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Abstract

We construct an effective Lagrangian describing the interaction of soft pions and kaons

with mesons containing a heavy quark and light degrees of freedom in an orbital p wave.

The formalism is easily extended to heavy mesons and baryons in arbitrary excited states.

We calculate the leading contributions to the strong decays D∗2 → Dπ, D∗2 → D∗π and

D1 → D∗π. We confirm the relations between the rates previously obtained by Isgur

and Wise using heavy quark symmetry, and find that the absolute widths are consistent

with näıve power counting. We also estimate the branching ratios for the two pion decays

D∗2 → D∗ππ, D1 → D∗ππ and D1 → Dππ, which are dominated by pole graphs. Our

predictions depend on the masses and widths of the as yet unseen scalar-pseudovector

p-wave doublet. Heavy quark spin symmetry predicts Γ(D∗2 → D∗ππ) : Γ(D1 → D∗ππ) :

Γ(D1 → Dππ) = 3 : 1 : 2, but this relation is badly violated in practice because 1/M

effects arising purely from kinematics are large.
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1. Introduction

The interactions of the octet of pseudogoldstone bosons with hadrons containing a

single heavy quark are constrained by two independent symmetries: spontaneously broken

chiral SU(3)L × SU(3)R and heavy quark spin-flavour SU(2Nh) [1]. One may implement

both of these symmetries by constructing a “heavy-light” chiral lagrangian, in which one

performs a simultaneous expansion in the momenta of the pseudogoldstone bosons and the

inverse masses of the heavy hadrons. Such a lagrangian has been described in refs. [2]–[5]

for heavy hadrons with the light degrees of freedom in the ground state. We begin by

briefly reviewing this construction.

The lagrangian is written in terms of the usual exponentiated matrix of pseudogold-

stone bosons,

ξ = exp (iM/fπ) , Σ ≡ ξ2 (1.1)

where

M =


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K
0 −

√
2
3η

 (1.2)

and fπ ≈ 135 MeV. Under chiral SU(3)L×SU(3)R, the field ξ transforms as ξ → LξU† =

UξR†, where U is a matrix which depends on the fieldsM, while Σ transforms more simply

as Σ → LΣR†. The ground state heavy mesons consist of a doublet under heavy quark

spin symmetry, containing the pseudoscalar meson P and the vector meson P ∗; these also

transform under the unbroken flavour SU(3) as an antitriplet. (We take our heavy mesons

always to contain a heavy quark rather than an antiquark.) We represent these fields in

the usual way by a 4× 4 Dirac matrix,

Ha =
(1 + v/)

2
√

2
[P ∗µa γµ − Paγ5] . (1.3)

We have absorbed factors of
√

2MP and
√

2M∗P into the definition of the heavy fields, so

they have mass dimension 3/2 (our normalisation differs slightly from that of ref. [2]; our

fields are normalised to 1, not to 2). To recover the correct relativistic normalisation, we

multiply amplitudes by
√

2M for each external heavy meson.

The pseudogoldstone bosons couple to the heavy fields through the covariant derivative

Dµ
ab ≡ δab∂

µ + V µab = δab∂
µ + 1

2

(
ξ†∂µξ + ξ∂µξ†

)
ab

(1.4)
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and the axial vector field

Aµab = i
2

(
ξ†∂µξ − ξ∂µξ†

)
ab
. (1.5)

Under SU(3)L × SU(3)R,

Ha → UabHb , (DµH)a → Uab(DµH)b , Aµab → UacA
µ
cdU

†
db . (1.6)

At leading order in the momentum expansion, the lagrangian is written in terms of these

fields as

L =
f2
π

8
∂µΣab∂µΣ†ba − Tr

[
Haiv ·DbaHb

]
+ gTr

[
HaHb /Abaγ5

]
+ λ0

[
mqΣ +mqΣ†

]
aa

+ · · · ,
(1.7)

where the traces are over Dirac indices and we keep the SU(3) flavour indices a, b explicit.

The ellipses denote terms higher order in the derivative expansion, terms suppressed by

powers of 1/M , and additional explicit SU(3)L × SU(3)R violating terms proportional to

the quark mass matrix

mq =

mu 0 0
0 md 0
0 0 ms

 . (1.8)

2. Excited States and Reparameterisation Invariance

We would now like to consider the form of such a lagrangian for heavy mesons in an

excited state. In the limit that the heavy quark massM is taken to infinity the light degrees

of freedom carry a well-defined angular momentum, flavour and spectrum of excitations.

In general, the light degrees of freedom in a heavy meson are in a state with half-integral

angular momentum j and parity P , corresponding to two degenerate heavy mesons of

spin j ± 1
2 and parity −P (since quarks and antiquarks have opposite parity). We may

describe both states by a more complicated analogue of the Ha matrix (1.3), the traceless,

symmetric Lorentz tensor

Hµ1...µk
a , k = j − 1/2 , (2.1)

satisfying the conditions

vµ1H
µ1...µk
a = γµ1H

µ1...µk
a = 0 . (2.2)

Under Lorentz transformations,

Hµ1...µk
a → D(Λ)Λµ1

ν1
. . .ΛµkνkH

ν1...νk
a D†(Λ) , (2.3)
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where D(Λ) is an element of the 4 × 4 matrix representation of the Lorentz group, while

under spatial rotations Λ̃ of the heavy quark,

Hµ1...µk
a → D(Λ̃)Hµ1 ...µk

a . (2.4)

The general form for Hµ1...µk
a has been derived in ref. [6]; for light degrees of freedom with

parity (−1)j−1/2 we have the doublet of states? Q∗j+1/2 and Qj−1/2,

Hµ1 ...µk
a =

(1 + v/)
2
√

2

{
(Q∗j+1/2)µ1...µk+1

a γµk+1 −
√

2k+1
k+1 γ5(Qj−1/2)ν1...νk

a[
gµ1
ν1
. . . gµkνk −

1
2k+1γν1 (γµ1 − vµ1) gµ2

ν2
. . . gµkνk − · · ·

− 1
2k+1g

µ1
ν1
. . . gµk−1

νk−1
γνk (γµk − vµk)

]}
,

(2.5)

while for parity (−1)j+1/2 we have Qj+1/2 and Q∗j−1/2,

Hµ1 ...µk
a =

(1 + v/)
2
√

2

{
(Qj+1/2)µ1...µk+1

a γ5γµk+1 −
√

2k+1
k+1

(Q∗j−1/2)ν1...νk
a[

gµ1
ν1
. . . gµkνk −

1
2k+1γν1 (γµ1 + vµ1) gµ2

ν2
. . . gµkνk − · · ·

− 1
2k+1g

µ1
ν1
. . . gµk−1

νk−1
γνk (γµk + vµk)

]}
.

(2.6)

For simplicity, we will restrict ourselves in the rest of this paper to the lowest lying p-wave

excitations; we have included the complete expressions (2.5) and (2.6) to make it clear

that the extension of this formalism to arbitrary excited heavy mesons is cumbersome but

straightforward. (Using the formalism of ref. [6], one could include excited heavy baryons

as well.) In the quark model, these p-wave states correspond to light degrees of freedom

with orbital angular momentum ` = 1, and hence with total spin j = 1
2 or j = 3

2 . For the

D system, these are the (as-yet unobserved) JP = 0+, 1+ doublet D∗0 and D1
′,

Sa =
(1 + v/)

2
√

2

(
D1
′µγµγ5 −D∗0

)
, (2.7)

and the JP = 1+, 2+ doublet D1 and D∗2 ,

Tµa =
(1 + v/)

2
√

2

{
D∗2

µνγν −
√

3
2D1

νγ5

[
gµν − 1

3γν (γµ − vµ)
]}

(2.8)

? We use here the particle data book convention of labeling states with a subscript for their

spin, and adding a superscript “∗” if the spin-parity is in the series JP = 0+, 1−, 2+, . . . .

4



(we add a prime to distinguish the two pseudovector states). We identify the neutral

members of this multiplet as the D1(2420)0 and the D∗2(2460)0 [7]. Including these states

along with the ground state mesons, the kinetic piece of the chiral Lagrangian is given by

Lkin =− Tr
[
Haiv ·DbaHb

]
+ Tr

[
Sa (iv ·Dba − δmSδba)Sb

]
+ Tr

[
T
µ

a (iv ·Dba − δmT δba)Tµb
]
,

(2.9)

where the residual masses δmS = MD∗0
−MD = MD1

′ −MD and δmT = MD1 −MD =

MD∗2
−MD are defined in the heavy quark limit, where the doublets are degenerate [8].

In general, one must include all terms in a chiral Lagrangian which are not forbidden

by symmetries of the effective theory. Hence one might be tempted to write down a mixing

term of the form

Tr
[
Ha (iDµTµ)a

]
(2.10)

(recall that in the effective theory, DµTµ 6= 0; the transversality condition is vµTµ = 0).

However, such a term is forbidden because it is not invariant under redefinitions of the

velocity vµ [9]. Recall that the definition of the velocity vµ of a heavy field of mass M

is somewhat arbitrary, in that we could equally well choose a slightly different velocity

v′µ = vµ− qµ/M , where q ·v = q2/2M to ensure v′2 = 1, and shift the residual momentum

by qµ:

Pµ = Mvµ + kµ = Mv′µ + kµ + qµ. (2.11)

For a heavy scalar φ or vector field Aµ, this corresponds to the transformation

vµ → vµ − 1
M q

µ ,

φ→ eiq·xφ ,

Aµ →
[
gµν + 1

M vµqν +O
(

1
M2

)]
eiq·xAν .

(2.12)

Under the shift (2.12),

Tr
[
Ha (iDµTµ)a

]
→ Tr

[
Ha ((iDµ − qµ)Tµ)a

]
+O(1/M) , (2.13)

so the term (2.10) is forbidden.

The single pion transitions between states in the same heavy spin doublet are given

by terms in the effective lagrangian analogous to the g coupling in eq. (1.7):

L1π = gTr
[
HaHb /Abaγ5

]
+ g′Tr

[
SaSb /Abaγ5

]
+ g′′ Tr

[
T
µ

aTµb /Abaγ5

]
, (2.14)
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while the single pion transitions between doublets, again to lowest order in the derivative

expansion, are given by

Ls = f ′ Tr
[
SaT

µ
b Aµbaγ5

]
+ f ′′ Tr

[
HaSb /Abaγ5

]
+ h.c. . (2.15)

These correspond to s-wave transitions; however the analogous s-wave transitions

Tµ → Hπ are forbidden by heavy quark spin symmetry [10], and indeed the term

Tr
[
HaT

µ
b Aµbaγ5

]
vanishes. These decays must then proceed through d-waves, which are

suppressed by one derivative in the chiral lagrangian:

Ld =
h1

Λχ
Tr
[
HaT

µ
b (iDµ /A)ba γ5

]
+
h2

Λχ
Tr
[
HaT

µ
b

(
i /DAµ

)
ba
γ5

]
+ h.c. , (2.16)

where Λχ is some momentum scale characterising the convergence of the derivative expan-

sion. From previous experience with chiral Lagrangians, we expect Λχ ' 1 GeV [11], and so

we expect the Tµ states to be much narrower than the S states, simply from power count-

ing. Note that the symmetry (2.12) also forbids couplings such as Tr
[
(iDµH)aT

µ
b /Abaγ5

]
,

with derivatives acting on the heavy fields, at this order in 1/M .

Following the authors of ref. [4], who obtained an estimate of g, we may estimate the

couplings g′, g′′ and f ′ in the nonrelativistic quark model by evaluating matrix elements

of the axial current between the appropriate states. This requires the assumption that the

pseudogoldstone bosons couple only to the spin of the brown muck, and not to the orbital

angular momentum. We note that the nonrelativistic quark model may not provide a very

appropriate description of these excited states, as the mass splitting from the ground state

is of the order of several hundred MeV, comparable to the mass of the constituent light

quark. Hence we should probably regard our estimates of the couplings primarily as an

indication of what are likely to be reasonable values for these parameters.

In the nonrelativistic quark model, the Sa and Tµa mesons have the light degrees of

freedom in the same excited radial wavefunction, and we may decompose physical states

into the eigenstates |sH ,m`, s`〉 of the z components of heavy quark spin sH , angular

momentum of the light degrees of freedom m` and light quark spin s`. In particular, we

decompose the m = 0 states of the D∗2 and the D1
′ as

|D∗2(m = 0)〉 =
√

1
3

∣∣1
2 , 0,−

1
2

〉
+
√

1
6

∣∣ 1
2 ,−1, 1

2

〉
+
√

1
6

∣∣− 1
2 , 1,−

1
2

〉
+
√

1
3

∣∣− 1
2 , 0,

1
2

〉 (2.17)
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and ∣∣D1
′(m = 0)

〉
=
√

1
6

∣∣ 1
2 , 0,−

1
2

〉
−
√

1
3

∣∣1
2 ,−1, 1

2

〉
+
√

1
3

∣∣− 1
2
, 1,− 1

2

〉
−
√

1
6

∣∣− 1
2
, 0, 1

2

〉
.

(2.18)

Consider the matrix element of the axial current (ji5)µ between these states. In the non-

relativistic quark model,

(j1+i2
5 )3 = −gAu†σ3d, (2.19)

where we take gA = 0.75 as suggested by the chiral quark model [12] (this reproduces the

correct value of gA in the nucleon). Thus we obtain

〈
D∗2(m = 0)

∣∣ ∫ d3x (j1+i2
5 )3

∣∣D1
′(m = 0)

〉
=

2
√

2
3
gA . (2.20)

In the chiral lagrangian, the f ′ coupling in (2.15) gives a contribution to the axial current

of

(ji5)µ = −f ′ Tr
[
SaT

µ
b γ5T

i
ba

]
+ . . . . (2.21)

In the limit of zero momentum transfer, this term dominates the matrix element (2.20)

and we find

〈
D∗2(m = 0)

∣∣ ∫ d3x (j1+i2
5 )3

∣∣D1
′(m = 0)

〉
= −f ′ε∗µηµ3 = −

√
2
3
f ′ , (2.22)

where εµ and ηµν are respectively the m = 0 polarisation states of the D1
′ and D∗2.

Equating the expressions (2.20) and (2.22), we find

|f ′| = 2√
3
gA = 0.87 . (2.23)

The phase of f ′ is not determined by this procedure; however this will not matter as only

the modulus |f ′|2 will appear in the widths which we will compute. Similarly, we may

obtain estimates of the transition rates within multiplets,

g = gA , g′ = 1
3gA , g′′ = gA , (2.24)

where the phases may in this case be fixed by the heavy quark symmetry relation

Szh |D∗(m = 0)〉 = 1
2 |D〉, and analogously for the excited doublets. However, the cou-

pling constants g′ and g′′ are not particularly useful, as the corresponding single pion

decays are most probably kinematically forbidden [13].
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3. Single Pion Decays

There are four possible single pion transitions between two heavy spin doublets; re-

lations between the amplitudes follow from the heavy quark spin symmetry. These have

already been worked out explicitly for D∗2 and D1 decays [10][14], and those results follow

immediately from our formalism. In addition, with the chiral lagrangian we may easily

correct for one class of 1/M corrections in the widths by using the true particle masses

in the phase space integrals. Since the rate for d-wave decays is proportional to the fifth

power of the pion momentum, this is likely to be the leading 1/M correction. Explicitly,

we find

Γ(D0∗
2 → D+π−) =

1
15π

(
MD

MD∗2

)
h2

Λ2
χ

|~pπ|5
f2
π

= 5.51× 107 h
2

Λ2
χ

,

Γ(D0∗
2 → D∗+π−) =

1
10π

(
MD∗

MD∗2

)
h2

Λ2
χ

|~pπ|5
f2
π

= 2.03× 107 h
2

Λ2
χ

,

Γ(D0
1 → D∗+π−) =

1
6π

(
MD∗

MD1

)
h2

Λ2
χ

|~pπ|5
f2
π

= 2.05× 107 h
2

Λ2
χ

,

(3.1)

where ~pπ is the momentum of the pion emitted in the decay, and h ≡ |h1 + h2|. The

full one pion width are 3/2 times these because of the D0π0 channel. From eq. (3.1) we

reproduce the result of Isgur and Wise,

Γ(D0∗
2 → D+π−)

Γ(D0∗
2 → D∗+π−)

= 2.7 , (3.2)

which compares very well with the experimental ratio 2.4 ± 0.7 [7]. We may use these

results to gain some confidence in the validity of our derivative expansion. Assuming the

total D∗2 width of 19±7 MeV to be saturated by the one pion mode (as we will show in the

next section, the two pion width is sufficiently small that this is a reasonable assumption),

we find
h2

Λ2
χ

≈ 1
(2 GeV)2

, (3.3)

which is consistent with our näıve estimate. This also gives us a prediction for the D0
1

single pion width,

Γ(D0
1 → D∗+π− +D∗0π0) ≈ 7 MeV, (3.4)

which is significantly smaller than the measured total width of 20+9
−5 MeV. As has been

suggested [10], this is undoubtedly due to mixing (at order 1/M) of the D1 with the

substantially broader D1
′.
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The D∗0 and D1
′ decay through s-wave pion emission and consequently are very broad;

from eq. (2.15) we obtain

Γ(D∗0 → Dπ−) =
|f ′′|2
2πf2

π

(
MD

MD∗0

)
(MD∗0

−MD)2
[
(MD∗0

−MD)2 −m2
π

]1/2
Γ(D1

′ → D∗π−) =
|f ′′|2
2πf2

π

(
MD∗

MD1
′

)
(MD1

′ −MD∗)2

×
[
(MD1

′ −MD∗)2 −m2
π

]1/2
.

(3.5)

Since these states have not been observed, we must use quark model estimates for their

masses. Taking MD∗0
= MD1

′ = 2.4 GeV [13], we have

Γ(D∗0 → Dπ−) = |f ′′|2[980 MeV]

Γ(D1
′ → D∗π−) = |f ′′|2[400 MeV].

(3.6)

Again, the full one pion widths are 3/2 times these because of the π0 channel. These widths

are very sensitive to the value used for the mass of the states; for MD∗0
= MD1

′ = 2.3 GeV

we find charged pion widths of |f ′′|2[540 MeV] and |f ′′|2[160 MeV], respectively.

4. Two Pion Decays

Like the single pion Tµ → Hπ decays, the contact terms mediating Tµ → Hππ, such

as Tr
[
HaT

µ
b Aµbc /Aca

]
, are dimension five and are suppressed by one power of Λχ in the

derivative expansion. We therefore expect that these decays will be dominated by pole

graphs in which there is an intermediate D1
′ or D∗0 which is close to its mass shell. This

raises the interesting possibility that the two pion widths could be comparable to the single

pion widths (as is observed, for example, in the decay K∗2 (1430)→ K∗(892)+pions). The

two pion width is given by

Γ2π =
∫

1
(2π)3

1
8M ′
|A(E1, E2)|2dE1dE2 , (4.1)

where the amplitude A is a function of the energies E1 and E2 of the outgoing pions, and

the masses M ′ = (MD∗2
,MD1) and M = (MD ,MD∗) are those respectively of the initial

and final heavy mesons. Kinematics restricts E2 to the region

E2(E1)− g(E1)
M

< E2 < E2(E1) +
g(E1)
M

, (4.2)

9



where
E2(E1) ≡M ′ −M − E1 ,

g(E1) ≡
√

(E2
1 −m2

π)[(M ′ −M − E1)2 −m2
π] .

(4.3)

Hence the amplitude can be expressed approximately as a function only of E1,

A(E1, E2) ' A
(
E1, E2(E1)

)
(4.4)

up to corrections of order 1/M . The integral over E2 then just brings in a factor of the

width of the integral, 2g(E1)/M . Because of the poles in the intermediate D1
′ and D∗0

propagators, their widths must be included in our expressions. The imaginary part of the

propagator of this resonance is

Γint(p · v) =
|f ′′|2
2πf2

π

M

Mres
(Mres −M + p · v)2

[
(Mres −M + p · v)2 −m2

π

]1/2
, (4.5)

where p is the residual momentum flowing through the line and Mres = MD∗0
or MD1

′ .

For p · v ' 0, this reduces to the usual Breit-Wigner formula. However, because these

states are so broad we must include the full momentum dependence of the width in the

denominator. It is convenient to extract from the |A(E1, E2)|2 the function

F (E1) =
E2

1 [(MD1 −MD − E1)2 −m2
π]

(E1 − [MD∗0
−MD])2 + Γint(E1 − [MD∗0

−MD ])2/4

+
(MD1 −MD − E1)2[E2

1 −m2
π]

[(MD1 −MD∗0
− E1)]2 + Γint(MD1 −MD∗0

− E1)2/4
,

(4.6)

where there are two terms because the pions may be emitted in either order (the cross

terms in |A|2 integrate to zero). Then the partial width is given by

Γπ−π0 =
α

4(2π)3

|f ′f ′′|2
f4
π

∫
F (E1)g(E1)dE1 , (4.7)

where α = 2/9 for D0
1 → D∗π−π0, α = 4/9 for D0

1 → Dπ−π0 and α = 2/3 for D0∗
2 →

D∗π−π0. There are also decays to a neutral charmed hadron and a π+π− pair which occur

with the same amplitude (since the final pions are in an antisymmetric wave function, the

I = 0 π0π0 mode is forbidden). Hence the full two pion widths are twice those given in

eq. (4.7). Our predictions for the two pion widths depend on several unknown parameters:

the masses and widths of the as yet unobserved D∗0 and D1
′, as well as on the couplings f ′

and f ′′. In fig. 1 we plot the total two-pion decay widths for D1 → D∗ππ, D1 → Dππ and
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D∗2 → D∗ππ as functions of |f ′′|, or equivalently as functions of the D1
′ width, assuming

the nonrelativistic quark model prediction (2.23) for f ′. Variations in f ′ just change the

overall normalisations, but not the shapes, of the plots. Note that in the heavy quark

limit, the widths would satisfy

Γ(D∗2 → D∗ππ)M→∞ : Γ(D1 → D∗ππ)M→∞ : Γ(D1 → Dππ)M→∞ = 3 : 1 : 2 , (4.8)

but because of the sensitive dependence of eq. (4.7) on the masses, this relation is badly

violated. So although in this limit our approach simply reproduces the general results of

ref. [10], it has the advantage of being able to take into account the large but calculable

1/M symmetry breaking effects which arise purely from kinematics. Since the precise form

of the 1/M effects depends on the fact that the decay is dominated by pole graphs, its

exact form could not be guessed (unlike the |~pπ|5 behaviour for the single pion decays).

One might also think to apply this analysis to the strong transitions of excited strange,

charmed mesons. Indeed, at least one such state, the Ds1, as already been observed [7].

However, such decays are severely constrained by the combination of phase space and the

heavy quark limit. If the outgoing D meson is not strange, there must be a K meson in

the final state, but Ds1 → DK is prohibited in the heavy quark limit, while D1 → D∗K

is barely possible kinematically and hence severely suppressed. As for decays to ground

state Ds mesons, there is not enough energy to emit the isospin-0 η, while the decay to

two pions in an isospin-0 state is induced by our effective lagrangian only at the one loop

level. The strong decays of the Ds1 are thus most likely mediated by operators which are

subleading in the mass expansion. Although one might expect the current mass of the

strange quark to induce larger 1/M corrections in the Ds system than in the D+ and D0,

this suppression might help explain the relatively narrow width (< 5 MeV) observed for

the Ds1.

This formalism could also be applied to semileptonic decays from a B meson to an

excited D plus soft pions, as has been done for decays to ground state D mesons [15].

There may also be significant contributions to the decay B → Dπ`ν, in which the B first
decays semileptonically to an excited D, which then decays strongly to a D or D∗ and a

pion. We are currently studying these processes.

Finally, we point out that the same heavy-light chiral lagrangian could be used as well

to describe the strong transitions of excited bottom mesons. In fact, we would expect 1/M

corrections to be considerably smaller than in the case of charm. However these states

have not yet been produced and studied, and their masses, to which the decay rates are

so sensitive, are not known.
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Figure Captions

Fig. 1. Full two pion widths for D∗2 and D1 as functions of the D1
′ width, for MD∗0

=
MD1

′ = 2300 MeV and 2400 MeV. Note that for MD1
′ = 2300 MeV the D∗2 partial

width is nonzero as the D1
′ width goes to zero, since the D1

′π intermediate state
may be produced on shell. In this limit the D∗2 two pion width approaches the
D∗2 → D1

′π partial width.
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