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Abstract 

The time evolution of the distribution function of a mismatched or an off-axis injected Gaussian bunch 
is derived from the Vlasov equation. Radiation damping as well as current dependent effects are neglected. 
Analytic expressions for the first and second moments of the longitudinal and transverse distributions are 
derived when nonlinear fields which lead to decoherence of the center of mass and to filamentation of 
the emittance are taken into account. Coupling between the longitudinal and the transverse planes due 
to chromaticity will lead to synchrotron sidebands to the betatron tune in the Fourier spectrum of the 
transverse center of mass motion after injection. 

Introduction 

In well chosen canonical coordinates and ignoring nonlinear fields the Hamiltonian of the longitudinal or 
the tr.ansverse single particle ‘motion is precisely ‘that‘of a harmonic oscillator and the trajectory may be 
represented in phase space by circles centered on the origin (closed orbit). 

On the other hand, a bunch injected into a circular accelerator is not necessarily centered on the closed 
orbit or the injected distribution in phase space may not have circular contours. In both cases the distribution 
function, which describes the properties of the beam, will depend explicitly on time. Due to nonlinear fields 
particles in the bunch will have different frequencies of oscillation. As a consequence, the beam size will increase 
gradually. This process, called filamentation [2], occurs after injecting the beam in a periodic structure e.g. 
linacs or storage rings. 

If the beam is injected off-axis, i.e. not on the closed orbit, the nonlinear fields induce different oscillation 
frequencies of particles with different amplitude leading to a damping in the center of mass of the beam. The 
center of mass is said to decohere. This effect was observed and analysed in proton storage rings when the 
beam had been kicked into the nonlinear regime. Higher order multipole fields and their effect on the beam 
were studied by these methods at the SPS and at the TEVATRON [3], [4], [5]. 

As a preliminary step to the understanding of the difficulties associated with the injection process, we shall 
discuss in this paper the evolution of the distribution function after injection. We are neglecting synchrotron 
radiation and collective effects such as the beam-wall interaction through wake-fields. The first two sections are 
devoted to the longitudinal phase space, but in Section 3 we shall obtain comparable results for the horizontal 
phase space. 

In Section 1 we derive the distribution function after injection associated with a harmonic oscillator type 
Hamiltonian and constant oscillation frequency on. Then we switch to action-angle variables to take into 
account nonlinear forces. Averaging over phase terms (see [S]) re d uces the Hamiltonian to a function of the 
action only. The action variable itself remains an integral of motion and the effect of the nonlinear terms are 
described by the amplitude dependence of the oscillation frequency w(l) [8], [7], [3], [9]. For a Hamiltonian of 
the type H(I) the Vlasov equation does not contain a derivative w.r.t. the action variable. This symmetry 
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invokes solutions to the Vlasov equation which were derived previously for the harmonic oscillator type of 
Hamiltonian with wu now replaced by w(l): 

wo = dHo(I)/ 81 + w(l) = m(I)/ 81 

In this report we focus on a Gaussian distribution at injection. Other types of distributions may be treated in 
a similar way. 

Analytic expressions for the first and second moments of the longitudinal distribution function will be de- 
rived in Section 2. These expressions are then compared with multi-particle simulations for typical parameters 
of the SLC Damping Rings. The horizontal phase space will be treated in analogy to the longitudinal phase 
space in Section 3. 

An additional source for the spread in the horizontal rotation frequency is the chromaticity which couples 
the longitudinal to the horizontal motion. In Section 4 we treat the decoherence of the horizontal center 
of mass motion < x > due to nonlinear fields and chromaticity. Coupling between the longitudinal and the 
horizontal phase space leads to synchrotron sidebands to the betatron frequency in the Fourier spectrum of 
<x > after injection. 

Most of the integrals involved in the evaluation of the different moments of the distribution function can 
be looked up in integral tables. The only integral where the solution cannot be found easily will be treated in 
the Appendix. 

If we wanted to include radiation damping or quantum excitation we would replace the Vlasov equation 
by the. Fokker-Planck equation, which involves derivatives w.r.t. the action variable. The above mentioned 
symmetry would then be lost and the recipe to replace we + w(l) cannot be used to obtain solutions to the 
Fokker-Planck Equation for the perturbed Hamiltonian H(1). 

1. Time Evolution of the Distribution Function in Longitudinal Phase Space 

In this section we discuss the time evolution of the distribution function in longitudinal phase space after 
mismatched or off-axis injection. Later, in section 3, these results will be translated into the horizontal plane. 

The energy spread injected into the SLC Damping Ring is about 10 times larger than the equilibrium 
energy spread and the bunch length at injection is smaller than at equilibrium. This apparent mismatch at 
injection motivates the definition of the parameter g: 

where we denote the injected sizes by uZe and ~~0, a is the momentum compaction factor, v, is the syn- 
chrotron tune and uZoo and ucoo denote the bunch length or energy spread at equilibrium. A matched injected 
distribution would allow g = 1. The single particle motion may be described by the Hamiltonian function [7]: 

H(E, z) = a +... (1) 

where R denotes the mean radius of the ring and the nonlinear terms originate from the expansion of the 
sinusoidal RF waveform around the synchronous phase &. For g = 1 the distribution in normalized coordinates 

(+,w, +zco> remains circular. For g # 1 we expect to see a rotating ellipse, at least in the absence of 
nonlinear driving terms. The distribution function: 

qo(t> = g$ exd- 
e(t)t2 - 2a(t)zc + b(t)z2 

2A2 >7 
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contains the geometric expression of a rotating ellipse in the exponent. The quantities a(t), b(t), c(t) have to 
satisfy the Vlasov equation. 

ds + [He, !Pe] = 0 with : 

We first ig.nore the nonlinear terms in the Hamiltonian. As a solution to the Vlasov equation we obtain: 
-1 

.1 ~_ A = uzOueO 

c(t) = $~;o(l + g2 + (g2 - 1) cos(2w,ot) > 

b(i) = $:,(1+ g2 - (g2 - 1) cos(2w,ot) ) (3) 

a(t) = &o,0az0(g2 - 1) sin(240t) > . 

The off-axis injection is taken into account by changing the origin of the ellipsoid in the distribution function. 

c(t)(c - i)” - 2a(t)(z - 2)(E - i) + zl(t)(z - 2)” 
2A2 ? (4) 

where (Z(t), i(t)) d escribes the time evolution of the-injected center of mass. Later when we add the nonlinear 
terms we shall realize that the trajectory which originates at the center ‘of mass at injection will not describe 
the center of mass motion after injection. The distribution function given in Eq. 4 satisfies the Vlasov Equation 
provided the time evolution of (i(t), t(t)) is defined by Hamilton’s Equations: 

i(t) = EO cos(w,t) + %x0 sin(w,t) 

2(t) = -Et0 sin(w,t) + zo sin(w,t) , 

where ~0, zu denote the coordinates of the center of mass at the moment of injection (t=O). Next we take into 
account the nonlinear terms in the Hamiltonian. A convenient way to deal with the nonlinear perturbation in 
the Hamiltonian of Eq. 1 is to switch to action-angle variables (4,1). H amilton-Jacobi perturbation technique 
leads to a new averaged Hamiltonian which depends only on the action variable [lo], [7]: 

H,(I) = %(I - ;I’) with : 

For example in the SLC Damping Ring we have p M 450 in the zero current limit. The main contribution 
in p originates from the term z4 of the Hamiltonian in Eq. 1 and may be extracted by averaging over phase 
terms in Eq. 1. The second term containing the tangent of the synchronous phase originates from a second 
order contribution of z3. 

It should be stressed at this point that the solution obtained with the average Hamiltonian H,(I) will 
deviate from the original problem described by the Hamiltonian in Eq. 1. The frequency of oscillation and 
thus the synchrotron tune depends now on the amplitude 1: 

dHa (I) Q) = RT =v,u(l-/&LJ). (6) 

The distribution function in action-angle variables 

2IcuR 
Z= J vg cow s 

is obtained from Eq. 4 by the canonical transformation: 

and E= d 2J~so 
a~ sin(+) . 
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Figure 1 Longitudinal density distribution from simulation (top) and from Eq. 10 

To include the nonlinear ‘fields we convert Eq. 4 to action-angle variables and replace the oscillation frequency 
by the expression 6. 

qt> = g& exP(- 
[J?COS(+ - W,(Q) - dZcoS(40)]~ t g2[d7sin(q5 - w,(l)t) - &sin(40)]2 

9azoa,o (8) 

IO, $. denote the position of the center of mass at the moment of injection: 

The distribution function 8 satisfies the Vlasov Equation with the new Hamiltonian: 

(9) 
At this point it is interesting to compare the distribution function in Eq. 8 with multi-particle simulation for 
the longitudinal density distribution, i.e. the projection of the distribution function on the longitudinal axis. 
We choose the case of a centered, IO = 0, but strongly mismatched beam, g = l/25, as it is the case at the 
SLC Damping Ring. To evaluate the longitudinal density distribution we have to evaluate the integral: 

p(z,t) = Jm !V(t)dr . (10) -CO 

Although X&(t) is a relatively simple analytic expression, this integral could not be solved analytically. Nev- 
ertheless the numerical integration is straightforward and was done at turn number 500, 510 and 520 after 
injection. 
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We compare these results to the longitudinal density distribution obtained by a simulation code. The one 
turn map cQnsists of: 

AC= - % [sin(d, - :z) - sin(4,)] and: AZ = -IX ,v 

8000 particles were tracked for the same number of turns, 500 to 520, and the integration in Eq. 10 was replaced 
by counting the number of particles in a small interval AZ along the longitudinal axis Z. The longitudinal 
density distributions obtained by both methods are shown in Fig. 1 (top and bottom). Due to the amplitude 
dependent tune the distribution starts to spiral in phase space. The spiral shaped distribution causes the 
spikes shown in Fig. 1 when projected on the z-axis. The density distribution obtained form the multi- 
particle si-mulation shows fairly good agreement with the distribution evaluated from the integration of Eq. 
8. 

2 First and second Moments of the Longitudinal Distribution Function 

Next we derive analytic expressions for the first and second moment of the longitudinal distribution. We 
distinguish between two special cases: a) mismatched beam is injected on-axis (g # 1, Ie = 0), and b) matched 
beam is injected off-axis (g = 1,le # 0). 

- 2.a Mismatched Beam injected On-Axis 

With Ie = 0 the first moment vanishes. The second moment is associated with the bunch length and can 
be evaluated analytically. The distribution function in Eq. 8 simplifies to: 

q(t)(1,=0) 1 &exp 
( 

I cos(.+ - os(I)t)” + g21 sin(4 - w~(I)~)~ 
- 

gGo~~0 )- 
(11) 

We first perform the integration w.r.t. the angle variable 4 which yields the solution in terms of Bessel functions 
[ll]: 

where i denotes the imaginary unit and I,,, determines the cut-off amplitude value of the initial distribution. 
Usually this value is determined by the energy acceptance of the ring. If we allow some of the incoming 
particles to overcome the potential well provided by the RF and use I,,, = co the upper integral becomes: 

UZO < z2 >I,=~= 2g2 [l + g2 + (g2 - l)( 8?{Z(t)3/2} cos(2ws0t) + s{Z(t)3/2 sin(2f40t) })] , (12) 

with : 2(t) = 
1 

1 - 402 + i(1+ 92)20/g 
and : e = ~OzOu,OW,t . 

The complex quantity Z(t) acts like a damping term. With increasing t the real and the imaginary parts 
%2(2(t)}, %(2(t)} decrease. The asymptotic value t = 00 gives the blow up of the bunch length due to 
filamentation: ” 

< z 2 >t+cO= aI2 afo(1-t g2) . 
. . 

Even after a sufficient number of revolutions the distribution is not Gaussian in the coordinates z, E. The 
different layers of the spiraling distribution (filaments) will approach one another. But the area of the injected 
ellipse which corresponds to the normalization variable A, will remain constant throughout the filamentation 
process as it is required by Liouville’s theorem. 
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Figure 2 Evolution of the bunch length after injection 

2.b Matched Beam injected Off-Axis 

For a matched beam injected off-axis (g = 1) the distribution function in Eq. 8 becomes: 

l?(t) = & ex$-- I + IO - i&kos(9 - ws(I)t - qsO)) 
uzo UC0 (13) 

To evaluate the first moment of this distribution we integrate first over the angle variable and obtain an 
expression containing Laguerre polynomials [ll]. The second integration is done over the action variable and 
leads to: 

A- 
82’0 

<z>= 

~e-(l+e2,uz,‘7c, 

* (1 + P)2 [ (l - 82) c”s(usot f cfo - (I + Oyu 
2 
ob,o) t 28sin(wSot + +. - 

(1 t e$zou,o )I 
04 

As we expected we observe a damping of the center of mass towards the origin of phase space in the limit of 
t + co. It is worth to mention that the damping occurs not purely exponentially as in the case of radiation 
damping. In a similar way we calculate the time evolution of the second moment: 

41~9~ 

<z2>= azo t e- “zob’o(1+4ff2) { (1 - 1202) COS(~@,~) - (68 - 803) sin(2@4)}] 
(1 + 4893 (15) 

snd the phases are given by: 

@l = wsot + 40 - @IO 
with @4 = wsOt + +. - 

010 

%o%o(l t e2> Go%o(l + 482) 
‘he equilibrium value reached after a sufficient large number of turns is given by: 

*. 
( < .z2 > - < x >2)t, 00 = u;o $ a”or, UC0 

gure 2 shows as an example the second 
2 analytic result of Eq. 15 (indicated by 
mlation and analytic result: 

moment extracted from a multi-particle simulation (solid line) and 
stars). There are three reasons why we see small deviations between 
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l The simulated particle distribution at injection is not exactly Gaussian. In the absence of nonlinear 
fields the bunch length varies by about 2 %. I was using 5000 test particles. 

l The simulation is done in two discrete steps: Map 1 over the ARC, Map 2 at the RF cavity whereas 
the Hamiltonian is based on differential equations which assumes the RF cavities to be spread over the ‘* 
ARC. 

.o Th&.distribution function is based on an averaged Hamiltonian which has lost the phase information with 
_- respect to the original Hamiltonian H(E, z) in Eq. 1. This difference should smooth out after a couple of 
- synchrotron oscillations. Hence, we expect a discrepancy within the first synchronous oscillation which 

is clearly visible in Fig. 2 between turn number 1 and 25 (one synchrotron oscillation corresponds to 
about 100 turns). 

3 First and second Moments of the Horizontal Distribution Function 

In this section we derive analytic expressions for the horizontal time evolution of the center of mass and the 
horizontal beam size after injection. The single particle motion may be described by the Hamiltonian [8]: 

H- = ;p2 + +l(s)zz + +-2(s)23 + +3(s)z4 ) - . (17) 
where Kl(s), K,(s) and KS(S) d escribe the distribution of the magnetic quadrupoles, sextupoles and octupoles 
around the ring and z denotes the betatron displacement from the closed orbit. We introduce a new set of 
canonical variables: 

If we are interested in the distribution function at a single location of the ring and not in the evolution of the 
distribution function around the ring the Hamiltonian simplifies by another canonical transformation to: 

H = $$I; t $J t $-2(s)p(s)3~2i-c~ t -&@,a"(s,z~ . 

We switch to action-angle variables: 

pn = dZcos(+) , 5, = msin(4) . (18) 

We notice that the Hamilton-Jacobi perturbation technique has already been used to obtain the new Hamil- 
tonian solely in action variables [3], [8]: 

&(I) = %(I- ;(p2 t p3)12) d&(I) and v,(l) = R,, = vzo (1 - (p2 t p3)Q . 
with: 

P2 = & f ds@)3’21i2(s) J”‘” /3(s’)3’2K2(s’)ds’ 

x 
1 

3 csos(~(s~) - $(s) - *vz; + cos(3?/+‘) - 3$(s) - 3nv,) 
sin(7rv,) sin(3nv,) > > 

pug = - & f W(s)21h(s) , 
I 

where $(s) denotes the betatron phase advance. Similar to the longitudinal case we have two contributions to 
the nonlinear tune shift. The octupoles give a first order term and the sextupoles contribute in second order 
similar to the tangent of the synchronous phase in Eq. 5. Tracking of two particles with different amplitudes 
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provides an alternative method to obtain the amplitude dependence of the tune. I used MAD [12] to track 
two particles for 100 turns. It is necessary to average over the fluctuating part to obtain the tune shift plotted 
in Fig. 3 as a function of the tune. A model of the SLC damping ring without octupoles was used. The stars ’ 
denote the tune shift extracted from the tracking and the solid line correspond to the analytic expression in Eq. .- 
19. The small deviation between analytic result and tracking is probably due to second-order contributions 
from the main bending magnets. The l/3 resonance is compensated fairly well by a carefully chosen sextupole 
configuration in the original design of the ring [13]. 

2000 7 

0 ~~~1’1~~~‘~~1~‘~~~1’~~~~ 
0 8.1 8.2 8.3 0.4 0.5 

horizontal- tune 

Figure 3 Tune dependance on the amplitude of the oscillation 

3.a Mismatched Beam injected On-Axis 

In the physical coordinates (x,p) we parameterize the mismatched injected distribution with ou, ,&, Q. Then, 
at the moment of injection we obtain the distribution function in normalized variables (z,,p,) as: 

lP-,(t = 0) = $- exd- coxi t 2aoxnpn t bopi 
ko 

> 
X0 

(21) 

with 
PO 

ao=c-ro--ck , 
P 

b. = f and co = (“i ‘) 

where o, /3 denote the twiss parameters of the ring at the location of interest. We try to use a similar expression 
to Eq. 2 

qo(t> = & exp(- c(t>xi t 24t)xnpn t b(t)d 
ko > 

X0 
(22) 

and determine c(t), a(t), b(t) from the Vlasov equation containing the unperturbed Hamiltonian: 

c(t) = -B c0s(2& + $3) + c 
b(t) = Bcos(2u,t + 4) + C 
a(t) = -B sin(2w,t + 4) 

(23) 

where the constants B, C, $ have to be determined from the twiss parameters: 

1 t ai t bi 
‘= 2b 

, B = --dz and tan(s) = - 2aobo 

0 1 + ai - bg 
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It seems that the parameterization of the transverse case is more complicated than in the longitudinal case. 
But unlike in the longitudinal case we allow here initial distributions which are described by tilted ellipses 
in phase space (x,,p,) which corresponds to a(t = 0) = ae # 0. In the longitudinal distribution we implied ’ 
a(t = 0) = 0 in Eq. 4. The distribution in action-angle variables may be obtained with Eqs. 18: .- 

w = & 
X0 

exp(-&{Bcos(24-2w,(I)t-4)tC}) 
2 

Or&immediately realizes the similarity with Eq. 11. We have to substitute: 

into- the results derived for the longitudinal case. Thus the second moment for on-axis injection is given by: 

< X2 >= %fJ? [C t B( ?rz{Z(t)“‘“} cos(2w,ot + 4) + ~{Z(t)“~“} sin(2wZot + 4) )] (25) 

with : 2(t) = 
1 

1 - 492 + i4ce 
and : 9 = pE,l-JW,t 

In the limit of t + co we obtain the increase of the beam size growth due to filamentation after mismatched 
injection: 

-c x2 >t+co= EXOP 
l+ ai + bi 1 P PO P PO 

2bo 
= gxoP ;i;i;T t p + p(“0 - yy)Z = ~xoP&nag . 

0 
(26) 

This asymptotic relation quantifies the apparently increased emittance due to filamentation. The quantity 

P mag the P-mismatch parameter was introduced by Ref. [14], and is used during operation to minimize the 
emittance in the SLC linac [15]. 

3.b Matched Beam is injected Off-Axis 

To derive the horizontal distribution function for off-axis injection we shift the canonical variables in Eq. 22 
by the trajectory which originates in the center of mass at injection, (z,o,pnO), or in action angle variables 
(1u,&). Now the distribution function is given by: 

qt> = -$ Zcos(2&2w,t-~)-2~cos(+#ao--w,t-~)+Z 0 cos(2do-$4 +c [z+zo-2vmco.(~-~o-w,t-~)]} (27) 

An off-axis but matched beam is parameterized by B = 0, C = 1. 

w = & exp(- {I + IO - M7bs(4 - wx(I>t - 40))) 7 
X0 6x0 

(28) 
which compares to Eq. 13. The expression we obtain forthe first moment and second moment are similar to 
Eqs. 14, 15: 

and: 

< x >= (1+ 82)2 4ZP e-h [(l - t9”) sin(cPr) - 2r9cos($)] (29) 

4roe2 
2 

*-<x2 >= E,oP + pr,[1 - ;l’;“‘d;:“,: ((1 - 1202) COS(2@4) + (60 - 8f13) sin(2Q4)}] (30) 

where the phases are given by: 

% = 4Tott~o - 
eIo 

and cP4 = w,Ot + g50 - 010 

txo(l t 02) ~~~(1 t 482) 
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If we use the initial conditions 40 = 7r/2 Eq. 29 describes the decoherence of the bunch center after it has 
been kicked into a nonlinear regime. The same relation as shown in Eq. 29 has been derived in Ref. [5] using 
a stationary particle distribution (see also Ref. [3]). 

From the second moment given by Eq. 30 we observe an increase of the beam size due to filamentation .- 
after off-axis injection: c,u + E,O + 10. At this point we want to illustrate the problem with a realistic 
example. A typical number for the injected emittance into the e- damping ring is 10m7 m. Suppose we inject 
a beam l’.mm away from the closed orbit. With a p-function of about 4 meter at the injection point we have: 
10 i 1/8.i0-6m, and the beam size will be enhanced by 50 % of it’s initial value. .( - 

4. Decoherence of the Transverse Motion due to Chromaticity 

Up to this point we considered betatron tune spread only due to transverse nonlinear fields. There may be 
an additional betatron tune spread due to the energy spread of the beam which couples via chromaticity to 
the betatron tune. This effect has already been treated in Ref. [5] for a matched (g = 1) and centered IO = 0 
longitudinal distribution function neglecting nonlinear terms of the RF wave. We want to derive the center of 
mass motion for a mismatched g # 1 but centered 10 = 0 longitudinal distribution function, where we include 
the nonlinear RF field as discussed in section 1. 

The transverse tune depends now on the amplitude of the transverse action variable and on the relative 
energy deviation of the particle.. 

vx = vxo(l - FIX) t & , 

where [ denotes the chromaticity. The tune difference after some elapsed time (t - to) may be expressed by 
means of Hamilton’s Equations: 

Sv,dt = vxo(l- pIx)(t - to) t ti;dtc 

= V,u(l - /dx)(t - to) - $$u (31) 

= V,u(l - /&)(t - to) - ; [ cd4> - c-(4 - ws(Iz)t)] (32) 

Where we replaced Z, ze by the longitudinal action-angle variables 4z,I, using Eqs. 7. The center of mass 
motion is given by integrating over the distribution functions. 

< x >= 
JJJJ 

dIx d4x dL d4z@x(t)%(t) x 

For the transverse distribution function Q&t) we choose the off-centered case given in Eq. 28 and for the 
longitudinal phase space we use the mismatched but centered distribution function given by Eq. 11. The 
integration over the transverse phase space is similar to the integration leading to Eq. 29. In combination 
with Eq. 31 we obtain: 

dzzJ ,-a 
< IL: >= (1 + eg>2 JJ 

dIz d4,Qz(t) 
[ 
(1 - 0:) sin(@u - ‘(ZioZo)) - 20, cos(Qo - ‘(zRizo) I] (33) 

with 

@o = wxot t 40 - ox Ix0 
G-~(I t 0;) 

and : 0, = kExOWxt 

The contributfon over Jdqb,dIz!Pz(t) sin(&(z - zo)) vanishes as the distribution function is symmetric w.r.t. 
z. What remains is equal to: 

< ’ >= (I + ep dZG e-a [(l - 03) sin(!Bo) - 28, COS(@~)] &(t) (34) 
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with the “envelope function” defined as: 

cc(t) = I/- cud4 qt> cot+(z - z,,)) . (35) - 
.- 

At this point we have dropped the subscripts 4z, I,, fDz + 4, I, +. The term &(t) acts like a slow modulation on 
the.decoherence of the betatron oscillations due to transverse nonlinear fields. We express z- zu in action-angle 
variables as shown in Eq. 32 and obtain with the distribution function from Eq. 11 for the envelope function: .I 

(36) - 
with 

!V) = s,‘” d4 cos(b sin(4 - ws(I)t/2))e-2hS,o zc0s(2+2J) and b=e sin(w,(I)t/2) . (37) 

We shift the integration variable in Eq. 37 to: 4’ = 4 - wS(I)t/2 - r/2 and have: 

R(I) = 1'" @' cos(b cos(4'))em2~~cf~rd zc0s(24'-24) with 24 = w,(I)t + T (38) 
We compare this relation to the-following equation which is proven in the appendix: 

J 
02n d4 cos( b cos(4))e-acos(24-26) = 2n [Jo(b t 25(-i)“J,(ia)Jz,(b) cos(2n4)] , (39) 

1 

and obtain finally for Eq. 38: 

R(I) = 2n [Jo(b + i F(i)“J,(ia)Jz,(b) cos(2n$)] , 
1 

with 

The 

a= l--g2 

2PZO~EO 
I and 24 = w,t -w&t 

integral over the action variable in Eq. 36 is done by means of the formula in Ref. [ll]: 

J 0 
O” dIe-“‘J,(JTai)J2,(2bI) = 

and the envelope function becomes: 

&(t) = e- 4(l+g2) [Jo(n:(i - g”)) + 2 2 cos(w,otn)?J?{X,} - sin(w,0tn)S{X,} ] , 
?I=1 

with 

(40) 

(41) 

(42) 

X, = (-i)“,-“:(2”“‘8,)~~(~~~(~2)/z~) , Z, = 1 _ e,2n2 + ine,~(l t 9”) , Kt = a,osin(w,ut/2) 
g (43) n vs 

where 8, is the same expression that has been defined as 6’ in Eq. 12. We realize that Kt is oscillating with 
time which causes the decoherence and recoherence phenomenon observed in the storage ring Alladin [16]. 
From Eq. 34 combined with Eq. 42 we notice the appearance of synchrotron sidebands to the betatron tune: 
w, f nw, . These sidebands should be visible in the Fourier spectrum of the injected center of mass motion. 
The quantity OZ = w,OpcrzOaEOt is proportional to the elapsed time after injection. Hence 
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and the contribution due to X, in Eq.42 tends to zero after a sufficient number of revolutions. If we neglect 
the nonlinear fields of the synchrotron motion: BZ = 0 the envelope function becomes: 

&(t) = e -Kf(1+g2)Jo(K:(l - g2)) + 2 5 cos(w,tn)iV,(iK;(l- g2)) . 
?I=1 

(44) I- 

This series involving Bessel functions may be replaced by the generating function: exp( -Kz( 1 - g2) cos(w,t/2)) 
(see [ill); and th e envelope function simplifies to: 

E(t) = e -n:(l+g2+(1-g2)cos(w,t)) 
(45) 

This relation was already derived in [5] for a matched longitudinal phase space distribution g = 1. 

Summary and Conclusion 

We derived the evolution of the distribution function after mismatched and off-centered injection under the 
influence of nonlinear fields. The analytic expressions for the first and second moments of the distribution 
could be compared with beam position monitors, beam size (synchrotron light camera) and bunch length 
(streak camera) measurements. As a result these methods could be used to optimize injection into a circular 
accelerator. 

However, we neglected radiation damping and- these results are only valid for a time period which is 
significantly smaller than the radiation damping time. A more complete analysis which includes synchrotron 
radiation effects would involve the Fokker-Planck Equation [17]. 

Another type of application not mentioned in this paper addresses coherent instabilities. The unperturbed 
(i.e. zero current limit) distribution function derived here could be used to calculate the initial growth rate or 
the stability limit for a perturbed distribution function.in the injection process. 
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Appendix: Proof of Eq. 39 
We want to proof the relation: 

R(I) = I’” d(hos( b cos(qS))e-acos(24-24) = 2n [Jo(b + 2 e(-i)nJ,(ia)J2,(b) cos(2ng)] 
1 

(46) ._ 

First we expand the cosines in a power series: 
.._ 

_ ; ~_ 
-I R(I) = 2(-l)“& J2=dbcos(~))2ne-‘C0s(2~-2m) . 

n=O . 0 

Next we convert the powers of the cosines into a sum of trigonometric functions: 

(47) 

C0s(c$)2n = & cos(24(n - k)) . 

This relation may be found in [ll]. We change the integration variable in Eq. 47 from 4 to cp = 24 - 23 to 
simplify the exponent. 

R(I) = g ~~$~2~ 5 ( T ) J’” dqcos((n - k)(q + 2~))e-ac”S(9) 
k-0 0 

We split the cosines function into: 

(48) 

cos((n - k)(cp + 24)) = cos((n - k)cp) cos((n - k)2$) - sin((n - k)+9) sin((n - k)2$) 

The integration over the sines function vanishes due to symmetry. Now we integrate over 4 using the Bessel 
function [ll]: 

J 2n 

0 
dy cos(mp)ezpcos(9) = 27rimJm(/?) 

with ,8 = ia we obtain from Eq. 48: 

‘(I) = 2Ts ~-ij~~~~2~ fj ( y ) in-” cos(%j(n - k)) Jn-k(ia) . 
k-0 

Let us write this relation in a more compact form: 

where we used: 

Cn-k = inek cos(2J(n - k)) Jn-k(iU) and 

We substitute m = n - k From Eq. 50 we obtain due to the symmetry Cn-k = CkTn: 

R(I)= -&In 
n=O (n+rnfTn-m)! 1 

In Eq. 52 we sum over a triangular shaped field in the dimensions n and m: 

m= 0 1 2 3 4 5 ... 

n=O 0 
n=l l 0 

n=2 l l 0 

n=3 l l . . 

n=4 0 0 l 0 . 

n=5 l l 0 . . . 

. . . . 

. . . . . . . 

. . . . . . 

(49) 

(50) 

(51) 

(52) 
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The summation in Eq. 52 is done first horizontally in the sketched triangle, over m, and then vertically, over 
n. We switch now the sequence of summation between n and m and rewrite Eq. 52 as: 

R(I) = fJ Bn& + 2 (53) .- 
n=O 

. . 
- 

With B,,from Eq. 51 the summation over n becomes: 

- - z - _ g (n + m;n _ A)! = (-1)” 2 (-1)“1 +, + 2;;;;;22nJ+2m = wr%7@) 7 (54 - n’=O . . - 
where we-used the power series representation of the Bessel function [ll]: 

&L(z) = g E(-l)k 
z2k 

k=O 
22kk!(m + k)! * 

With Eq. 53 and C, form Eq. 51 we obtain 

R(I) = 2r [Jo(b + 2 2 (-i)mJ,(ia)J2,(b) cos(2mJ)] 
m=l 

which is the relation we wanted- to proof. 
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