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- Abstract

o _VVé apply the mmulti-momentum renormalization group equation to the
g;mge—iAnva‘ria.nt gluon two-point and three-point functions and obtain the ef-
fective coupling constant for the quark-gluon and three-gluon vertices. For
the three-gluon vertex, we show that the effective coupling scale is essentially
given by p? ~ Q. Q2 ,/Q%.., where Q2. . Q3 4 and Q2 ., are respec-
tively the smallest. the next-to-smallest and the largest scale among the three
gluon virtualities. This functional form suggests that the three-gluon vertex

becomes non-perturbative at highly asymmetric momentum configurations.

Implication for the coupling scale in four-jet physics is discussed.
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1. Introduction

The scale-ambiguity problem remains as one of the major cornerstones imped-
ing precise QCD predictions. The relevance of this problem is often obscured by
the consideration of only anomalous-dimension-free single-scale processes, where

the Couplingrsc'a,les can be easily “guessed”, since they should lie around the mass

scale of each process.

"~ For multiple-scale processes, however, the scale ambiguity problem becomes
unavoidable. Although there are various scale-setting methods based on mathe-
- - matical principles [1], their reliability in multiple-scale processes remains an open

issue. Aiso, the application of these methods generally requires the full calculation

of all the Feynman diagrams to one-loop order. The choice of scale in this context

becomes merely a mechanical problem.

It is desirable to have a prescription for coupling scales from simply considering
the Feynman diagrams of a given process. For instance, in Fig. 1(a) we have the
e—léstic scatteriné of two quarks. We clearly have to assign u? ~ ¢ for the coupling
iscales at the quark-gluon vertices a and b. Similarly, in the case of the elastic
scattering of three quarks via a three-gluon vertex as indicated in Fig. 1(b), we
would intuitively assign p? ~ p?,¢% 2 for the vertices a, b and c. However, there

is a priori no clear prescription for the coupling scale for the three-gluon vertex d.

The assignment of different coupling scale to different vertices cannot be done in

an asprtrary fashion, though. The gauge invariance has to be observed; otherwise,

the final result would be physically meaningless. The tree-level Feynman diagrams



in Fig. 1 are gauge-invariant; hence, the assignment of different coupling constants

for the various vertices is allowed to this order.

Recently the author has pointerd out that the dressed skeleton expansion [2]
offers a perturbative calculation method without scale ambiguity. This method has
beéﬁapplied‘ to a variety of field theoretical models [3]. The extension of dressed-
skeleton method to gauge theories is not straightforward, since the skeleton graphs
in these theories are in general not gauge invariant. Unlike QED, where the dressed-
photon expansion provides a gauge-invariant way of clustering Feynman diagrams,

* in"'QCD we lack of a systematic method of obtaining gauge-invariant skeletons.

Sornetime ago Cornwall and Papavassiliou obtained a gauge-invariant gluon
propéga't_,oi‘_and three-gluon vertex function {4] to one-loop order through the ap-
plication of the “pinch” technique. Essentially, these functions correspond to the
gauge-invariant skeletons of QCD to one-loop level. In this paper, we apply the
multi-momentum renormalization group equation of the dress skeleton method to
“the gauge-invariant gluon two- and three-point functions and obtain their effective

coupling scales.

In Section 2 we study the case of the quark-gluon vertex and recover the well

known result of one-loop QCD running coupling constant.

In Section 3 we analyze the case of the three-gluon vertex. We obtain a some-
what more involved expression. However, the effective coupling scale is roughly
given by
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being Q2. , Q?ned and Q% .. respectively the smallest, the next-to-smallest and
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the largest gluon virtuality of the three-gluon vertex. We show that the functional
form for the effective coupling supports BLM’s ansatz [5] of using fermion loops as

probes of coupling scales.

2. Quark-Gluon Coupling

The gauge-invariant gluon propagator is calculated by using the pinch tech-
nique in Ref. [4]. The one-loop Feynman diagrams are indicated in Fig. 1. The
* interpretation of the pinched diagrams is explained in Ref. [4]. The expression for

= the full propagator can be parametrized as
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where Z(g¢~) is the gauge-invariant gluon wavefunction renormalization constant

and 7 the gauge parameter.

To one-loop order we have
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Z(g?) =1— —Jo — =N - %)) — 22+ =
(q7) ()2 [(11 31\f> <€ + In(~¢q )) 22 + 5 Nf] , (3)

where we have employed the dimensional regularization with- D =4 + 2¢ and
1/€ = 1/e + vg — 4n. Ny is the number of light quark flavors. In analogy with
QED, we define the effective quark-gluon running coupling constant to be

N
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Upon solving this renormalization group equation we obtain the familiar expression
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- The scale A is formally an integration constant to be fixed by experimental mea-

" surement. We observe that the gauge-invariant gluon propagator effectively intro-

duces a renormalization scheme with itself. To this order, the relationship between
Ay and the more conventional Agg can be obtained by noting that in the MS

scheme
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By comparing equations (5) and (7) at —¢* = A% and u? = A%/I—S-, and noting that

the left-hand sides of both equations vanish, we obtain the relationship

99 — 5Ny
AQ = exp <m) Am . (8)

For Ny =4 and Ny = 5 we have respectively Ay = 2.867Agm and Az = 2.923Ay.
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3. Three-Gluon Coupling

The effective coupling of the three-gluon vertex has been studied previously

by a number of authors [7]. However, previous studies have been focused on the

gauge-dependent three-gluon vertex. The presence of the gauge parameter impeded

a reliable physical interpretation of the effective charge.

~ "The gauge-invariant three-gluon vertex to one-loop order was first obtained by

" Cornwall and Papavassiliou [4]. The renormalized version of this vertex function is

given below, where we have added the quark-loop contribution absent in Ref. [4].
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where Z(p~) is the gauge-invariant gluon wavefunction renormalization as given in



Eq. (3), and the Feynman parts [4] of the three-gluon vertex are given by

Ffﬁz\v =2py9x8 — 2ppgyx — (k2 + k3)a9py »
Fg'ma :2‘]0’9#7 - 2(]‘790'/1 - (k'3 + kl),u.gva b (10)

F§ avf =2T39va — 2Tagpy — (k1 + k2)vgap -
ATh{a*Q.eﬁnition of the various momenta and indices is given in Fig. 3.

The gluon vertex has a complicated tensor structure. We can classify the
various tensor components of this vertex into
Do =1 gau(p = 0)o + T (g = 7)a + TP (r = )y
) : : | (11)
+T%g —r)alr = pulp — @)v + L0 (pa,7)

where.the longitudinal part Fl)‘o:f contains all the terms that vanish upon contract-

ing with the projector operator

'y PAPN Gudp vy :
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The Born component, i.e., the component proportional to the tree-level tensor, is

given by

| —

=

(T 4+ T2 4 T°) . (14)
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We agim calculate this component by using the tensor method. Namely, we first

obtain a set of linearly-independent equations by contracting the three-gluon vertex



in Eq. (11) with a complete set of basis tensors, and then we solve for I'* from
this set of equations. Fortunately, the outcome of this lengthy analysis can be

expressed in a rather compact form,
1
=—=5 1.T

1 /\lulyl A
= M‘SAI}LIV’H/\“V e )
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with™S the projection tensor given by
Sauw =292 (4 = T)aguw + 26°(r = Plugur + 27 (0 — ¢)ugru
(16)
+ (g =rx(r =plu(p— Qv »

and

(2p2q +2¢%r% + 2r2p? — pt — ¢t = 7'4) : (17)

The effective threg—gluon (.:-oup]ing is defined in term of the Born component by
93(1)2#(12’712) EQOFU . | (18)

This is a natural choice since at the perturbative regimen the Born structure dom-
inates. All the non-Born components are formally higher-order in ¢, and hence
aie subleading. .Also notice that, to one-loop order, all the ultraviolet divergences
are contained within the Born component; therefore, it is the only component

responsible for the coupling constant renormalization.

Upon inverting and squaring the previous equation,
1 1 1 2
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where
R
2 (20)
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The various dot products are expressible in terms of the gluon virtualities, e.g.,

p-qg=(r’ —p2 —¢%)/2. The functions F(p?, ¢*,r?) and Lsina(z) are fully described

in Ref. [6]. For completeness, we reproduce a summary here.

. ' |
F(p2, g% ) = —%/d‘*k

7 d’k;‘)kgkg ,
1

= — [Lsiny(261) + Lsina(2¢2) + Lsina(243)]
p.

P:\/r]_a >

4, = arctan <__ : (q_;ﬂ_—> ,
- : qg-r+1p—te
) ‘ “ P ? Tep—1p— L€ (21)
T ¢» = arctan| —— = ~-In( ——— ,
TP — ¢ 2 rep+p— e
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b3 = arctan . :
@3 arctar P —

Lsina(2) = o [Lis (¢) ~ Lip (7)) = 37 2002
Lsing () = 1.01494160....

The function L(z,y, z) can be considered as a three-variable extension of the loga-
rithmic function. In fact, on the symmetric axis ¢ = y = z, the function L(a,y, z)

Teduces to

. L(z,2,z) = In(z) . (22)

_The function L(z,y, z) also satisfies the simple scaling property

L(Az, Ay, Az) =In A+ L(z,y,z), for A > 0. (23)
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We can interpret Eq. (19) as a multi-momentum renormalization group equa-

tion (see Refs. [2-3]). Its solution is given by

2¢..2 2 .2
o 9 oy 93(p°,q°,77)
as(p?,¢*r?) = 2 Ar

Ar (24)

(11 — 2Nyg) L(—p2/A2, —q2/A3, —12/A3)

‘where the function A3 is a quantity to be fixed by experimental measurement.

P

Notice the silﬁilarity between this formula and the familiar form of the strong
coupling constant as given in (6). In both cases, the factor 11 — %Nf multiplies a

] s‘inéle function. The functional form of the fermion contribution thus is identical

to the pure-gluon contribution. Inithe three-gluon vertex, this feature is a surprise

- - ; givéh At.he complicated form of the integrals in Eq. (9). This strongly supports
BLM’AS»I;rI)pésaI [5} of using fermion loops as probes of QCD coupling scales, since

the sc.alé obtained via fermion-loop analysis is 1dentical to the one obtained by a

more complete analysis.

The scale Az can be expressed in terms of Az or Agrg since the bare coupling-
constant of QCD is unique. By comparing Eqgs. (5), (7) and (19), we obtain

Agzexp<33—Nf 8
33—2N; ' 3,3
8
V3

| 2Ny
=e
TP 996N, T3

(25)

tor Ny = 4 and Ny = 5 we have respectively Az = 1 '22AM§ = 5.308A2 and

As = 16.12A55 = 5.515A:

[3%)

In what follows we will consider only the case where p?, ¢° and r? are all
) ~-spa,ceé’ke [8]._2_111 Fig. 4 we plot the equal-coupling surfaces of az(p?,¢?, r?) in this

kinematic region.



In the limit when one of the momentum scales is much larger than the other

two, we have

16 T
L-2A2—2A2—“2 A2 1 (Qmm med) Lsi ol
(=9 /83, ~¢*[AF, —r?/A3) — n ( “omed )+ tsing (3) "
=1n (Qmm med) )
QmaxAH

with Q2. , Q2 4 and Q% respectively the smallest, the next-to-smallest and the

2 2 2
largest scales among —p~, —¢” and —r*, and

« 8 . i1
Az = exp <——3\/§Lsmg E’;)) As
: 33 — Ny
) ) ' 2Nf
- =exp|{ ———— | As .
_ LT (99 — 6Nf> 2

For Ny = 4'and N; = 5 we have respectively As = 3.190A3m = 1.113A2 and

Az = 3.378A5g = 1.156A;. From Eq. (26) we see that the effective coupling scale

of the three-gluon vertex is essentially given by

9 9
2 Qmin Qmed
Y ——— .

Qgﬂ Q?nax (28)

Next, we define the scale correction factor A" through the relation

P03, /A3, = /A3) = In ( "’Qmem“‘) . (29)

maxAu
In Fig. 5 we plot K (z,y) as function of the ratios z = Q3/Q?2 ., and y = Q%/Q3% .+,
where Q2 . is the maximum scale among —p?, —¢*, —%, and Q% and Q2% are the
" two i;%gqa.hﬁpgsca.les. From the figure we see that the actual coupling scale is in

general within a factor 0.2096 ~ 1/5 of the simple expression given in Eq. (28).
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Note that formula (28) indicates that the coupling scale in general will be
small when there is one scale disproportionately larger than the other two scales.
Consider for instance the jet-production process indicated in Fig. 6. Formula
(28) implies> that, for fixed gluon-jet invariant masses M7 and M2, the three-gluon
vertex becomes non-perturbative at high values of Q2. That is, the three-gluon

vertex 1s perturbative only if the invariant-masses of the gluon jets are allowed to

. . i R 9
increase simultaneously with Q<.
To conclude, we make the following observations.

1. The large values of A3 and A3 with respect to Agrs (see Egs. (25) and (27))
. indicate that in general one 7should choose a smaller-than-expected scale for
the coupling constant aM—-S-(,uz) in four-jet physics, where the three-gluon
\"/_ei‘tgex plays an essential role. This, together with the fact that the effective
scale for the three-gluon vertex as given by (28) is always smaller than the
smallest scale, might help to explain the surprising smallness of the effective-

coupling observed in four-jet cross-sections [9]
e ~ 0.002 s, (30)

with s the squared total center-of-mass energy.

S

The running of the threé-gluon coupling can be studies by the detailed mea-

*e~ annihilation [10]. In particular, these

surement of four-jet events in e
- measurements allow us to test the validity of the functional dependence of
. .-

effective-coupling scale as given in Eqs. (28) and (29).
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FIGURE CAPTIONS

1) (a) Two-quark scattering process via one-gluon exchange. (b) The non-
Abelian part of three-gluon scattering process. The coupling scale at the

vertex d lacks a prescription.

2) Diagrams involved in the gauge-invariant gluon propagator calculation to

one-loop order. The definition of the pinched diagrams are given in Ref. [4].

3) The definition of the various momenta, Lorentz indices and color indices

involved in the one-loop three-gluon vertex calculation. .

4) Equal-coupling surfaces for the effective three-gluon coupling constant in the

‘completely spacelike region.

5) Scale-correction factor function, as defined in text. Note that this function

takes values between Ny, = 0.2096 and K = 1.

6) A four-jet process involving a three-gluon vertex. The three-gluon coupling
is expected to be large at large values of Q* and fixed values of invariant

masses Ml2 and Mj
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