
ar
X

iv
:h

ep
-p

h/
92

05
22

9 
  2

2 
M

ay
 9

2

SLAC–PUB–5810

TUM-TH-144/92

SNUTP 92-26

April 1992

T/AS

AXINO MASS?

E. J. Chun

Physik Department, Technische Universitat Munchen

D-8046 Garching, Germany

Jihn E. Kim

Center for Theoretical Physics and Department of Physics

Seoul National University, Seoul 151-742, Korea

and

H. P. Nilles

#

Stanford Linear Accelerator Center

Stanford University, Stanford, California 94309

ABSTRACT

The mass of the axino is computed in realistic supersymmetric extensions of

the standard model. It is found to be strongly model dependent and can be as small

as a few keV but also as large as the gravitino mass. Estimates of this mass can

only be believed once a careful analysis of the scalar potential has been performed.
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While the standard model of electroweak interactions is in complete agreement

with all experimental findings, still much effort has been devoted to construct

various generalizations. Supersymmetric extensions have attracted much attention

in the last decade.
[1]

Realistic models of this type consider local supersymmetry

(supergravity), spontaneously broken in a so-called hidden sector at a mass scale of

MS ≈ 1011GeV. The induced SUSY-breaking mass scale in the observable sector

is given by a value of order of the gravitino mass m3/2 ∼ M2
S/MP , where MP

denotes the Planck mass. The breakdown scale of the weak interaction gauge

symmetry SU(2)×U(1) is then closely related to the scale of SUSY-breakdown in

the observable sector, thus explaining the smallness of MW compared to MP , once

we understand the mechanism for the breakdown of supersymmetry.

In the minimal supersymmetric extension of the standard model, however,

there is one dimensionful parameter which is not proportional to m3/2, the Higgs

mass term µHH̄ in the superpotential. Such a term is allowed by supersymmetry

and it remains to be understood why also µ should take values in the desired

energy range. One suggestion to achieve this starts with the consideration of

the axionic generalization of the standard model.
[2]

The decay constant Fa of the

invisible axion should lie in the range given by MS and it was argued that such

a coincidence cannot be accidental. In fact, one can easily construct models, in

which µ is generated dynamically to be in the range of the gravitino mass.
[3]

Of course, the prime motivation to consider the axionic generalization of the

standard model is the quest for a natural solution of the strong CP-problem. A

supersymmetric realization of this mechanism is most easily achieved in a model

with several Higgs supermultiplets.
[4]

Instead of just the pseudoscalar axion, such

a model now possesses a full axion supermultiplet. This contains the axino, the

fermionic partner of the axion, as well as the saxino, the scalar partner of the axino.

Although these particles are very weakly interacting, they might nonetheless lead

to important astrophysical and cosmological consequences. The stability of stars

and the observed energy density of the universe, as is well known, restrict the

decay constant of the invisible axion to a small window.
[5]

Furthermore, a very
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light saxino might give rise to new long range interactions which are incompatible

with present observations. In a model of broken supersymmetry, however, one

would usually expect the saxino to receive a mass of order of the gravitino in the

100 GeV to TeV range, avoiding such unpleasant phenomena as a fifth force.

The possible consequences of the presence of an axino have not been considered

in detail until recently.
[6]

Given the weakness of its interactions, of course, we would

rather expect to find only indirect manifestations of the existence of such a particle.

In fact, up to now only the effects of the (possibly) stable axino on the total energy

density of the universe have been studied. A stable axino in a certain mass range

could lead to overcritical energy density, and the corresponding axion models are

therefore ruled out. If, on the other hand, the axino has a mass of a few keV,

it is itself an interesting candidate
[6]

for a source of dark matter. In fact, such a

particle is up to now the only well motivated candidate for so-called warm dark

matter. It still remains to be seen, however, whether warm dark matter can lead to

a satisfactory cosmological model including questions about large scale structure

formation.

In any case, the existence of a (light) axino might have important consequences

in any supersymmetric extension of the standard model. Many of these models

contain discrete symmetries (R-parity in the simplest case) that allow only pair

production of the new supersymmetric particles. In these cases, there exists a

lightest supersymmetric particle (called LSP) which is stable. In the minimal

model one usually considers such weakly interacting massive particles (WIMPS,

an example can be found in the photino) as a possible source of cold dark matter.

In the presence of an axion supermultiplet, it could very well happen, that the

axino is the LSP and thus render the WIMP unstable, at least on cosmological

time scales.

While other properties of the axino seem not to be so important for our dis-

cussion, its mass is a crucial parameter and a careful analysis is required. We shall

see in the following that this value is strongly model dependent. Before we dis-
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cuss these questions in detail, let us remark, however, that, in general supergravity

models, there are some natural values such a mass can have. One of them could be

the mass of the gravitino that sets the scale of SUSY breakdown in the observable

sector. But this is not the only possibility. The axino could very well be much

lighter. In fact, models based on supergravity contain a very small dimensionless

parameter

η =
MS

MP
≈ 10−8. (1)

The gravitino mass is then given by m3/2 ∼ η2MP and the natural values for the

mass of the axino at the tree level are given by

mã ∼ ηkMP (2)

with k ≥ 2.

It is interesting to observe, that in the case of k = 3 this mass is in the region

of 1 to 10 keV, leading to a critical mass density of the universe. In models of

global supersymmetry one obtains similar estimates. Here η ∼MW/Fa where MW

denotes the scale of weak interaction breakdown.
[6]

These values coincide, since MS

and Fa are so close to each other.

The task of determining the mass of the axino in a given model now boils down

to the question about the power k appearing in (2). For large k, of course, also

radiative corrections to mã have to be taken into account.

Let us start our discussion in the framework of globally supersymmetric models.

Although the construction of supersymmetric generalizations nowadays exclusively

considers locally supersymmetric (supergravity) models, we can still learn a lot

from the simpler models based on global SUSY. In the present example we can see

quite easily, why it makes sense to consider the possibility of a very small axino

mass. In the case of unbroken supersymmetry, the whole axion supermultiplet will

remain degenerate at the mass given by the anomaly, which we shall neglect in

the following. Thus the mass of the axino and the saxino have to be proportional

4



to the scale of SUSY breakdown represented by the vacuum expectation value of

an auxiliary field FG (this is the auxiliary field of the goldstino multiplet)
†
. The

mass splitting of the chiral supermultiplet is determined by the coupling of its

members
[1]

to FG. The axion is protected by a symmetry and does not receive a

mass in the presence of SUSY breakdown. The scalar saxino couples in general

to FG and will thus obtain a mass of the order g 〈FG〉, where g is the coupling to

the goldstino multiplet
∗
. This is the reason why one usually assumes the saxino

to be heavy. In the case of the axino the situation is similar, but different. Again

its mass is determined by the coupling to FG, but the auxiliary field has canonical

dimension two. A mass term for the axino ããFG is of dimension five and there

are no renormalizable contributions to the mass of the axino. In a model with an

(invisible) axion we have as additional dimensionful parameter the axion decay

constant Fa of order of 1011 GeV and we therefore expect a small axino mass

mã ∼ FG
Fa

as was demonstrated in ref. 7.

It remains to be seen, how these results generalize once we consider models

based on supergravity. The reason why one nowadays primarily considers these

models is the fact that in models based on spontaneously broken global SUSY a

universal mass shift for the scalar partners of quarks and leptons is not possible.

We have mentioned that already in connection with the discussion of the mass

of the saxino. This fact holds for a large class of models and can be succinctly

summarized by the value of STrM2, the supertrace of the square of the mass

matrix. These results suggest that in realistic models the masses of the scalars,

and thus also the mass of the saxino, are pushed up to a value beyond the reach

of present experiments. In the case of the axino such a general statement cannot

be made. The authors of ref. 6 assume (in order to avoid the murky depths of

supergravity theory as they say), that the globally supersymmetric results carry

† FG is in general a combination of the auxiliary fields of gauge and chiral supermultiplets.
∗ Actually, in many models based on global supersymmetry this coupling can be very small

and even vanish at tree level. These vanishing scalar masses, however, are the reason, why
globally supersymmetric models do not lead to a realistic generalization of the standard
model. We shall come back to this point later.
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over to the supergravity case. We shall see in the following that, in general, such

an assumption is not necessarily correct. A similar conclusion has been obtained

by Goto and Yamaguchi.
[8]

Their result seems to to imply, however, that a small

mass of the axino requires a special form of the kinetic terms. We analyze this issue

in a more general way and see that, independent of the choice of the kinetic terms,

small (and also large) axino masses are possible, dependent on other properties of

the theory. We also investigate the question of the axino mass in those models

that might be found as the low energy limit of string theory.

The scalar sector of a supergravity theory is completely specified by the Kahler

potential G(Φj ,Φ∗j) where Φ collectively denotes the chiral superfields. The scalar

kinetic terms are given by the second derivative Gij = ∂2G/∂Φj∂Φ∗i and one often

splits G(Φ,Φ∗) = K(Φ,Φ∗) + log |W (Φ)|2 where the superpotential W (Φ) is a

holomorphic function of Φ. The scalar potential is given by
[1]

V = − expG
[
3−Gi(G−1)ijG

j
]
. (3)

We are interested in the mass spectrum of the theory once supersymmetry is broken

spontaneously, which leads to a nontrivial value of the gravitino mass m2
3/2 =

exp(G)
†
. Masses of the scalar particles can then be read off from the second

derivative of the potential at the minimum. For the fermions we obtain

Mij = exp(G/2)

[
Gij +

1

3
GiGj −Gk(G−1)kl G

l
ij

]
, (4)

where we have removed the contribution to the mass of the gravitino. We also

have to respect the constraint from the anomalous U(1)-symmetry

∑
i

[
qiΦ

iGi − qiΦ∗iGi
]

= 0, (5)

where qi is the U(1)PQ-charge of Φi.

† We assume vanishing vacuum energy, thus 〈V 〉 = 〈Vi〉 = 0 at the minimum.

6



Fields in the observable (hidden) sector shall be denoted by yi (zi), respectively,

and we shall assume the superpotential to split: W (Φi) = h(zi) + g(yi). In our

examples we use the well known case h(z) = m2(z+ β) for simplicity. Let us start

our discussion with a special choice Gji = δji , usually referred to as minimal kinetic

terms. The scalar potential then reads

V = exp(K/M2)

[
|hz +

z∗W

M2
|2 + |gi +

y∗iW

M2
|2 − 3|W |2

M2

]
. (6)

Within this framework Goto and Yamaguchi
[8]

have argued that the axino mass is

as large as the gravitino mass. Let us see how this works using their superpotential

g1 = λ(AB−f2)Y, where f is a constant and A, B and Y are fields. Minimizing (6)

we find the following (approximate) vacuum expectation values (vevs): A = B ≈ f
and Y ≈ m2/M , while the z vev remains undisturbed

∗
. Actual values for f

and m should lie in the range of 1011 GeV. Denoting the fermions in the chiral

supermultiplets by χi, the axino is found to be the linear combination χa = (χA−
χB)/

√
2 and it receives a mass of order of the gravitino mass mã ∼ m3/2 ∼ m2/M .

Is this now a generic property of models with minimal kinetic terms? We

shall see that the answer is no by inspecting a second example with superpotential

g2 = λ(AB − X2)Y + λ′

3 (X − f)3 including a new singlet chiral superfield X.

Minimization of the potential now becomes more complicated since the condition

〈V 〉 = 0 leads to a shift in the vev of the hidden sector fields. The easiest way to

discuss the potential is by expanding it in powers of m/M . To lowest order one

obtains the globally supersymmetric result for the observable sector. In each order

one then has to adjust the vacuum energy to zero, and in the present example

the inclusion of the terms of order m2/M2 require a shift of 〈z〉. In the previous

example it was sufficient to just consider the expansion up to first order. One still

obtains vevs of A, B similar to those of the previous example, but the presence of

the field X has important consequences on the axino mass; in fact here one obtains

mã ∼ m3/M2.

∗ Observe that in the case of global supersymmetry the minimum is found at 〈Y 〉 = 0.
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This example shows that the mass of the axino depends strongly on the model

and the special form of the superpotential. It also shows that in models with

minimal kinetic terms the mass of the axino not necessarily needs to be as large as

the gravitino mass, contrary to the impression given in ref. 8. In particular, masses

of the axino in the range of a few keV can be obtained also in this framework.

Let us next consider those supergravity models that have a structure similar to

those that appear in the low-energy limit of string theories. The Kahler potential

is given by
[9]

K = − log(S + S∗)− 3 log(T + T ∗ − CiC∗i ), (7)

where S denotes the dilaton superfield, T represents the moduli and Ci the matter

fields. We shall assume the superpotential of the form W = W (S) + W (Ci),

postponing a discussion of the implications of moduli dependence. The term W (S)

is assumed to appear as a result of gaugino condensation in the underlying string

model, and is crucial for the process of supersymmetry breakdown. For a review

and details see ref. 10. The scalar potential of the theory defined in this way

V = exp(G)
[
|GS |2(S + S∗) + |Wi|2

]
(8)

is positive with a minimum at 〈V 〉 = 0; the dilaton adjusts its vev to cancel any

possible contribution to the vacuum energy. Supersymmetry is broken sponta-

neously through a nontrivial vev of the auxiliary field of the dilaton supermultiplet

FT ∼ exp(G)GT , while FS = 0. The only problem with the potential is the fact

that the vevs of the moduli are not determined and thus the vacuum is highly

degenerate. Let us nonetheless discuss this simplified example first. The minimum

of (8) is found at 〈GS〉 = 〈Wi〉 = 0, where Wi = ∂W/∂Ci = 0 coincides with the

solution obtained in the case of global supersymmetry, independent of the special

form of the superpotential. In our case we require nontrivial vevs 〈Ci〉 = vi for at

least one of the charged scalar fields. The axino is then given by ã =
∑

i(
qivi
v )χi,

where v =
√∑

i q
2
i v

2
i should take a value of order of m in the 1011 GeV range. The
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goldstone fermion is given by η ∼ GTχ
T + Giχi, with GT = −3/∆, Gi = 3vi/∆

and ∆ = T + T ∗ − CiC∗i . One thus obtains
∑
qiviGi = 0 for the axino to be or-

thogonal to the goldstino. Fermion masses can now be computed according to (4)

in a straightforward manner. This gives e.g. MTT ∼ GTT + 1
3GTGT + 2

∆GT = 0,

since GTT = 3/∆2 and GT = −3/∆. Also the terms mixing T - and i-components

vanish as well as Maj =
∑

i(
qivi
v )Mij because of the constraint (5). Thus all these

fermions including the axino remain massless.

One could have expected such a result from the outset because of the fact that

models with kinetic terms of the structure (7) are very closely related to globally

supersymmetric models. We have confirmed that above finding Wi = 0 at the

minimum, the globally supersymmetric solution. Thus one might obtain a light

axino in a natural way.
[8]

But this is probably not the whole story. The other

fermions remain massless as well and, more importantly, also the scalar particles

like the saxino remain massless at tree level. At the present stage of the discussion

we can conclude that this model not only shares the desirable features of globally

supersymmetric models but also the more problematic ones. Observe that in the

models based on minimal kinetic terms the scalar particles and thus also the saxino

received a large mass of order of m3/2.

Again the question arises whether in models with Kahler potential as in (7) one

always obtains a light axino. Unfortunately this question cannot yet be answered

definitely. One way to proceed is to compute radiative corrections and see how

axino and saxino masses are shifted.
[8]

We would like to argue, however, that this

is not necessarily the correct way to attack this problem. After all the potential

given in (8) has still a large vacuum degeneracy and many massless scalars and

thus is unstable under small changes of the parameters. In fact, naively including

radiative corrections might destabilize the potential in such a way that it becomes

unbounded from below. As long as we do not know the correct position of the

minimum we can not really be sure that our estimate of the axino mass is reliable.

This can be demonstrated quite easily in the framework of explicit models. We

have seen this in our discussion of the models with minimal kinetic terms comparing
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those with superpotentials g1 and g2. Although there the potential is less unstable

the actual value of the axino mass strongly depends on details of the potential.

Similar things will happen also in models with nonminimal kinetic terms.

In addition we know that the potential as given in (8) is incomplete. In a first

step one should include the moduli-dependent contributions to the superpotential.

Unfortunately the incorporation of such a dependence in W leads to enormous

complications. The potential is no longer positive definite and nobody succeeded

yet to find a satisfactory minimum with broken supersymmetry and a vanishing

cosmological constant. As long as such a result is missing, any reliable computation

of the axino mass in such models is impossible. Unfortunately this is also true in

those models with a composite axino that constituted our prime motivation to

study these questions in detail.
[11,12]

This does not mean that the axino cannot

be light. In fact our discussion of the models with minimal kinetic terms has

demonstrated that light axinos could actually exist. We want to stress here that

any estimate of axino masses is unreliable as long as a detailed calculation of the

underlying potential has not been performed.
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