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Abstract 

. . ..- 
We a,pp~ t.he n~-tllt,i-~~~omentui~~ renor1ila.lizat,ioll group equa.tion to the 

gauge-invariant gluon t,wo-point and three-point functions a.nd obtain the ef- 

fect.i\:e coupling constant for the qua.rk-gluon and t.hree-gluon vertices. For 

t’he t.hree-gluon \.ertex, we show t.ha.t the effective coupling scale is essentia.lly 

given by p’ - Q~,i,,Q~,ed/Q~raxr where Q~i,, I Qiled and Q&, are respec- 

tively the sma.llest. the next.-to-smallest and the largest scale a.mong the three 

gluon \Grtualities. This funct,ional form suggest,s that the three-gluon vertex 

becomes non-perturbati1.e at highly, asymmetric momentum configurations. 

Implica.ti6n for the coupling scale in four-jet physics is discussed. 
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1. Introduction 

The scale-ambiguity problem remains as one of the ma.jor cornerstones imped- 

ing precise QCD predictions. The releva,nce of this problem is often obscured by 

.the consideration of only anoma.lous-dimension-free single-sca.le processes, where 

the coupling scales can be easily “guessed”, since they should lie around the mass 

scale of each process. 

_- For multiple-scale processes, however, the scale ambiguity problem becomes 

unavoidable. Although there, a.re various sca.le-setting methods based on mathe- 

--- ma.tical principles [i]? their relia.bility in multiple-scale processes remains an open 

issue. Also, the a,p-plication of these methods genera.lly requires the full calculation 

of a.ll the Feynma.n dia,gra.ms to one-loop order. The choice of sca.le in this context 

becomes merely a mechanical problem. 

It is desira.ble t,o ha.ve a. prescription for coupling scales from simply considering 

t,he Feynma,n clia,granls of a given process. For instance, in Fig. l(a.) we have the 

elastic scattering of two quarks. We clea.rly have to assign /I’ N q’ for the coupling 

sca.les a.t the qua,rk-gluon vertices cr and b. Simila.rly, in the ca.se of the elastic 

scattering of t,hree quarks via. a, three-gluon vertex a.s indica.ted in Fig. l(b), we 

would intuitively assign /12 - p”, q’, ? for the vertices cl, b and c. However, there 

is a priori no c1ea.r prescriptioll for the coupling scale for the three-gluon vertex d. 

The a.ssignment of different coupling sca.le to different, vertices cannot be done in 
, -. 

a.n a.i&$rary--fashion, though. The ga.uge inva.riaace has to be observed; otherwise, 

the final result would be physica.lly meaningless. The tree-level Feynma.n diagrams 
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in  Fig. 1  a r e  g a u g e - i n v a .ria.nt; h e n c e , th e  a s s i g n m e n t o f d i f ferent  coup l i ng  cons lants  

fo r  th e  var ious  vert ices is a l l owed  to  th is  o r d e r . 

R e c e n tly th e  a .u th o r  h a s  p o i n te d  o u t th a t th e  d ressed  ske le ton expans ion  [2 ] 

.-offers a  p e r tu r b a tive  calcula. t ion m e th o d  wi thout  sca le  a m b iguity. Th is  m e th o d  h a s  

. . 

b e G a ,pp l i ed  to  a . va.r iety o f fie l d  th e o r e tica l  m o d e ls [3 ]. T h e  ex tens ion  o f d ressed -  

ske le ton m e th o d  to  g a u g e  theo r i es  is n o t st’ra .ig h tfo r w a .rd, s ince th e  ske le ton g r a p h s  

_ . in  th e s e  theo r i es  a r e  in  g e n e r a .1  n o t g a u g e  invaria.nt.  Un l ike  Q E D , w h e r e  th e  d ressed -  

-  p h o to n  expans ion  p rov ides  a . g a u g e - i n v a r i a n t way  o f c luster ing F e y n m a n  d i a g r a m s , 

-  in.Q C D  w e  la.ck o f a , systema.t ic m e th o d  o f o b t,a i n i ng  g a .uge - i nva .ria,nt skeletons.  

S & ii& m e  a .g o  Cornwa l l  a .n d  Papavass i l i ou  o b t,a i n e d  a . g a .uge- invar ian t  g l u o n  -  . . 

p r o p & g a ,$ o r . a .n d  th r e e - g l u o n  ver tex fu n c tio n  [4 ] t,o  o n e - l o o p  o r d e r  th r o u g h  th e  a p -  

pl ica, t ion o f th e  ‘L l ) inch” te c h n i q u e . Essen tia .lly, th e s e  fu n c tio n s  c o r r e s p o n d  to  th e  

g a ,uge- invar ia ,n t  ske le tons o f Q C D  to  o n e - l o o p  level.  In  th is  p a p e r , w e  app ly  th e  

m u lti-m o m e n tu m  r e n o r m a .l izat ion g r o u p  e q u a tio n  o f th e  d ress  ske le ton m e th o d  to  

th e  g a .uge - i nva ,r iant g l u o n  two-  a n d  th r e e - p o i n t fu n c t,io n s  a n d  o b ta .in  the i r  e ffect ive 

coup l i ng  sca.les. 

In ’ S e c tio n  2  w e  st,u d g  th e  ca.se o f th e  q u a . rk -g luon ver tex a n d  recover  th e  wel l  

_  k n o w n  resul t  o f o n e - l o o p  Q C D  r u n n i n g  coup l i ng  consta.nt.  

In  S e c tio n  3  w e  ana lyze  th e  case  o f th e  th r e e - g l u o n  vertex. W e ’o b ta in  a  s o m e -  

w h a t m o r e  invo lved  express ion.  H o w e v e r , th e  e ffect ive coup l i ng  sca le  is rough l y  

b e i n g  & ~ i,,, Q L e c l  a .n d  Q :n ,, respect ive ly  th e  s m a .llest, th e  n e x t-to-smal les t  a n d  
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the largest gluon virtuality of the three-gluon vertex. We show that the functional 

form for the effective coupling supports BLM’s ansa.tz [5] of using fermion loops as 

probes of coupling scales. 

2. Quark-Gluon Coupling 

. . The ga.uge-inva,ria,nt, gluon propaga.tor is calcula.ted by using the pinch tech- 
_~ 

nique in Ref. [4]. Tl le one-loop Feynman diagrams are indicated in Fig. 1. The 

interpretation of the pinched dia.gxa.ms is explained in Ref. [4]. The expression for 

I the full propa.gator ca.n be para.metrized as 

- . 

where Z(q”) is the ga.uge-inva.riant, gluon wa.vefunction renorma.lization constant 

and 17 the gauge pa.rameter. 

To one-loop.order we have 

-G2) = 1 - (4;)2 -f- [(ll-;Mf) (;+ln(-$)) -22+++] ) (3) 

where we ha,ve employed the climensiona.1 regula,riza,tion with D =- 4 + 2~ and 

- l/i = l/e + YE - 47r. Nf is the number of light quark fla,vors. In analogy with 

QED, we define the raffective qua,rl<-gluon running coupling constant to be 
c -. --.- .-L *, .-. 

&(q2) = &z(q2) . (4) 
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Thus 

s;;ql) = $i + pi)? - [(ll-:Nf) (a+ln(-q2)) -22+fNf] . (5) 

.Upon solving this renorma.liza.tion group equation we obtain the familiar expression 
-” -- 

. . a2(q2) E dp = 
(11 - +Nf;;ll(-qy*j) . _- 

(6) 

The scale A2 is forma.lly an integration constant to be fixed by experimental mea- 

surement, We observe that the ga,uge-inva.riant gluon propaga.tor effectively intro- 
- . . 

duces a. renorma.liza.tion scheme with itself. To this order, the rela,tionship between 
_ 

A:! and the more conventional Am can be obtained by noting that in the MS 

scheme 

(7) 

By compa.ring equa.tions (5) a.nd (7) at -q” = Ai and p”” = A&, and noting that 

the left-ha.nd sides of both equa.tions vanish, we obta.in the rela.tionship 

For elf = 4 and Nf = 5 we have respectively 112 = 2S67Am and A2 = 2.923Am. 
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3. Three-Gluon Coupling 

The effective coupling of the three-gluon vertex has been studied previously 

by a number of a.uthors [ 71. H owever, previous studies have been focused on the 

- -gauge-dependent three-gluon vertex. The presence of the gauge parameter impeded “C, 

a reliable physica. interpreta.tion of the effective cha,rge. 

. 

_~ -The ga.uge-inva.ria,nt three-gluon vertex to one-loop order was first obta,ined by 

- Cornwall a,nd Papava,ssiliou [4]. Tl le renormalized version of this vertex function is 

- given below, where we h+ve added the quark-loop contribution absent in Ref. [4]. 

- Yo [(P - QbYxp~ + (q - +u,w + (1‘ - P),&X] 
34 d4k 1 

- ,190 
J (2+ “:$$-; ’ 
[r~J;J:, + 2 (k! + k3)A (k3 + h), (kl + k2),] 

(9) 
where Z(p’) is the gauge-inua.ria.nt gluon wa.vefunction renormalization as given in 
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Eq. (3), and the Feynman parts [4] of the three-gluon vertex are given by 

rfPxr =3_p,9xp - &+397x - (k2 + WXYP, 7 

cypn =zqag,, - 2qrgall - (ks + h)/,.gya , 

r:,,,,, =2~pgvcu - ~Y-,,cJ~,, - (kl + X:&Y,~ . 

(10) 

T++iefinition of the various momenta and indices is given in Fig. 3. 

The gluon vertex ha.s a. complica.ted tensor structure. We can classify the 
. . 

va.rious tensor components of this vertex into 
_~ 

- . 
where-the longitudinal pa.rt I’~~,‘~ conta.ins all the terms that va.nish upon contract- 

_ 
ing with the projector operat’or 

The Born component, i.e., the component proportional t,o the tree-level tensor, is 

given by 

I 
r0 = i(p + P + r3) . (14) 

We &$ calculate this component by using the tensor method. Namely, we first 

obtain a set of linea.rly-independent equa.tions by contr&ing the three-gluon vertex 
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in Eq. (11) with a complete set of ba.sis tensors, and then we solve for I” from 

this set of equa.tioik. Fortuna.tely, the outcome of this lengthy ana.lysis can be 

espressed in a ra.ther compa.ct form, 

r” = 1 
-444 
48-R 

wi%-S the projection tensor given by 

sxpv =2P”kf - h? pv + 2q”(,- - P)p91,X + 2r”(P 

_- + (CI - 1’Le - P)p(P - q),, ) 

and 

1 

(15) 

_-. R = i (2gq2 + 2q”l-” + 23)2 - P4 - q4 - $) . (17) 

The effective three-gluon coupling is defined in term of the Born component by 

g3(p2,q2,r2) = yorO . (18) 

This is a. natural choice since at the perturbative regimen the Born st,ructure dom- 

inates. All the non-Born components are formally higher-order in y. and hence 

are subleading. Also notice tha.t, to one-loop order, all the ultraviolet divergences 

a.re contained within the Born component; therefore, it is the only component 

responsible for the coupling consknt renormaliza.tion. 

17pon inverting and squa.ring the previous equa.tion, 

1 1 1 
g3p2,q2, r2) = 2 + (47r)” K ) 

11-“i\i 
3f x 

f + L(-p2, -q2, +.2) - -22+ ;Nf . 

‘(19) 
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where 

The vaaious dot products are expressible in terms of the gluon virtualities, e.g., 

_ p.q+1 - p” - q”)/2. The functions F(p”, q”, r2) and Lsina(z) are fully described 
; CM 

in Ref. [6]. F or completeness, we reproduce a. summa.ry here. 

- = b [Lsin2(2&) + L sina(2$0) + Lsin2(2$3)] , 

p=JR, 

$3 =a.rctan (,.,P-‘t) = ~hi(~:~~j~Ij~) , 

Lsinz( z) = $ [Liz (~3”‘) - Li:! ( e.-i”)] = C y , 
1 

Lsitiz % = 1.01494160.. . . 
0 

The function L(z, y, 3) can be considered a.s a, three-va.riable extension of the loga- 

rithmic function. In fa.ct, on the symmetric a.xis Iz = y = 3, the function L(s, y, 2) 

-reduces to 

L(s,x,s) = In(z) . 

, -.The functjon L(x, y, z) also satisfies the simple scahng property 
--.- ..L w, .- 

L(,k:,Xy,Xz) = 1nX $ L(s,y,z) , for X > 0. 

(22) 

(23) 
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We can interpret Eq. (19) as a, multi-momentum renormalization group equa- 

tion (see R.efs. [2-31): Its solution is given by 

q(p”, q2,1-2) = 932(P”, 8, r2> 
47r 

47T (24) 
= (11 - $Nf) L(-p’/A& -q2/1\;, 4/A;) ’ 

-where the function A3 is a. quantity to be fixed by experimental measurement. 
-” -- 

Notice the similarity between this formula and the fa.miliar form of the strong 

. . coupling constant as given in (6). In both cases, the factor 11 - $Nf multiplies a 

-- single function. The functional form of the fermion contribution thus is identical 
- 

to the pure-gluon contribution. In the three-gluon vertex, this feature is a surprise 

--- - giveli -the complica.ted form of the integra,ls in Eq. (9). This strongly supports 
. -- 

BLM’s proposal [5j f o using fermion loops as probes of QCD coupling scales, since 

the scale obtained via. fermion-loop ana.lysis is identica.l to the one obtained by a 

more complete ana,lysis. 

The scale 123 ca,n be expressed in terms of A:! or Am since the bare coupling- 

constant of QCD is unique. By compa.ring Eqs. (5), (7) and (19), we obtain 

A3 = exp 

= ““13 
(25) 

-For iVf = 4 and N f = 5 we have respectively A3 = 15.22Am = 5.3oSA2 and 

A3 = 16.12Am = 5.515AZ. 

In what follows we will consider only the case where p’, q2 and r2 are all 

. - spa,c$&e [S],.In Fig. 4 we plot 

lcinematic region. 

the equa.l-coupling surfa.ces of a3(p2, q”, r2) in this 

Y 
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In the limit when one of the momentum scales s much larger than the other 

two, we ha.ve 

L( -$/A:, -q’/Ai, -?/A:) --+ In 
16 lr 

t -Lsinz - 
3& 0 3 

(26) 

Wi&i+&~;, , Qked aad Qz!,, respectively the smallest, the next-to-smallest and the 

largest scales among -p”, -q’ and -?, a.nd 

_- 

- 

- 
- 

(27) 

For IV,- 4 4. and !\‘f = ,5 we ha.ve respectively 1\3 = 3.19011,s = 1.113A:! and 

A3 = 3.37SAm = 1.156.122. From Eq. (26) we see that the effective coupling scale 

of the three-gluon vertex is essentially given by 

Next, we define the sca.le correction factor I< through the rela.tion 

‘L(-p’/A;, -q”/A;, +“/A;) E ln ( I<z Q$ay;~) . (29) 

_ In Fig. 5 we plot K(z,y) ,, f as unction of the ra,tios z = QT/Qfna, a.nd y = Qz/Qk,,, 

where Qk,, is the ma.ximum scale among -p3, -q’, -r2, and Qf and Qi are the 

“two -$@&ning sca.les. From the figure we <see tha.t t,he a.ct,ua.l coupling scale is in . 

genera,1 within a. fa.ctor 0.2096 - l/5 of the simple expression given in Eq. (28). 
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Note tha,t formula (2s) indica.tes that the coupling sca,le in general will be 

small when there is one scale disproportiona.tely la.rger tha.n the other two scales. 

Consider for instance the jet-production process indica.ted in Fig. 6. Formula 

(28) implies that, for fixed gluon-jet invariant ma.sses Mf and Mi, the three-gluon 

vertex becomes non-perturbative at high values of Q2. That is, the three-gluon 

vertex is perturba.tive only if the inva.ria.nt-ma.sses of t,he gluon jets are allowed to 
-” -L- 

increase simultaneously with Q”. 

-To conclude, we ma.ke the following observa,tions. 

1. The large values of A3 a,nd hy with respect to Am (see Eqs. (25) and (27)) 

indicate tha.t in general one should choose a. sma.ller-tha.n-expected scale for 

t%ti.coupling constallt crm(/c’) in four-jet physics, where the three-gluon 

Gertes plays a,n essential role. This, t,ogether with t,he fact that the effective _ 

sca.le for the t,llree-gluon vertex a.s given by (28) is always sma.ller than the 

smallest scale, might help to explain the surprising smallness of the effective- 

coupling observed in four-jet cross-sections [9] 

2 
r%xp - 0.002 s ) 

with s the squared total center-of-mass energy. 

2. The running of the three-gluon coupling can be studies by the detailed mea- 

surement of four-jet events in e+e- annihila.tion [lo]. In particular, these 

, -. -GFa,&i;ements a.llow us to test, the validity of the functional dependence of e 

effective-coupling scale a.s given in Eqs. (2s) a.nd (29). 
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FIGURE‘CAPTIONS 

1) (a) Two-quark scattering process via one-gluon excha.nge. (b) The non- 

t\b+ti.n pa.rt, of three-gluon scattering process. The coupling scale at the 

vertex d lacks a prescription. 

2) Diagrams involved in the gauge-invariant gluon propagator calculation to 
; -- 

one-loop horder. The definition of the pinched diagrams a.re given in Ref. [4]. 

3) The definition of the various momenta., Lorentz indices and color indices 

involved in the one-loop t,hree-gluon vertex calcula.tion. 

3) Equal-coupling surfa.ces for the effective three-gluon coupling constant in the 

-completely spacelike region. ._ ..- 
- . . 

5) Scale-correction fa.ctor function, a.s defined in text. Note that this function 
_ 

ta.kes values between /<~~i~~ = 0.2096 aad I<,,, = 1. 

6) .4 four-jet, process involving a three-gluon vertex. The three-gluon coupling 

is expected to be la.rge a.t la.rge values of Q3 a.ncl fixed va.lues of invariant 

ma,sses M,? a.nd !\$. 
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