoid, which should remain constant in the absence of damping and quantum
excitatiomn, as required by Liouville’s theorem. Hence, the whole filamentation process cannot affect the area
of the injected beam and thus the emitiance of the distribution, ' ’

3 Various Meoments of the Distribution Function:

By virtue of the relatively simple algebraic form of the distribution function we may evaluate first and
second moments. In.the appendix the different momenis of the mismatched and centered distribution function
are derived. It gmns out that the odd moments will vanish because of the symmetry: T(J,¢,t) = ¥(I,¢+n,1).
We want to compare the analytic formula of the second moment <z%> with multi-particle simulation.

First we discuss the multi-particle simmulation. The one turn map in longitudinal phase space includes
radiation damping and quantum excitation (QE) and consists of three steps:

over the ARC : Az = —oe
RF cavity : Ae = —81;,0 [sin(cj)s - %z) - sin(q‘;,)]
Damping+QE : Ae= =X+ GoVl — A2§
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where ¢, denotes the synchronous phase, § is 2 random Gaussian variable with unit standard deviation and
the damping coefficient is defined by: A = exp(—27p/7) [15]. One damping time corresponds to about 15000
revolutions. 3000 particles were tracked over 20000 turns and the second moment were calculated after every
3 turns.

- From the appendix we obtain with Eq. 1 the time evolution of the second moment:

<> e ) = e {eos2h() ~ 292} ~ sin(zhie) - 28)9{ 207}) ] (a7)
with
T 2
o 20 = 10 - Sl

The comparison between analytic result and simulation is shown in Figure 1. The pictures on the bottom and
on the top display data belonging to the same run. On the top picture we sce a fairly good agreement within
the first 1000 turns. A slight disagreement shows up as a ‘wiggly’ pattern after 2000 turns {bottom pictures).
However, this pattern does not originate from the approximations done in section 2, since it persists in the
case without quantum excitation where the above equation is an exact solution of the Fokker-Planck aquation.

The Hamiltonian formalism is based on differential equations and assumes the RF cavity to be spread over
the ARC, whereas the mapping used in the simulation cousists of difference equations. This might be the
actual source of the small discrepancy in the bottom pictures of Figure 1.

e e

Figure 1" Time evolution of the bunch length
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Matched Beam Injected OfFf-Axis

A matched beam implies ¢{t) = 0 — u(?) = v(t) and the distribution function in Eq. 36 simplifies to:

V() = 5 b(t)exp( BT + (1) — 20/ T1(1) cos(¢p — wt + F(E) — do))) with  I(t) = F(0)e~2/"  (38)

A sufficient condition for the beam to be matched to the lattice in the transverse plane is fp., = 1, or
equivalent: by = 1/ez0. In the longitudinal plane g = 1 is required. The integration over phase space leads to
the following expressions for the first moments of the distribution function:

ROt (1~ #)sin(®,) — 26 cos(®y)]

- ’ <€> (1 + 92)2
v/ 21(¢) 621
<> a7 ;2)2 _ugu[ — 6%) cos(®,) + 298111(@1)] (39)
with: )
- 0:%_ a.r-ld: ‘I’lz?t'i'%—%

From the discussion in section 2 we realize that § behaves short after injection as 8( << 7) = cppwi and will
increase-with time. The nominator in Eqs. 39 grows with time and causes the decoherence of the center of
mass motion. After a sufficient number of damping times 8 approaches the limit: 6(t >> 1) = ocuwr/f2. AL
that time the cepter of mass motion approaches zero due to f(t — o0) = 0. The second moments are given by:

_ it
<€2> = b(f) + I(t) 1-— t(a]_—{—Tg)s [(1 1282) COS(Q@Q) + (29 893) Slll(?@z)]
. ) _ 462 0(x
<> = i HIO ?(HT?P [(1— 126) cos(225) - (26 - 86%) sin(28,)]
and: N
=t 1 4o OO

At this point we want Lo compare the analytic relation for the second moment in the longitudinal plane:
<z?> — < z>? to multi-particle simulations which were done with 3000 particles. The data of first 2000
turns in the pictures on the bottom of figure 2 are expanded in the top picture of figure 2. The analytic
expression is in good agreement with the simulation resuli. A small deviation within the first synchrotron
oscillation is a consequence of the Hamiltonian in action variable which was obtained by averaging over the
phase ierms. The bottom pictures show the initial growth of the bunch length due to filamentation. After
turn 2500 the bunch length starts to decrease due to radiation damping and approaches slowly the equilibrinm
value: 0;(1)/0 00 = 1.

4 Sum mary.,,'gf_"‘

In section 2 we presented an approximate solution to the Fokker-Planck equation which describes the injection
process into a-damping ring under the influence of nonlinear fields. Explicit time dependence of the first and
second moments were derived and compare well to results obtained from multi-particle simulations. These
simulations included radiation damping and the effect of quantum excitation on the particle trajeciory. It is
hoped that the analytic results may help us to better understand and to optimize the performance of existing

damping rings.
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~ Figure 2 Time evolution of the bunch length after off-axis injection

Appendix: Higher-order Moments of the Centered Distribuiion Function
In this part we want to derive higher order moments of the distribution functions discussed in section 1 and 2.

¥(t) = o d(t) exp{— I{b(t) + c(t)cos(2)}) with Q=@+ (&) + f()I— ¢ {(40)

It is important to notice the symmetry ¥(I, ¢, 1) = ¥(7, ¢+7,1) which reflects the invariance of the distribution
function under the transformation (£,7) — (~£, —n}. As a consequence all moments of odd order will vanish.
What remains-8e the moments of even order which will be treated in action-angle variables.

<o / / €mdgdy = 27 / / I™sin(¢)P"dldp and: <p’™>= / / n¥mdgdn = 9™ ] ™ cos(¢)?™dId¢p

Let us evaluate first the expression < 5*™ >, We use the above expression for the distribution function and
obtain:

<M= 21rd/ dle PR (I) with: R, ()= / e~ TecostI) coq(py2m (41)



-11-

Next we use the identity [16]:

2m
cos{¢)*™ = é—;l; kz ( 2;:1 ) cos(2¢m — 2¢k)
=0

We introduce this expression in the definition of R,,(f), integrate with respect to £ and obtain the result in
terms of Bessel functions:

2m
Ram(I) = :_; S ( 2;;“ ) Tm-i(ilc) cos(2h(t) + 2£(t)] — 26) (42)

k=0
where 3 dénotes the imaginary unit. Equation 41 can now be integrated and the result contains Hypergeometric
functions [16]:_

2m _ Cm) ! —c(hy
<re> = 2d(t)z —z)'z'(1+5m)( 2 )
x{ t)“fi’ﬂ‘“F(‘fJ”";J’1 s 5 2o, z;)/\/(ﬁ; ()2 — ()T +m + 1)

- perntnsaiip! “;“ o 1 —e ) B — @+ mt 1), (43)

where:
Bi(t) =b(8) — 2L f{t), == *S(f)zf(ﬁ:(t)2 - ¢(1)%),

and ;¢ is the Kronecker §. A similar expression may be derived for the other canonical variable:

- (2m)! 1 e(t)
" 2d(t) Z(m—!)‘!'(l{-é;o)( )

<€2m >'_ -

«{ ehprapttm il i-m, =2\ (B2 — ()T + m + 1)

e 201 z¢zF(l+“;+1 l Bl 1, —2 ) J(Bilt)? — (@) +m+ N} ()

Where a minus at c{t)’ is the only difference to the previous relation. For m = 0 we obtain the normalization
condition which was used earlier in this paper

1s<y®>= = d(t) = 1//b(1)? — ¢(1)? (45)

i) Vb 3)2 e(t)?
The secomd moment for m = 1 describes the evolution of the bunch length, energy spread or beam size. We
obtain after some rearrangements

<p>= m (62} - e(2){cos(2h(t) — 26)R{ Z(1)/2} — sin(2h(2) - 209 2(y?}) | (46)

<En=

R / _ o ze3/2 57 3/2
; (t)2 7 [6(6) + c(t) (cos(2n(t) — 288 2(£)%/?} — sin(2h(2) - 26){ (1) bl @
These expressions contain the real and the imaginary part of the following complex function:

iR + F)
“ 20 =10 =gar —yp )

As mentioned before the function f(¢) will increase shortly after injection linearly with time and Z(¢) will act
like a damping term. Later, when the beam approaches equilibrium ¢ — oo Z{t) will also approach a limiting
value. With b{(t—oc) = 1/o and: ¢{f > o0) = 0 we find:

Z{t = 00) = 1/(1 = i2wopro — wipit?o?/4)

The contribution of Z{#)} to the beam size scales with ¢{t) and will be small as ¢(¢} approaches zero after a
couple of radiation damping times.
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