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ABSTRACT 

; r, In recent yea.rs light-cone quanti&ion of quantum field theory has emerged 
as a promising method for solving problems in the strong coupling regime. This 
approach has a number of unique features that make it particularly appealing, 

. . most notably, the ground state of the free theory is also a ground state of the 
_~ full theory. The method, therefore, seems to be well suited to solving QCD, and 

contrary to other approaches, the relativistic wavefunctions transform trivially to 
a boosted frame. These,fea,tures make light-cone quantization of quantum field 
.theory sufficiently different from the standa,rd approaches to field theory that new 
technologies need to be developed. At this point, the two most popular approaches . . ..- 
are the discrete light-cone quantization and the light-cone Tamm-Dancoff methods. 
They are designed to overcome the problems tha.t have prevented other methods for 
the last -twenty years from accurately calculating anything in the strong coupling 
regime of QCD. Moreover, their language is appealingly close to experiment and 
phenomenology. Both methods require computing resources that are within reach 
of present day computers, and the genera.1 structure of solution seems to have simple 
physical interpretations within the confines of the constituent quark model and 
the Feynman-Bjorken parton model. Both methods, however, face a host of new 
challenges not seen in the usual approa.ches to field theory that must be overcome 
before tackling QCD. This paper is devoted to a. discussion of these new problems 
and to the various proposed solutions that are currently being investigated. 
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1 Introduction 

Over the past twenty years two fundamentally different pictures of hadronic mat- 

ter have developed. One is closely related to experimental observation and is known 

as the Feynman-Bjorken Quark Parton Model, or as the Constituent Quark Model. 

The other, Quantum Chromodynamics (QCD), is based on an elegant non-abelian 

quantum field theory. In this paper we will discuss some of the contradictions be- 
-L. 

tween these two pictures of hadronic matter and we will argue that the light-cone 

formulation of QCD provides a method for reconciling QCD with the Constituent 

Quark Model. This elegant a.pproach to QCD avoids many of the most difficult 

problems as they appear in the equal time formula,tion of the theory; however, we 

will see that the light-cone formulation has its own unique complexities. The main 

thrust of this paper will be to discuss these complexities. We will attempt to present 

sufficient background material to allow the reader to see some of the advantages of 

thelight-cone formulation, but we shall not undertake to give a complete review. 
- Inthe Constituent Quark Model, hadrons are rela.tivistic bound states of a few : 

confined quark and gluon quanta. The momentum distributions of quarks mak- 

ing up the nucleons in the Constituent Quark Model, the structure functions, are 

well-determined experimentally from deep inelastic lepton scattering, but there has 

been relatively little progress in computing the wa.vefunctions of hadrons from first 

principles in QCD. The most interesting progress has come from lattice gauge the- 

ory [l] and QCD sum rule calculations [a], both of which have given predictions for 

the proton’s distribution amplitude. The distribution amplitude $r(zr, x2, x3, Q), 

with C; x; = 1, is the funda.mental ga,uge invariant wavefunction which describes 

the distribution of the fra.ctional longitudinal momenta, x; of the valence quarks in 

a hadron integrated over transverse momentum up to the scale Q. However, the re- 

sults from the two analyses are in strong disagreement: The QCD sum rule analysis 

predicts a strongly asymmetric three-quark distribution, whereas the lattice results, 

obtained in the quenched approximation, favor a symmetric distribution in the x;. 

Even less is known from first principles in non-perturbative QCD about the gluon 
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and non-valence quark contributions to the proton wavefunction, although data 

from a number of experiments now suggest non-trivial spin correlations, a signifi- 

cant strangeness content, and a large x component to the charm quark distribution 

in the proton. 

There are many reasons why knowledge of hadron wavefunctions, particularly 

at the amplitude level, will be necessary for future progress in particle physics. For 

example, in electroweak theory, the central unknown required for reliable calcula- ; r, 
tions of weak decay amplitudes are the hadronic matrix elements. The coefficient 

functions in the operator product expansion needed to compute many types of ex- 
. . 

perimental quantities are essentially unknown and ca.n only be estimated at this 
_. 

point. The calcula.tion of form fa.ctors a,nd exclusive sca.ttering processes, in general, 

depend in detail on the basic amplitude structure of the scattering hadrons in a 

general Lorentz frame. Even the calculation of the magnetic moment of a proton 
_ -. _ 

requires wavefunctions in a boosted frame. We thus need a practical computational 
._ ._- 
method for QCD which not only determines its spectrum, but also the wavefunction 

in-a general Lorentz frame. . _ 
It is clearly a formidable task to calculate the structure of hadrons in terms of 

their fundamental degrees of freedom. Even in the case of abelian quantum electro- 

dynamics, very little is known a.bout the nature of the bound state solutions in the 

large a, strong-coupling, domain. A ca,lculation of bound state structure in QCD 

has to deal with many complicated aspects of the theory simultaneously: confine- 

ment, vacuum structure, spontaneous breaking of chiral symmetry (for massless 

quarks), while describing a. relativistic many-body system which apparently has 

unbounded particle number. 

The first step is to find a langua.ge in which one can represent the hadron in terms 

of a few relativistic confined quarks and gluons. The Bethe-Salpeter formalism 

has been the central method for analyzing hydrogenic atoms in QED, providing 

a completely covariant procedure for obta,ining bound sta.te solutions. However, 

calculations using this method are extremely complex a.nd appear to be intractable 

much beyond the ladder approximation. It also appears impractical to extend this 
.- 

_: -- ; 
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method to systems with more than a few constituent particles. 

An intuitive approach for solving relativistic bound-state problems would be to 

solve the Hamiltonian eigenvalue problem 

HI@) = l/xyii$!) (1) 

for the particle’s mass, M, and wavefunction, IQ). Here, one imagines that IQ) is 

;,_an expansion in free multi-particle occupation number Fock states, and that the 

operators H and p are second-quantized Heisenberg picture operators. Unfortu- 

nately, this method, as described by Tamm and Dancoff [3], is severely complicated 

by its non-covariant structure and the necessity to first understand its complicated 

vacuum eigen-solution over all spa.ce aad time. The presence of the square root op- 

erator also presents severe mathematical difficulties. Even if these problems could 

be solved, the eigen-solution. is only determined in its rest system; determining the 

boosted wavefunction is as complicated as diagonalizing H itself. . . ._- 
Fortunately, “light-cone” quantization, which can be formulated independent 

6f -then Lorentz frame, offers an elegant avenue of escape [4]. The square root op- . _ 
erator does not appear in the light-cone formalism, and the vacuum structure is 

relatively simple; for example, there is no spontaneous creation of massive fermions 

in the light-cone quantized vacuum. There are, in fact, many reasons to quantize 

relativistic field theories at fixed light-cone time 7 = t + Z/C. Dirac [5], in 1949, 

showed that a maximum number of Poincark generators become independent of 

the dynamics in the “front form” formula.tion, including certain Lorentz boosts. In 

fact, unlike the traditional equal-time Ha.miltonian formalism, quantization on a 

plane tangential to the light-cone can be formulated without reference to the choice 

of a specific Lorentz frame. The eigensolutions of the light-cone Hamiltonian have 

Lorentz scalars M2 as eigenvalues, i.e. 

HLC~'@)= M2(Q), (2) 

and describe bound states of arbitrary four-momentum and invariant mass M, al- 

lowing the computation of scattering amplitudes and other dynamical quantities. 
. -. 

_: -- y. .- 
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However, the most remarkable feature of this formalism is the apparent simplicity 

of the vacuum. In many field theories the vacuum state of the free Hamiltonian is 

an eigenstate of the total light-cone Hamiltonian. The Fock expansion constructed 

on this vacuum state provides a complete relativistic many-particle basis for diag- 

onalizing the full theory, as given in a recent review [6]. 

For the past several years, an increasingly large and diverse group of physicists 

c have been studying the possibility of combining Tamm-Dancoff procedures with 

the procedure of light-cone quantization to develop a practical method of perform- 

ing non-perturbative calculations in quantum field theory. In the Tamm-Dancoff 

method one approximates the field theory by truncating the Fock space. The as- 

sumption, based on the Constituent Qua.rk Model picture, is that a few excitations 

describe the essential physics and that adding more excitations only refines this 

initial approximation. This is in sta.rk contradiction to the instant formulation 

of -QCD where an infinite number of gluons are essential to formulating even the 
. . ..- 
vacuum. Ifdhe efforts are successful, they could lead to procedures for calculat- 

i-n& not only the hadron mass spectrum but a.11 the quantities which depend on - . 
the hadron wavefunction such aa structure functions, fragmentation functions, etc. 

Furthermore, the form of the a.nswer, an expansion in a Fock basis, is one that 

appeals to many physicists in that it matches the intuitive picture of hadrons as 

composed of partons. Indeed, Wilson [7] h as stressed the point that the success 

of the Constituent Quark Model model provides a reason to be hopeful for the 

eventual success of the light-cone methods. 

The striking advantages of quantizing gauge theories on the light-cone have 

been realized by a number of authors, including Klauder, Leutwyler, and Streit [8], 

Ko&t and Soper [9], Rohrlich [lo], Leutwyler [ll], Casher [la], Chang, Root, and 

Yan [13], and Lepage, Brodsky and others [14, 15, 161. Leutwyler recognized the 

utility of defining quark wavefunctions on the light-cone to give an unambiguous 

meaning to concepts used in the parton model. Casher gave the first construction 

of the light-cone Hamiltonian for non-Abelian gauge theory and gave an overview 

of important considerations in light-cone quantization. Chang, Root, and Yan 



demonstrated the equivalence of light-cone quantization with standard covariant 

Feynman analysis. Franke [17, 18, 191, Karmanov [20, 211, and Pervushin [22] have 

also done important work on light-cone quantization. 

.A mathematically similar but conceptually different approach to light-cone 

quantization is the “infinite momentum frame” formalism. This method involves 

observing the system in a frame moving past the laboratory close to the speed of 

,_ light. The first d evelopments were given by Weinberg [23]. Although light-cone 

quantization is similar to infinite momentum frame quantization, it differs since 

no reference frame is chosen for calculations, and it is thus manifestly Lorentz co- 

variant. The only aspect that “moves at the speed of light” is the quantization 

surface. Other works in infinite momentum frame physics include Drell, Levy, and 

Yan [24, 251, S k’ d uss m and Frye [26], Bjorken, Kogut, and Soper [27], and Brodsky, 

Roskies, and Suaya [as]. 

Much of the recent work so far has been in theories in 1 + 1 dimensions. For 
. . ..- 
these theories there is much success to report. Numerical solutions and studies have 

been performed for a variety of theories including U( 1) and SU(N) for N = 2,3 

and‘ 4 [29, 30, 311; Yukawa [32, 331; $4 [33, 34, 351; and the Schwinger model 

[36, 37, 38, 391 h as b een presented. A smaller amount of work in 3 + 1 dimensions 

has also been done [40, 41, 42, 43, 44, 451. N umerical studies on positronium have 

provided the Bohr series, and the fine structure with good accuracy[43]. Formal 

work on renormalization in 3 + 1 dimensions [41] has yielded some positive results 

but many questions remain. Attempts to more directly combine light-cone and 

lattice gauge calculations are also under study [46]. 

In the procedure of light-cone quantization it is essential that one specifies quan- 

tization conditions on a light-like surface, rather tha,n the usual space-like surface. 

That has several effects: There is a change of independent variables and a reduc- 

tion in the number of degrees of freedom for the system. The missing degrees 

of freedom are replaced’by constraint relations and the introduction of non-local 

operators. This has a profound effect on how we renormalize the theory. 

There is a change of representa.tion since negative frequency modes of the fields 
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along the characteristic [time-like] surface create different states than negative fre- 

quency modes of the fields along a space-like surface. It is this last effect, the change 

of basis, that many workers see as possibly allowing an easier implementation of 

Hamiltonian methods. These hopes stem principally from one striking feature of 

the light-cone representation: the bare vacuum is an eigenstate of the dynamical op- 

erators of the full theory. From a mathematical point of view: there is an argument 

,--that in simple cases the physical vacuum will just be the bare vacuum on which the 

theory-is-quantized-in some cases that expectation is known to be realized [47]. 

In other cases the naive expectation is not realized , but the vacuum is still much 

simpler in the light-cone representa.tion than in the equal-time representation [37]. 

The simplicity of the vacuum, in turn, removes some of the difficulties involved in 

developing renormalization procedures originally proposed by Tamm and Dancoff 

-, 131 f or e ua q 1 t ime quantization. The unique features of light-cone quantization open 

the exciting prospective of combining the elegance of field theory with the success 
. . ..- 
of the Constituent Quark Model. 

- Ins this article we shall briefly provide some motivation for, and describe some - . 
successes of the efforts; but we shall concentrate on presenting outstanding problems 

in the field in the hope that other physicists may find them interesting to work on. 

2 General Features of Light-Cone Quantization 

In general, the Hamiltonian is the evolution operator H = i & which propagates 

fields in generalized “time” r from one space-like surface to another. As empha- 

sized by Dirac [5], there are several choices for the evolution parameter 7. In the 

“Instant Form” r = t is the ordinary Ca.rtesian time. In the “Front Form”, or light- 

cone quantization, one chooses 7 = t + Z/C as the light-cone time, with boundary 

conditions specified as a function of 5, y, and Z- = ct - z. Kinematic relations are 

given in Table 1. 
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Table 1. Kinema.tic relations for conventional and light-cone 

space-time parameterization (c = 1) 

time 

space 

metric tensor 
!I P” 

scalar product 
P-X 

time derivative 

.space derivative 

poxo - p’xl - p2x2 - p3x3 

a0 = a0 = -& 

ai = -8 = 5; i = 1,2,3 

i(p+x- + p-x+) - plxl - p2x2 

ij- = ia+ = a; ai = -$; i = 1,2 
ax- 

. . ..- 

_ Notice that these forms become equivalent in the non-relativistic limit where, 

effectively, c -+ co. A compa.rison of light-cone quantization with equal-time quan- 

tization is shown in Table 2. 

Table 2. A compa.rison of equal-time and light-cone quantization. 

Hamiltonian H=dm+V P-= 
P; +M2 
~ +v 

Conserved quantities -& p*, @* p-7 PW FL 

Momenta -co<P*<$m o<p+<+co 
Bound state equation Hilr = EQ Hr,cQ = M2\II 

Although the instant form is the conventional choice for quantizing a field theory, 

it is not always the prac.tica,l form. For example, given the wavefunction of an n- 
electron atom, Qn(7i, t = 0), at initial time t = 0. Then, in principle, one can use the 

Hamiltonian H to evolve T&(?‘;, t) to later times t. However, an experiment which 
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could specify the initial wavefunction would require the simultaneous measurement 

of the positions of all of the bound electrons, such as by the simultaneous Compton 

scattering of n independent laser beams on the atom. In contrast, determining 

theinitial wavefunction at fixed light-cone time 7 = 0 only requires an experiment 

which scatters one plane-wave laser beam, since the signal reaching each of the n 
electrons is received at the same light-cone time T = t; + z;/c. 

. . 

-” e, As we shall discuss in this article, light-cone quantization allows a precise def- 

inition of the notion that a hadron consists of a few confined quarks and gluons 

consistent with the success of the Constituent Quark Model. In light-cone quanti- 

zation, a free particle is specified by its four momentum kfi = (Ic+, Ic-, il) where 

Ic* = k” f k3. If the particle is on its mass shell a.nd has positive energy, its light- 

cone energy is also positive, i.e. k- = (kt + m2)/k+ > 0. In perturbation theory, s 

the total transverse momentum of a. system of pa.rticle, ?l = Ccl and the total 

plus momentum Pit = C k+ are conserved at each vertex. The light-cone bound- 
. . ..- 
state wavefunction thus describes constituents which are on their mass shell, but 

off the light-cone energy shell: P- < C k-. - . 
The restriction k+ > 0 for massive quanta is a key difference between light-cone 

quantization and ordinary equal-time quantization. In equal-time quantization, 

the state of a parton is specified by its ordinary three-momentum i = (k’, k2, k3). 
Since each component of $ can be eit,her positive or negative, there exist zero total 

momentum Fock states of arbitrary particle number, and these will mix with the 

zero-particle state to build up the ground state. However, in light-cone quantization 

each of the particles forming a zero-momentum sta.te must have vanishingly small 

k+. Such a configuration represents a. point of measure zero in the phase space, 

and therefore such states are usua.lly neglected. 

Actually some care must be taken here, since there are operators in the theory 

- that are singular at k+ = 0 - e .g. the kinetic energy (@ + M”)/k+. In certain : 

circumstances, states containing k+ t 0 quanta (zero modes) can significantly alter 

the ground state of the theory. One such circumstance is when there is spontaneous 

symmetry breaking. Another is the complication due to massless gluon quanta in 
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a non-Abelian gauge theory. Nevertheless, the space of states that can play a role 

in the vacuum structure is much smaller for light-cone quantization than for equal- 

time quantization. This suggests that vacuum structure may be simpler to analyze 

using the light-cone formulation. The treatment, of zero modes and massless gluons 

are among the most important open question we will be discussing. 

Even in perturbation theory, light-cone quaatiza,tion has overwhelming advan- 

_-_tages over standard time-ordered perturbation theory. For example, in order to 

calculate-a Feynman amplitude of order g” one must suffer the calculation of the 

sum of n time-ordered graphs, each of which is a non-covariant function of en- 
. . 

ergy denominators which, in turn, consist of sums of complicated square roots 
_~ py = Jm. On th e other hand, in light-cone perturbation theory, only a few 

graphs give non-zero contributions, and those tl1a.t are non-zero have light-cone 

energy denominators which are simple sums of rational forms p; = (@‘ii + mf)/pF. 
._ ..- 
3 Representation of Hadrons on the Light-Cone _- 
. _ Fock Basis 

One can construct a complete basis of free Fock states In) (eigenstates of the free 

light-cone Hamiltonian with [?z)(?zj = I) in the usual way by applying products of 

free field creation operators to the vacuum state IO): 

IO) 
Iqq : X-J;) = b+(&Xl) d+(k,Xz) IO) 
IN9 : kJi> = ~+@A) d+(k2X2> u+(&J,) IO) 

, -. 

where bt, dt and ut create bare quarks, antiquarks and gluons having three-momenta 

C = (k+, kl) and h 1 e ici t ies X. One of the most important advantages of light-cone 

--.- -.:- ‘t. -; 
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quantization is that the light-cone Fock expa.nsion can be used as the basis for 

representing the physical states of QCD. F or example, a pion with momentum 

p = (f’+, FL) is d escribed by the expansion, 

; c, where the sum is over all Fock states and helicities, and where 

The wavefunction $,,,(x;, cli, A;) is thus the a.mplitude for finding partons in a 
specific light-cone Fock state n with momenta (z;P+, xi?1 + iii) in the pion. The 

Fock state is off the light-cone energy shell: C k; > P-. The light-cone momentum 

coordinates x; and.il;, with CFEl x; = 1 and with EYE”=, iii = cl, respectively, are 

-actually relative coordinates; i.e. they are independent of the total momentum P+ 
and pl of the bound state. The special feature that light-cone wavefunctions do 

not -depend on the total momentum is not surprising, since x; is the longitudinal 

momentum fraction carried by the ith-parton (0 5 x; 5 l), and il; is its momentum ’ 
“transverse” to the direction of the meson. Both of these are frame independent 

quantities. The ability to specify wa,vefunctions simultaneously in any frame is a 

special feature of light-cone quantization. 

In the.light-cone Hamiltonian quantization of gauge theories, one chooses the 

light-cone gauge, n . A = A+ = 0, for the gluon field. The use of this gauge results 

in well-known simplifications in the perturba.tive analysis of light-cone dominated 

processes such as high-momentum hadronic form factors. It is indispensable if one 

desires a simple, intuitive Fock-state basis since there are neither negative-norm 

gauge boson states nor ghost states in the unitary AS = 0 gauge. Thus each term 

in the normalization con.dition 

(6) 
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is positive. 

The coefficients in the light-cone Fock state expansion are the parton wavefunc- 

tions $‘,,H(x;, hi, A;) which d escribe the decomposition of each hadron in terms of 

its fundamental quark and gluon degrees of freedom. The light-cone variables x; are 

often identified with the constituent’s longitudinal momentum fractions x; = kf/P,, 
in a frame where the total momentum P” + co. However, in light-cone Hamiltonian 

;r formulation of QCD, x; are the boost-invariant light-cone fractions, 

. 

k+ kf + k;z 
xi z p+ = po + pz 7 (7) 

independent of the choice of Lorentz fra.me. 

Given the light-cone wavefunctions, $,,H(x;, &;, A;), one can compute virtually 

any hadronic quantity by convolution with the a.ppropriate quark and gluon matrix : 

elements. The proton form factors ca.n be computed as a simple overlap of its initial 

and-final state light-cone wavefunctions $,iP. The behavior of large momentum 

transfer Q2 exclusive processes is controlled by the hadron distribution amplitudes 

$(x;; Q), the valence Fock state wavefunction at impact separation bl = l/Q [15, 

481. For example, the angular, helicity, and phase - dependence of large-momentum- 

transfer proton Compton scattering provides a sensitive measure of the shape of 

h&i, Q> W-4. 
In the case of inclusive reactions, the leading-twist structure functions measured 

in deep inelastic lepton - proton sca.ttering are immediately related to the light-cone 

probability distributions: 

‘2M FI(x, &) = F2(x’ ‘) M c ea G,,,(x, Q) , 
X a 

(8) 

where 

is the number density of partons of type a with longitudinal momentum fraction x 

in the proton and total transverse momentum less than Q. This follows from the 
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observation that deep inelastic lepton scattering in the Bjorken-scaling limit occurs 

if XBj matches the light-cone fraction of the struck quark. (The Cb is over all partons 

of type a in state n.) However, the light-cone wavefunctions contain much more 

information for the final state of deep inelastic scattering, such as the multi-parton 

distributions, spin and flavor correlations, and the spectator jet composition. 

;A The Light-Cone Hamiltonian Eigenvalue Prob- 
1eA 

- 

. . 
In principle, the problem of computing the spectrum in QCD and the corre- 

sponding light-cone wavefunctions for each hadron can be reduced to diagonalizing 

the QCD light-cone Hamiltonian in Heisenberg quantum mechanics: Any hadron 

state must be an eigenstate. of the light-cone Hamiltonian. A pion state IT), for 

example, satisfies (M,” - HLC) In) = 0, and projecting this onto the various Fock . . ..- 
states (~4, S9I - - - -results in an infinite number of coupled integral eigenvalue 

equations [14, 401, 

where V is the interaction part of H Lo. In principle, these equations determine the 

hadronic spectrum and wavefunctions. 

.At this point there are several approaches that are currently popular in dealing 

with these equations. Although these methods ma.y look very different they have 

the same common elements. A central difficulty is that any truncation of the Fock 

space at a fixed number of states brea.ks gauge invariance. We can see this by exam- 

ining the Ward-Takahashi identities of QED. These identities are a manifestations 

of gauge invariance, and at the one loop level they relate wavefunction and vertex 

renormalization constants. Th e wavefunction renormalization involves at lowest 



- 

-  . -A  

o r d e r  a  two p a r ticle in termedia te  sta te  wh i le  th e  vertex renormal i za t ion  involves a  

th r e e  p a r ticle in termedia te  sta te , th u s  if o n e  w e r e  to  t runcate a t th e  two p a r ticle in-  

te r m e d i a te  sta te , th e  W a r d - T a k a h a s h i  i d e n tities  a r e  v io lated.  T h e  W a r d - T a k a h a s h i  

i d e n tities  in  g e n e r a l  i m p l e m e n t g a u g e  invar iance,  wh ich  th e n  m a intains unitar i ty 

a n d  L o r e n tz covar iance.  In  th e  l igh t -cone g a u g e  th e  th e o r y  h a s  n o  g h o s t o r  n e g a tive  

n o r m  sta te , th e r e fo r e  th e  th e o r y  wil l  a u to m a tical ly b e  uni tary.  O n  th e  o th e r  h a n d  

. . 

;r it wil l  b r e a k  m a n ifest L o r e n tz covar iance,  a n d  th is h a s  b e e n  s e e n  in  C o m p to n  scat- 

- ter ing 1 5 0 1 , a n d  in  th e  Y u k a w a  ( 3 + 1 )  m o d e l [4 4 ]. O n e  fin d s  in  Y u k a w a  ( 3 + 1 )  th a t 

th e  b o u n d  sta te  spec t rum in  di f ferent helici ty sta tes  d o e s  n o t h a v e  th e  d e g e n e r a c y  

r e q u i r e d  by  L o r e n tz covar iance  b e c a u s e  th e  T a m m - D a n c o ff a p p r o x i m a tio n  a lso  vi- 

o la tes ro ta tio n a l  invar iance.  C a v e a .ts o n  th e  v io l& ion o f ro ta tio n a l  invar iance  h a v e  

a lso  b e e n  ra ised  by  B u r k a r d t a n d  L a n g n a u  [5 1 ]. A  s o n e  improves  th e  T a m m - D a n c o ff 

a p p r o x i m a tio n  by  increas ing  th e  n u m b e r  o f bas is  sta tes  th is v io lat ion o f g a u g e  in-  

var iance  a n d  ro ta tio n a l  invar iance  wil l  b e  p u s h e d  to  h i g h e r  Fock space  sectors. T o  
. . ._ -  
th e  extent  th a t h i g h e r  a .n d  h i g h e r  Fock space  sectors m a k e  smal ler  c o n tr ibut ion, 

the i r  v io lat ion o f g a u g e  a n d  ro ta tio n a l  invar iance  wil l  b e  smal ler  a n d  smal ler .  T o  

d a te , h o w e v e r , th is  h y p o thes is  1la.s n o t b e e n  checked  by  explici t  calculat ions.  

In  th e  c o m p l e te  fo r m u l a tio n  o f th e  “discret ized l igh t -cone q u a n tiza tio n ” ( D L C Q )  

m e th o d , o n e  constructs a  c o m p l e te  d iscret ized l igh t -cone Fock bas is  in  m o m e n tu m  

space . T h e  size o f th e  Fock sta te  bas is  c a n  b e  is lim ite d  by  a  cut-off in  th e  to ta l  

invar iant  mass  M 2  =  C  (ki lmz).  T h e  l igh t -cone Hami l ton ian  c a n  th e n  b e  v isual-  

i zed as  a  m a trix wi th a  fin i te n u m b e r  o f rows  a n d  co lumns  assuming  a n  invar iant  

ul traviolet  cut-off. Next, o n e  fo r m u l a tes  al l  necessary  m o d e l a s s u m p tio n s , in  accord  

with covar iance  a n d  gauge- inva r iance , th u s  o b ta in ing  a  d iscrete r e p r e s e n ta tio n  o f 

th e  q u a n tu m  fie ld  th e o r y . A t a n y  sta g e , o n e  ca.n g o  to  th e  c o n tin u u m  lim it, conver t  

th e  m a trix e q u a tio n  to  a ,n  in tegra l  e q u a tio n , a ,n d  so lve it wi th sui tably o p tim a l- 

i zed numer i ca l  m e th o d s . O n e  shou ld  e m p h a s i z e , th a t th e  regu lar iza t ion  s c h e m e  o f 

D L C Q  [4 0 ] explicit ly 1 1  a  ows  fo r  such  a  p r o c e d u r e , s ince th e  regu lar iza t ion  scales a r e  

e q u a l  b o th  fo r  discret izat ion a n d  th e  c o n tin u u m , in  c o n trast to  latt ice g a u g e  th e o r y . 

In  th e  D L C Q  a p p r o a c h , th e  l igh t -cone Fock sta te  bas is  is r e n d e r e d  discrete 
c -. 

- q $  ‘,. 
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by imposing periodic (or anti-periodic) boundary conditions [32], and the integral 

equation becomes a matrix eigenvalue equation. However, even though the QCD 

potential is essentially trivial on the light-cone momentum space basis, the many 

channels required to describe a hadronic state make these equations very difficult 

to solve, except by numerica. methods. For exa.mple, Fock states with two or more 

gluons are required just to represent the effects of the running coupling constant of 

A closer examination show that regulating and renormalizing light-cone field 

theory can be quite ambiguous. In general, one must introduce an infrared cutoff 

in Ic+ and an ultraviolet cutoff in zl. A number of approaches to this problem can 

be found in the literature including DLCQ, d imensional regulation and invariant 

mass cutoffs, which preserves the light-cone Lorentz symmetries. It is useful to 

note that each light-cone field has two distinct length scales, IC- and ~1 (not to be 

confused with longitudinal momentum fra.ction). Table 3 gives the dimension of all 
. . ..- 
the objects that appear in the canonical Hamiltonian in both the equal time and 

light-cone approaches. - . 

Table 3 

Object Equal Time 
dimension of length X 

scalar field 4 l/x 

fermion field II, 1 /x312 

mass l/x 
derivative a/ax N l/x 

Hamiltonian l/x 
Hamiltonian density l/x4 

Light-Cone 
X- ,xl- 

l/Xl 

l/x*G 

l/Xl 

a/ax- - l/x- 

x-/x; 

1/x: 

In addition to the objects in Ta.ble 3 the canonical light-cone Hamiltonian contains 

the operator [a/ax-lW1. If one considers all the allowed terms that one might add to 
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the canonical Hamiltonian as possible counter terms, one finds an explosion in the 

number of possibilities. The Ohio State approach attempts to turn this unseemly 

situation into a virtue [7], by arguing that additional counter terms provide the de- 

grees of freedom necessary to repair the symmetries that were broken in formulating 

the theory, in particular gauge invariance, and therefore Lorentz covariance. 

Even without solving the QCD light-cone equations of motion, one can an- 

;__ticipate some general features of the behavior of the light-cone wavefunctions[l4, 

15, 521. Each F oc k component describes a system of free particles with kinematic 

invariant mass squared: 

(11) 
.- On general dynamical grounds, one can expect that states with very high M2 are 

svppressed in physical hadrons, with the highest mass configurations computable 

from perturbative considerations. One also notes that 

ln x. = ln (kO + k”)i t (PO + p”) = yi - yp (12) 

is the rapidity difference between the constituent with light-cone fraction x; and 

the rapidity of the hadron itself. Since correla,tions between particles rarely extend 

over two units of rapidity in hadron physics, this argues that constituents which are 

correlated with the hadron’s quantum numbers a.re primarily found with x > 0.2. 

The limit x + 0 is normally an ultraviolet limit in a light-cone wavefunction. 

Recall, th&t in any Lorentz frame, the light-cone fraction is x = Ic+/P+ = (k” + 

k”)/(P’ + P”). Th us in a frame where the bound state is moving infinitely fast in 

the positive z direction (“the infinite momentum frame”), the light-cone fraction 

becomes the momentum fraction x + k”/p”. However, in the rest frame F = o’, 

x = (k” + k”)/M. Th us x + 0 generally implies very large constituent momentum 

k” -+ -k” + --oo in the rest fra.me; it is excluded by the ultraviolet regulation of 

the theory - unless the particle has strictly zero ma.ss and transverse momentum. 

If a particle has non-relativistic momentum in the bound state, then we can 

identify k” N XM - m. This correspondence is useful when one matches physics at 
--.- .1- t; .- 
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the relativistic/non-relativistic interface. In fact, aay non-relativistic solution to the 

SchGdinger equation can be immediately written in light-cone form by identifying 

the two forms of coordinates. For example, the Schrodinger solution for particles 

bound in a harmonic oscillator potential can be taken as a model for the light-cone 

wavefunction for quarks in a confining linear potential [16]: 

; c, 
(13) 

This form exhibits the strong fall-off at large relative transverse momentum and 

at the x + 0 and x + 1 endpoints expected for soft non-perturbative solutions 

in QCD. The perturbative corrections due to hard gluon exchange give amplitudes 

suppressed only by power laws and thus will eventually dominate wavefunction 

behavior over the soft contributions in these regions. This ansatz is the central 

assumption required to derive dimensional counting perturbative QCD predictions 

-For Exdlusive proces?es at large momentum transfer and the x + 1 behavior of 

deep inelastic structure functions. A review is given in Ref. [16]. A model for 

the polarized and unpolarized gluon distributions in the proton which takes into 

account both perturbative QCD constra.ints at large x and coherent cancellations 

at low x and small transverse momentum is given in Ref. [52]. 

The fact that particle exchange only generates a power law fall-off wavefunc- 

tion in the LCTD calculation is in many ways a virtue of this totally relativistic 

calculation. The Tamm-Dancoff equation will diverge at large kl as a result of 

this behavior and the wavefunctions and eigenfunctions will show strong cutoff de- 

pendence. Of course, this is a reflection of the fact that for a strongly coupled 

relativistic field theory one can not get away with just regulating the theory, one 

must reriormalize it. Counter terms must be added to the canonical Hamiltonian 

to remove this dependence of the wavefunction and eigenvalues on the regulator 

[53]. In a standard field theory one adds or cha.nges the operators appearing in 

the canonical approa.ch, however, in the LCTD approach one must change the ker- 

nel in the Tamm-Dancoff integral equations. The changes must reflect the allowed 
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Figure 1: Representative baryon spectrum for QCD in one-space and one-time dimension 
WI * 

operator structure in Table 2. This renormalization procedure has recently been 

applied to the Yukawa model in 3+1 dimension and can restore the degeneracies in 

the bound state spectrum expected from Lorentz invariance [44]. 

- ‘-The DLCQ method was first used to obtain the mass spectrum and wavefunc- 

.tions of Yukawa theory, &@, in one space and one time dimensions [32]. This 

s&kss~ led to further applications including QED( l+l) for general mass fermions 

and the massless Schwinger model by Eller et al. [29], b4 theory in l+l dimen- 

sions by Harindranath a.nd Vary [34], and QCD(l+l) for NC = 2,3,4 by Hornbostel 

et al. [30]. Numerical solutions have been obtained for the meson and baryon 

spectra as well as their respective light-cone Fock state wavefunctions for general 

values of the coupling constant, quark masses, and color. A representative example 

of the invariant mass spectrum.is shown in Fig. 1 for baryon states (B = 1) as a 

function of the dimensionless variable X = l/(1 + rrm”/g”). Notice that spectrum 

autbmatically includes continuum states with B = 1. 

The structure functions for the lowest baryon states in SU(3) at two different 

coupling strengths m/g = 1.6 and m/g = 0.1 are shown in Fig. 2. 

Higher Fock states have a very small probability; representative contributions to 

1 
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Figure 2: The baryon quark momentum distribution 
DLCQ [30]. 
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Figure 3: Contribution to the baryon quark momentum distribution from qqq@ states 
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f- s (GeV) 

Figure 4: Calculation of Re+e-( s) in QED( 1-t 1) using the DLCQ method. The results . . 
are shown for different coupling constants. For display purposes, the plot is clipped at 

_~ R = 5. In addition, in order to give finite widths to what would have been b-functions, 
.* the infinitesimal c was set to 0.01 (from R.ef. [54]). 

the baryon structure functions are shown in Fig. 3. The interactions of the quarks 

.ig &te pair state produce Fermi motion beyond x = 0.5. Although these results are 

for one-time-one-space theory they do suggest tha.t the sea quark distributions in 

physical hadrons may be highly structured. 

Similar results for QCD( l+l) were also obtained by Burkardt [31] by solving the 

coupled light-cone integral equation in the low particle number sector. Burkardt was ’ 

also able to study non-additive nuclear effects in the structure functions of nuclear 

states in QCD(l+l). M ore recently, Hiller [54] h as used DLCQ and the Lanczos 

algorithm for matrix diagonalization method to compute the annihilation cross 

section, structure functions and form factors in l+l theories. A typical result is 

shown in Fig. 4. It would be interesting to repeat this non-perturbative calculation 

f0r.a renormalizable theory like the Gross-Neveu model in (l+l) dimensions, and 

analyze bow the channel-by-channel calculation merges into the asymptotic freedom 

result. 

The Yukawa model (l+l) in LCTD was studied by Ref. ‘[33]. Solution for 

the wavefunction and bound sta.te mass are present including a careful analysis 
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of self energy effects. This detailed numerical study used the sector dependent 

renormalization ideas proposed by Harindranath, Perry and Wilson [55]. Wilson 

has al-so emphasized the potential advantages of using a Gaussian basis similar 

to that used in many-electron molecular systems, and that method was used in 

Ref. [33]. 

. . 

The application to higher dimensions is much more involved due to the expan- 

;_-sion of the degrees of freedom and the need to introduce ultraviolet and infrared 

regulators and truncation procedures which minimize violations of gauge invariance 

and Lorentz invariance. This is in addition to the work involved implementing two 

extra dimensions with their added degrees of freedom. There have been some initial 

attempts to apply DLCQ to gauge theories in 3+1 dimensions [40, 42, 45, 561. 

Most important for, the purpose of having an explicit test, positronium can 

serve as a crucial system to .validate the DLCQ methods. In addition to the work 

by Krautgartner, Pauli, and Wijlz [43] to be d iscussed here in short, Kaluia [42] . . ..- 
has recently-used a DLCQ diagonalization approach to obtain the lepton structure 

function in positronium. . 
To simplify the model [43] one considers only the charge zero sector of QED(S+l) 

and includes only the J, = 0 electron-positron (ee) and the electron-positron-photon 
(eer) Fock states, denoted collectively by lee) a.nd ]eey), respectively. In effect one 

analyzes the muonium system p + - e at equal lepton mass to avoid complications 

from the annihilation kernels. Even when one restricts the Fock states to one dy- 

namical photon, one is considering a complex non-perturbative problem, similar to 

the ladder approximation in the Bethe-Salpeter formalism. The light-cone approach 

has the advantage that one obtains the Dirac-Coulomb equation in the heavy muon 

limit. 

It is convenient to introduce the projectors P = C; ](ee);) (( ee);] and Q = 

C; I( eer);) (( eey);], with P + Q = 1. The index i runs over all -discrete light-cone 

momenta and helicities of the pa.rtons (electron e, positron e and photon 7) sub- 

ject to fixed total momenta and to covariant regularization by a sharp momentum 

cut-off [40]. Applying these projectors, the full Hamiltonian matrix equation can 
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be identically rewritten as 

Herr (4 wi (4) = Mf(w)l$;(w)) ) (14) 

with the “effective Hamiltonian” acting only in P-space, i.e. 

Herr(w)- PHLcP+ PHLC 
1 

Q(w - HLC)Q HLcp * (15) 

. . 

Once I$+J>) = PI+;) is k nown, one can calculate the Q-space wave function by a 

quadrature. 

In the continuum, the matrix above equation becomes an integral equation 

+ c /-dr’d’i++ (I, CL; sl, ++‘, &‘; s;, s;)q!+‘, ii, s;, s;) = 0 . (16) ._ ..- 
3; 7s; 4 . 

One has to keep track explicitly of s2 and ~1, the helicities of the electron and 

the positron. The finite domain of integration D is set by covariant Fock space 

regularization [40], 
??I;+@ 

< A2 + 47ni , 
x(1 -x) - 07) : 

with given cut-off scale A. Note that to this degree of approximation Eqs. (14)-(16) 

are the same in both approaches, DLCQ and LCTD. Even at this level the integral 

equation develops a non-integrable colinear singularity. This colinear singularity 

[43] has been seen also in the Compton scattering [50]. Possible solutions have 

been proposed in Ref. [43]. 

The spectrum of the Tamm-Dancoff equation obtained using the above method 

is displayed in Fig. 5 as a function the number of integration, points which play 

here the same role as the resolution in l+l dimensions. The two lowest states are 

identified as the singlet and the triplet state of positronium, since the wave functions 

have the corresponding symmetries. The a.greement with former analytical solutions 



[57] are excellent. The compa.ratively slow convergence of the higher excited states 

is not surprising. 

A .detailed study of Yukawa. (3+1) by Glazek, Harindranath, Pinsky, Shigemitsu 

and Wilson [44] considers the implication of renormalization, self energy, triviality, 

and Lorentz covariance. They show that the fermion self energies give rise to a 

triviality bound which limits the ultraviolet cutoff for a given bare coupling. A new 

. . 

; c, renormalization procedure for the LCTD equation is introduced which removes the 

cutoff dependence from the bound state masses and wavefunction even for large 

couplings [53]. Th is new renormalization procedure introduces additional degrees 

of freedom whit h are used to restore the Lorentz covariance of the spectrum. 

Numerical solutions to the LCTD equation for the spectrum are given in Fig. [6] 

[44]. It is amazing how similar the wa.vefunction as given in Figs. [7 and 81 [43, 441 

are for different models and procedures. 

._ ..- 
5 The Light-Cone Vacuum - 

In the introduction we discussed the remarkable feature that the vacuum of the 

free light-cone theory can also be an eigenstate of the full Hamiltonian. Let us 

review the arguments: By definition, the perturbative vacuum is annihilated by 

the free Hamiltonian: H~c(‘)l0) = 0. In gauge theory the interaction terms in 

HLC are three- and four-point interactions; for example, in QED, the application 

on the vacuum of the interaction H[, = Jd3gt,6yp~A, results in a sum of terms 

~+(C1>~+(~2)d+(~>lO). As always, the conservation of P+ requires C& ki+ = 0. 
However, k+ = 0 is incompa.tible with finite energy for massive fermions. Thus the 

total light-cone Hamiltonian also annihilates the perturbative vacuum: HLC IO) = 0. 
In contrast in equal-time qua.ntization, the state HIO) is a highly complex composite 

of pair fluctuations. 

The apparent simplicity of the va.cuum in light-cone quantization is in contra- 

diction to normal expectations for the structure of the lowest mass eigenstate of 

QCD. In the instant form, the QCD va,cuum is believed to be a highly structured 
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Figure 6: Bound state mass, M2 versus cutoff A for mg = 0.25 in units of the fermion 
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Fig. 7a Fig. 7b 

Fig. 7c 
..Fig. 7d 

Figure 7: a) Singlet wavefunction for Yukawa (11 component) Q = 1.184 mg = 0.25, 
b) Singlet wavefunction for Yukawa (tt component) (Y = 1.184 mB = 0.25, c) Singlet 

c -. yaysf&.ction for QED (tl component) (Y = 0.03 
QkD (If component) cr = 0.03 

m.-, = 0, d) Singlet wavefunction for 
m-, = 0. 
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Fig. 8a Fig. 8b 

Fig. 8c Fig. 8d 

Figure 8: a) Triplet wavefunction for Yukawa (tt component) cy = 1.184 mg = 0.25, 
b) Triplet wavefunction for Yukawa (TL component) (Y = 1.184 mg = 0.25 (absolute 

_ - v@E); F)- Triplet wavefunction for QED (tt component) cr = 0.3 m, = 0, d) Triplet 
v%vefunciion for QED (11 component) (Y = 0.3 m, = 0. 
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condensate, which in turn is believed to be connected to color confinement, chiral 

symmetry breaking, the Goldstone pion, etc. [58]. In the standard model, the IV* 

and 2 bosons acquire their mass through the spontaneous symmetry breaking of 

the scalar Higgs potential. Thus an immediate question is how one can obtain 

Le_non-trivial vacuum properties in a light-cone formulation of gauge field theory [59]. 

This problem has recently been attacked from several directions. The question of 

whether boundary conditions can be consistently set in light-cone quantization has 

been discussed by McCartor [37, 601 and Lenz [38, 611. They have shown that for 

massive theories the energy and momentum derived using light-cone quantization 

are not only conserved, but also a.re equivalent to the energy and momentum one 

would normally write down in an equal-time theory. In the analyses of Lenz et al. 

-[61] and Hornbostel [62], one traces the fate of the equal time vacuum in the limit 
._ ..- 
P, + 00 and equivalently in the limit fl + n/2 when rotating the evolution param- 

-eter 7 = tcos0 + E sin 19 into the light-cone time. Other authors [34, 59, 631 find _ 
that for theories allowing spontaneously symmetry breaking, there is a degeneracy 

of light-cone vacua, and the true vxuum state can differ from the perturbative 

vacuum through the addition of zero mode quanta with k+ = k- = 0. 
Thus a number of the most important open questions are grouped under the 

label “zero modes”. To illustrate some of the issues which arise let us consider the 

free Dirac theory in 1 + 1 dimensions. The Lagrangian density is 

which gives the equations of motion for the two components of the Dirac spinor 

ia-tj- = fm$+ . 

(1% - 

(20) 
c  -. If we quantize on the surface Z+ = 0 then (20) is a constraint equation for $-. We -. 

;ic:‘thus. choose $+ as the field to provide the independent degrees of freedom and treat 
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T/J- as a functional of $+ : 

An immediate question is: what boundary conditions should we impose to specify 

the anti-derivative? Since that involves the possibility of adding an arbitrary func- 

tion independent of Z- it is a “zero mode” question. To focus the discussion let us 

: b-define a particular anti-derivative as 

4(x-) = -&J”ik-x-&(k-)dk- 
7r 

Then we define J by - 
..- 

dx- = _ & JF -J(k-)dk-. 

(22) 

(23) 

.We=rite [21] as 
- . 

-- 
. _ T+!J- = -iim/$+dx- + F(x+) . (24) - 

The problem may now be expressed a.s the problem of specifying F. 

If the mass is not zero and we impose no periodicity conditions on 1c, then we 

must choose F to be zero. It is easy to show that that choice leads to a light-cone 

theory isomorphic to the usual equal-time theory. That choice appears to most ’ 

people to -be the natural one. But now consider the case where m is zero. Now if 

we set F = 0 we will have $- = 0 which is not isomorphic to the usual equal-time 

theory. The solution is to use the freedom in F to initialize $J-; that procedure is 

the same whether we work in the continuum or in a system made periodic in some 

way [60]: 

Finally, consider the case where the mass is nonzero but we make the system 

periodic by choosing anti-periodic boundary conditions for $+. In that case we find 

that a consistent dynamical system can be obta.ined by setting F equal to zero. 

There is considerable question, however, as to whether that is the best choice for 
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. . 

obtaining what we want: a system which, in some sense, best approximates the 

continuum limit [62]. P ro bl ems with the choice F = 0 include not only the obvious 

violation of parity, but the total absence of structure in the +- anticommutator; it 

is easy to see that {$t, $-} lacks th e expected singular structure and such structure 

is not recovered for any value of the periodic length. Experience in models suggests 

that the absence of singular structure in $- may be a bad defect in interacting 

;e theories [37]. A better choice may be to use the freedom in F to include the states 

parity-symmetric to those initialized on z+ = 0. That possibility may involve 

starting in a basis in which neither P+ or P- are diagonal [62]. 

..- 

In interacting theories further zero mode questions arise. For instance, in gauge 

theories there is the problem of maintaining consistency between boundary condi- 

tions and gauge choice. ,That problem exists to some extent even in the equal-time 

formulation. For example, the gauge choice A1 = 0 is inconsistent with anti-periodic 

boundary conditions on $ in the case of the Schwinger model. The solution is to 
._ ..- 
keep a zero mode in .A1 [64]. A simi1a.r effect is seen in light-cone gauge. In general 

this type of problem is more complex in light-cone quantization than in equal-time 

quantization due to the fact that in light-cone quantization points on the initial- 

ization surface ar e causally connected. Even for non-gauge theories similar issues 

arise. In Yukawa theory imposing periodicity conditions on the Fermi field requires 

the existence of a constrained zero mode in the Bose field. The mode is not a degree 

of freedom in the system but is a functional of the Fermi degrees of freedom which 

goes to zero as the coupling constant goes to zero. 

When one considers theories in higher dimensions and considers only the con- 

tinuum formulation, problems of the type we have been discussing are actually 

reduced. If one considers models made periodic by boundary conditions however, 

the problems persist much as in 1 + 1 dimensions. Furthermore, the effects of an 

improper formulation are usually more severe in higher dimensions than in 1 + 1. 

Often in 1 + 1 the omission of a zero mode lea.ds to a minor imperfection in the 

solution, but in higher dimensions such imperfections tend to pop up multiplied by 

divergent quantities. For example, omission of the constrained zero mode discussed 
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above leads to the existence of a non-covariant, quadratically divergent self-mass 

term. Such problems can greatly complicate the proper formulation of a consistent 

renormalization scheme. 

. . 

.The Schwinger model provides an illustration of these questions which shows the 

potential for zero modes to resolve apparent paradoxes in the light-cone method. 

For example: the Schwinger model has a degenerate vacuum; one might wonder how 

,+-this is possible in view of the argument outlined above that the light-cone “bare 

vacuum” is the only possible vacuum. The answer turns out to involve the necessity 

(in the simplest formulation) of keeping a zero mode in A+. The existence of that 

mode leads to a gauge correction to the P+ of the free theory. In that rather subtle 
_~ 

way the interaction does “dress” the P+ of the full theory and that modification 
.- 

brings certain states which in free theory have positive values of p+ into degeneracy 

with the bare vacuum. These states become the other vacua of the theory; the bare 

vacuum is one of the vacua of the intera.cting theory. It is worth observing that even 
._ ..- 
though theexpectation that the bare vacuum will be the physical vacuum is not 

completely realized, all the vacua are much simpler in the light-cone representation . 
than in the equal-time representation: in the light-cone representation they all 

involve only a finite number of bare quanta wl1erea.s in the equal-time representation 

they all involve an infinite number of bare quanta [36]. Some of these quanta 

also involve zero modes-the modes of $J,- which must be specified along the line 

X- = 0 [55]. This example illustrates the possibility that condensates may be more 

easily represented in the light-cone representation-whether this possibility will 

be realized in more complicated theories such as QCD we do not yet know. The 

Schwinger model also illustrates the possibility that Tp”” may involve integrals along 

surfaces other than x+ = 0 [36,55]. I n tl le case of the Schwinger model many of the 

expectations presented in the simplest discussions of the light-cone method are not 

fully realized, but the full solution exhibits enough of the expected properties that 

the solution is much sim’pler in the light-cone representation than in the equal-time 

representation [28,36,58]. 

An illuminating analysis of the influence of zero modes in QED(l+l) has been 
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given by Werner, Heinz1 and Krusche [36]. Th y h e s ow that although it is correct 

to impose the gauge condition A + = 0 on the particle sector of the Fock space, one 

must allow for A+ # 0 if k+ = 0. Allowing for this degree of freedom, one obtains a 

series of topological 8 vacua on the light-cone which reproduce the known features 

of the massless Schwinger model including a non-zero chiral condensate. However, 

the effect of the infrared zero mode quanta decouples from the physics of zero charge 

,--bound -states, so that the physical spectrum in one-space one-time gauge theories 

is independent of the choice of vacuum. The freedom in having a non-zero value 

for A+ at k+ = 0 can also be understood by using the gauge PA+ - k+A+ = 0 
. . 

[61, 651. 
_~ 

-- 
It is thus anticipated that zero mode qua,nta are important for understanding the 

light-cone vacuum for QCD in physica, space-time. In particular, the non-Abelian 

four-point interaction term 

- ..H;c = - ;g2 J d3&!‘r{ [A’“, A”][Ap, A”]} (25) 

plays a unique and an essential role, since HL, 10) # 0 as long as one allows for zero 

mode gluon fields in the Fock space. Thus the true light-cone vacuum 102) in QCD 

is not necessarily identical to the perturbative vacuum IO). In fact the zero mode 

excitations of HLIc p reduce a color-singlet gluon condensate (fl]G,,Gp”” ]R) # 0 of 

the type postulated in the QCD sum rule analyses. The effect of such condensates 

will be to. introduce “soft” insertions into the quark and gluon propagators and 

their effective masses m(p2), and to modify the perturba,tive interactions at large 

distances. This effectively introduces a small p+ cutoff into the theory and to assure 

that the physical quantities are independent of the scale one must introduce counter 

terms. These counter terms should carry the essential physics associated with 

small p+ that has been removed by the cutoff. Thus unlike the one-space one-time 

theory, the zero-mode gluon excitations can affect the color-singlet bound states. 

On the other hand, such zero mode corrections to vacuum cannot appear in Abelian 

QED(3+1) as long as a non-zero fermion mass appears in the free Hamiltonian. 
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6 The Prospects and Challenges 

Light-cone quantization provides a relativistic and frame-independent represen- 

tation- of quantum field theory amenable to computer solution with present day 

computer technology. The method reduces the light-cone Hamiltonian to a coupled 

set of matrix or integral equations and has the remarkable feature of generating 

the complete spectrum of the theory: bound states and continuum states alike. 
; c, 

light-cone fiel d theory is also useful for studying relativistic many-body problems 

in relativistic nuclear and atomic physics. In the nonrelativistic limit the theory 

is equivalent to the many-body Schrodinger theory. As we have reviewed here, 
_~ light-cone field theory has been successfully applied to a number of field theories 

-- in one-space and one-time dimension, providing not only the bound-state spectrum 

of these theories, but also the wavefunctions and the first calculations for the real 

world of (3+1) d imension that have recently become available. A number of more 

Wiited stud&s have.been conducted with significant success, and have uncovered 

interesting and challenging new problems. 

Although the primary goal has been to apply light-cone methods to nonpertur- ’ 

bative problems in QCD in physical space-time, it is important to first validate the 

techniques - particularly the renormalization program - in the much simpler case 

of QED and the Yukawa model. Quantization on the light-cone allows practical nu- 

merical solutions for obtaining its spectrum and wavefunctions at arbitrary coupling 

strength. In the DLCQ a.nd LCTD methods ultraviolet and infrared regularizations 

have made considerable progress and are continuing to be developed. 

The intrinsic advantages and outstanding problems of light-cone field theory 

are: 

l The light-cone wavefunctions are independent of the momentum of the bound 

~ state - only relative momentum coordina,tes appear. 

l Fermions and derivatives are trea,ted exactly; there is no fermion doubling 

problem. 

_: _- w. .- 
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l Eliminating extra fermion or gluon degrees of freedom introduces non-local 

operators into the theory. 

.o The ultraviolet and infrared regulators introduced in light-cone field theory 

break Lorentz covariance. 

; c, 

l The field theoretic and renormalization properties of the light-cone theory are 

fundamentally different than the equal time problem because there are two 

indkpendent scales present. 

. . l One can use the exact global symmetries of the continuum Lagrangian to 

_~ pre-diagonalize the Fock space sectors. 

l The minimum number of physical degrees of freedom are used because of 

the light-cone gauge. No Gupta-Bleuler or Faddeev-Popov ghosts occur and 

._ ..- unitarity is explicit. 
- . . 

- l -Gauge invariance is lost in a Hamiltonian theory which lead to the breaking 
. 

Of Lorentz covaria.nce. 

l The output is the full color-singlet spectrum of the theory, both bound states 

and continuum, together with their respective wavefunctions. 

l The number of degrees of freedom in the representation of the light-cone 

Hatiiltonian increases ra.pidly with the maximum number of particles in the 

Fock space. 

‘o Many problems of ultraviolet a.nd infrared regulation remain. 

l A cutoff in the invariant ma.ss of the Fock state introduces extra renormaliza- 

tion terms. 

l The renormalization procedure is not completely understood in the context 

of non-perturbative problems. 

_: - xii. -- 
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l The vacuum in QCD is not likely to be trivial since zero-modes might mix 

with the free vacuum state. 

.o Virtually all aspects of chiral symmetry breaking, condensate and confinement 

are thus far not understood in light-cone quantized field theories in (3+1) 

dimensions. 

;--While the challenges for light-cone field theory are substantial, the prospects for ’ 

exciting new breakthroughs towards a solution of QCD, for the first time, appear 

within reach. 

_~ 
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