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Abstract 

The massless one-loop three-point integral is obtained in terms of associ- 

ated Clausen functions. The expression is manifestly symmetric in the three 

external variables. The main ‘features of associated Clausen functions and 

their series expansions are presented. We also introduce the L-functions as 

analytical extensions of the associated Clausen functions. 

~*Work supported in part by NDSEG f e owship and Department of Energy contract 11 
DE-AC03-76SF00515. 



The one-loop three-point integral has been obtained by other authors previ- 

ously [l]. Th e result is usually expressed in terms of dilogarithms, also known as 

Spence functions. However, the obtained formula lacks explicit symmetry under 

the permutation of the three external momenta, and conceals the structure of the 

real part of the integral. 

;-Here, we obtain the massless one-loop three-point integral in terms of associ- 

ated Clausen functions. Our expression manifests the symmetry under the permu- 
. . 

tation of the three external momenta and provides a transparent real part. (The 
_~ 

real part of the integral is actually given by the imaginary part of the function 

F(pl, ~2, p3) defined below. See Eq. (l).) Since one-loop Feynman integrals are 

- in increasing demand, and also since the various associated functions introduced ._. ..- 

here are not as well-documented as the polylogarithmic functions [2, 31, we have 

decided to communicate our results here to facilitate future reference. 

We have employed only standard integration techniques in obtaining our for- 

mula; therefore, we shall present the result without derivation [4]. The massless 

one-loop three-point integral in question is (see also Fig. 1): 

J 4 
-- 

&$& - (4:)~ F(Pl~P2rP3) 7 
where pl ,p2,p3 are the external momenta of the three-point function. It is conve- 

- nient to introduce the following variables: 

& = pi-1 ’ pi+1 = (pf - pfil - Pf+1)/2 , 

.  

R=Sl~2+~263+63~1=(2p::p~+2p~p~+2P~P::-P~-P~-Pj)/4 ,  c2) 

c  -. 

$qjq .  

~The subindices are understood to be modulo-3. That is, p4 G pi and po G p3. 
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The exact form of the function F(pl,p2,p3) depends on the kinematic region 

of the three external momenta. In general, we can classify a kinematic region as 

trigonometric or hyperbolic, according to the signature of the variable R. 

1) Trigonometric case ( ‘R > 0 ) 

-” c, 
Fh,p2,p3)= ' [C12(Wl) t Cl2(2&) $ C12(2d3)] , 

P 
(3) 

. . 4; = arctan d , 
0 I 

where C12(5) is the Clausen function, which will be described later. The 

trigonometric case can happen only in the completely spacelike (pz,pg,pi < 

.. S)and the completely timelike (pT,pi,pi > 0) regions. Geometrically, in the 

-completely spacelike region the angles &,q32 and 43 correspond to the three 

internal angles of a triangle with sides $-pl,Gand G(seeFig. 2), 

and p is twice the area of the triangle. Thus, in the completely spacelike 

region we have 

ht42-t$3 = 7r . (4) 

In the completely timelike region we have the same identity with the opposite 

sign: 

ht42t~3 = -7r . (5) 

l&te that F(pl,pz,p3) contains no imaginary part in the trigonometric case, 

as one would expect in the completely spacelike and timelike regions. 
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2) Hyperbolic case ( R < 0 ) 

Fh~p2,p3) = ;[=d2h)t=2(2&)+~2(2$3) 
(6) 

+ ~~h~(P3 t i?7$2%4) t i’lr43qpgq] , 

where 0(x) is the step function 

4; = f In 

-and 

e(x) = 
{ 

1, ifx>O 

0, if x < 0 ’ 

arctanh(p/&), if pf-l~f+l > 0 

arctanh(&/p), if pfmlpf+l < 0 ' 

Clh2(2&), if pf-,pf+, > 0 
C1h2(2’i) = $?lh2(24i), if pfelpf+, < 0 ' 

(7) 

(8) 

(9) 

where Clhs(x) is the hyperbolic Clausen function and qlh,(x) is the alter- 

nating hyperbolic Clausen function. The definitions and properties of these 

functions are discussed later. The hyperbolic case can happen in kinematic 

6 regions with any signature (pf , ps, pg z 0). For the hyperbolic case we have 

the following identity 

ht42-i+3 = 0 . (10) 

Thus, despite its appearance, Eq. (6) contains no imaginary part in the 

completely timelike region. 

kisummary, in the definite-signature regions (completely spacelike or time- 

-like regions), we encounter both the trigonometric case and the hyperbolic case, 
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whereas in the mixed-signature regions (some of the external momenta are space- 

like and some are timelike), we can have only the hyperbolic case. The numerical 

evaluation of the various associated Clausen functions can be performed with the 

help of the series expansions given below. We have checked our result numerically 

against direct Feynman parameter integrals in all kinematic regions. 

. 

““Next, we give the definition and the main properties of the associated Clausen 

functions [5]. 

_~ 1) (Trigonometric) Clausen function. 

l definition 

‘C&(x) G - =ln ]2sin(x/2)]dx = c F J 
0 1 

(11) 
- 

- * periodicity 

C12(x t 2n7r) = C12(x) , n = 0, fl, 3~2,. . . (12) 

0 parity 

Cl2(-x) = -Cls(x) (13) 

0 zeros 

x=n7r, n=O,fl,f2 ,... ~ (14) 

0 maxima 
I -. 

_: .- y. .-~ Xmax = n = 0, fl, f2,. . . 

C12(Xmax ) = 1.01494160.. . 
(15) 
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0 minima 

Xmin = -:+2n?r , n = O,fl,f2,,.. 

Cl2(xmin) = -1.01494160. - - 

l duplication formula 

C12(2x) = 2 C12(x) - 2 Cla(?r - 2) ; c, 

0 special values 

(16) 

(17) 

Cl,(;) = f - $ + $ - . . . = G = 0.91596559.. . 

C12(3 = ; Cl& = 1.01494160.. . 
(18) 

. _.- w‘here G is Catalan’s constant. 

- l . expansion around x = 0 

Clz(x) = -xln 1x1 t x + C 00 (4)k+‘~2kx2k+l 

k=l 2@k t I)! 

x3 x5 x7 
=-xln1x1txt~t~t (19) 

1270080 
X9 Xl1 

t 87091200 + 5269017600 + “* 

where B, are Bernoulli numbers [6], 

l expansion around x = T; define z = x - T 

31211 
‘159667200 

(20) 

691?i+3 5461T15 
‘49816166400 + 5230697472000 

+... 
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2) {Trigonometric) Alternating Clausen function. Although this function is not 

used in the scalar three-point integral, we have included it here for complete- 

ness. 

l definition 

. 

; r, q12(x) E - j In 12 cos(x/2)[dx = c (-l)iiin nx 

0 1 

0 relation to Clausen function. 

(21) 

912(x:) = Cl:!@ t 77) (22) 

* Since q12(x) is simply the half-period translation of Clz(x), all the prop- 
- . 

erties of p12( ) x can be easily obtained from those of Clz(x); therefore we 

will not give them separately here. 

3) Hvperbolic Clausen function. 

l definition 

Clhz(x) z - ’ In ]2sinh(x/2)\dx = c sin~2nx J 
0 1 

The series should be considered formal, since it is not convergent for real 

values of x. 

Clh2( -x) = -Clh2(x) 
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0 zeros 

x = 0, f2.49879679.. . (25) 

l maximum and minimum 

; c, 
X max = -Xmin = ‘2 In (l/2 t d/2) = 0.96242365. . . 

C12(xmax)‘= -Cl2(Xmin) = 0.98695978.. . 

(26) 

l expansion around x = 0 

Clhz(x) = -xln 1x1-t x - 2 &k 
k=l 2Qk t l)! 

x2k+l 

. . ..- 
= -x In 1x1 -I- x - 

x3 x5 X7 

72t14400- 
(27) 

1270080 - 
X9 Xl1 - . 

+ 87091200 - 5269017600 •t ” * 

l large-x expansion. For x > 0 

Clh2(x) = -; + r2/6 - c 5 
1 

(28) 

4) Alternating Hvperbolic Clausen function. 

l definition 

qlh,(x) E - 1 In 12 cosh(x/2)ldx = c (-l)niinh nx (29) 
0 1 

_: - xi. The series should be considered formal, since it is not convergent for real 

values of 2. 
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l parity 

0 zero 

Wh2(-4 = --w2(4 

x=0 (31) 

. . 
l expansion around x = 0 

$!Xh,(x) = -(ln 2)x - g (iz2; I$: x2k+l 

31x11 
- 159667200 

691x13 5461~‘~ 
+ 49816166400 - 5230697472000 +“. 

(32) 

l large-x expansion. For x > 0 

Qllh,(x) = -; - a2/12 - c ‘-‘r2e-nz 
1 

(33) 

In Fig. 3. we plot the functions Clz(x), Clhz(x) and qlh,(x) in the interval 

- -6 5 x 5 6. Notice the approximately sinusoidal nature of Clz(x). The derivative 

of C&(x) at zero is infinite. 

Another set of functions closely related to the associated Clausen functions 

are #Kr associated Glaisher functions [2]. W e include their basic feature here for 

completeness. All these functions, have even parity, and their defining series are 
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given by 

G12(x) = c F , 
1 

Glh2(x) = c co;2nx , 
1 

t$12(“) = x (-lynx , 
1 

t$lh2(x) = c (-l)n;;hnx , 
(34) 

1 

where the two hyperbolic series are only formal. The trigonometric Glaisher func- 
; 0%. 

tions are periodic with period 2n, and in the interval [0, w] they are given by 

. . 
G12(x) = a(~ - x)~ - ; , 

_~ 

@12(x) = ; - ; . 
(35) 

-. The hyperbolic Glaisher functions are explicitly given by 
._. ..- 

x2 2 
Glh2(x) = -4 + 6 , 

@lb,(x) = -; - ; . 
(36) 

The massless three-point integral can also be expressed in terms of a complex 

analytical function, thus avoiding the division into subcases [7]. For all kinematic 

regions, the function F(pl, ~2, ~3) has the following expression 

Fhvp2~P3) = k bina $ Lsin2(2&) + Lsin2(2&)] , (37) 

- with 

The variables 6i and p are defined as before, and c is infinitesimally small and 
c -. 

posi%ve. The conventions for the imaginary part of logarithms and negative square 

roots can be taken to be Imln(-Is]) = iw and m = ifl. 
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The function Lsinz(z) is the analytical extension of the function Cls(x) to 

the entire complex plane. For a number of reasons, we have introduced a new 

notation for this function and other analytically extended functions. First of all, 

the new notation emphasizes the form  of the defining series of these functions. 

. Secondly, Clausen and Glaisher functions are real functions whereas the L-functions 

.ari%mplex-functions. This distinction is very clear in the case of the hyperbolic 

Glaisher function. For real x 

73 
Glh2(x) = -; + 6 , 

_.. whereas 
.__ ..- 

* 

x2 7r2 
Lcoshz(z) = -4 •t 6 - i%[x[ . 

(3%  

- . 

Another argument in favor of a new notation is that, in the case of Clausen func- 

tions, their L-function partners are not the naive analytical continuation of their 

defining integrals as given in Eqs. (ll), (21), (23) and (29). It seems best to keep 

Clausen-Glaisher functions real, and name their analytical partners differently. 

.Keeping the definition of L-functions separate from  Clausen-Glaisher functions 

also avoids the staggered definition used in Ref. [2], for example 

C14x) = c g , 
1 

but 

C12m+1(4 = c F * 
1 

(42) 

Finally, as we will see shortly, all the L-functions are naturally defined in terms 

10 



I 

- .-- 

of the Lexp2(x) function. It thus appears appropriate to use the new notation to 

reflect this relationship. 

Next, we give the list of L-functions [8] and their basic properties. 

. . 

; c, 

Lexp,(z) = Li,(e’) = C 5 , 
1 

Lsin,(*) E k [Lexp,(iz) - Lexp,(-iz)] = C @$ , 
1 

LCOS,(Z) E f [Lexp,(iz) + Lexp,(-iz)] = C F 
1 

Lsinh,(z) E f [Lexp,(z) - Lexp,(-z)] = c si~~z 
1 

_ Lcosh,(z) i i [Lexp,(z) + Lexp,(--z)] = c coax* 
1 

, (43) 

, 

The various series given above should be considered formal. All L-functions are 

periodic. The period of Lexp,(z), Lsinh,( ) z and Lcosh,(z) is 2G, whereas the 

period of Lsin,(z) and Lcos,(z) is 27r. The alternating L-functions ( g-functions) 

are defined as the half-period shifts of the L-functions, 

$exp,( 2) Z Lexp,( 2 + i7r) = C (-~~‘~’ , 

@in,(z) Z Lsin,(z + w) = k (-l)imnz , 
1 

JkOSm(Z) G  Lcos,(z + n) = c (-l);;snz , 
1 

r -. 
Y;sinh,(z) E Lsinh,(z + i7r) = c (-‘)yrihnz 

_: _- %g. .-~ 
’ (-l)n cash nz 

@ash,(z) = Lcosh,(z + ix) = C 
1 

72m 

(44) 
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The Lexp,(z) f unction satisfies the following recursion relation 

2 

Lexp,(z) = 
J 

Lexp,-I (z)dz . 

.- The first three Lexp2(z) functions are given by 

Lexpo(z) = & , - 
. . 

Lexpr (z) = - ln( 1 - eZ) , 
_~ 

Z 

Lexpz(z) = - 
/ 

ln(1 - e’)dz . 

-00 

SimiIarly~ we have 
- 

. 
P=qJz) = j PexP,&)dz 7 

-CO 

(45) 

(46) 

(47) 

and 

%P&) = -& 7 

$expr(z) = -ln(l + eZ) , 

$exp2(z) = - 1 ln(1 + e’)dz . 

-W 

(48) 

- The explicit form of other L-functions can be similarly obtained. We will not 

reproduce them here. 

In the following, we will concentrate on the case m = 2. The function Lexp2(z) 

has;br;ranchkuts on the positive semiaxes where Im z = 2nri, n = 0, fl, 3~2,. . ., 

-and the function pexp2(z) has branch cuts on the positive semiaxes where Im z = 
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(272 + l)wi,n = 0, fl, f2,. . . . On the real axis, we choose the imaginary part of - 

LexpZ(z) to be 

Im LexpZ(z) = -iwx 6(x) . (49) 

Around the origin, the two functions have the following series expansion 

-” c, Lexp2(z) = 
22 00 

-zln(-z) + z - 4 - C &in, 
k=l 2q21c + I)! 

z2k+l 
’ 

(50) 
, 

where B, are Bernoulli numbers [6] defined through the generating function 

t -= c Bn; . 
et-1 o . (51) 

We have *Bo- = 1, B1 = -l/2, B2 = l/6, B4 = -l/30, etc. The series expansions 

for other L-functions follow easily from those in Eqs. (50). 

The real and imaginary parts of Lexp2(z) can be obtained by Kummer’s for- 

m.ula (see Ref. [2]) 

2 

Lexpz(x + iy) = - f J In (1 - 2eZ cos y + e2’) dx 
0 (52) 

+ i xy’ + $12(2y) + +&(2y’) + $12(2y”) 
I 1 

, 

where 

y’=arctan(Iy:j:isy) , y”=?r-j/-y” . (53) 
c  -. 

The%&!ar&on of other L-functions into real and imaginary parts can be obtained 

by using the previous formula. 

13 



I 

We have given here only some basic features of the L-functions. However, since 

they are defined from the polylogarithms, many other properties of polylogarithms 

are translated directly to L-functions. We refer the reader to Refs. [2-31 for other 

potential properties of L-functions. 

In summary, we have provided an analytically and numerically desirable ex- 

pr&?on for the massless three-point scalar integral in terms of associated Clausen 

functions and discussed the main features of these functions and their analytically 
. . 

extended partners, the L-functions. The simplicity shown in Eq. (37) hints at the _~ 

potential usefulness of these functions in other Feynman diagram calculations. 
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FIGURE‘ CAPTIONS 

1) One-loop Feynman diagram associated to the massless three-point function. 

2) Geometrical interpretation of the angles $1, 42, 43 and the variable p in the 

completely spacelike region. 

3) Plot of the Clausen function, the hyperbolic Clausen function and the alter- 
-” c, 

nating hyperbolic Clausen function. 

. 
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Pl 

Fig. 1 
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p = 2 x Area of Triangle 

Fig. 2 
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3.- 1 ” ‘\I ’ “I ’ 1 ” ” ) ” ” 1 ” ” 1 ” I’_ 
\ ‘\ 
\ \ Clz(x) = - Ji lnl2 sin x/21 dx 

2- \ \ - 
\ 

Clh,(x) = - /i lnj2 sinh x/21 dx 

\ “1 @lh, (x) = - & ln 12 cash x/2 I dx 
r \ \ 

Plhz (x> 

Fig. 3 
- 


