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ABSTRACT 

The Low Energy Ring (LER) in an Asymmetric B Factory is always too large in circumference. ---- 
The ---- requirements for the LER in a B Factory are developed, including, damping, emittance and 
Dower density, and some examples of technical solutions are given. The main emphasis is on 

- knsuring flexibility of operation.- 

1. INTRODUCTION 

The glow Energy Ring (LER) in an 
Asymmetric B Factory has special problems as 
the circumference is always too big. The 
“optimum” circumference for ‘an electron 
storage ring scales as the square of the beam 

-.energy. -This means that the LER is 4-6 times 
too large-depending on the energy asymmetry. 
This paper will cover most of design 
constraints (and desires) of the LER and also 
some general ideas about the design. 

1.1 General Considerations 

a) The bending radius should be small to keep 
the damping times short. 

b) The maximum synchrotron radiation power 
density should not exceed some 

- engineering value (10 kW/linear meter for 
PEP-II). (The conditions for calculating 
the peak power (energy, current and orbit 

- error) must be carefully examined.) 
c) The natural emittance of the LER is usually 

too small and must be increased. 
d) The natural damping time of the LER is 

usually too long and should be reduced. 
e) The RF voltage required to obtain the short 

bunch length could be reduced if the 
momentum compaction factor could be 
reduced. However, a small momentum 

c -. comp.action factor is incompatible with 
larg@%rittance in a simple FODO lattice. 
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f) The engineering of the vacuum chamber 
cooling drives the choice of the bending 
radius not the design of the magnet. 

Nice features (not vital) 
g) The bend should be placed close to the 

quadrupole for ease of installation. 
h) The bend should be downbeam of the 

quadrupole to avoid high synchrotron 
radiation power levels in the quadrupole. 

1.2 Beam Energies 

PEP-II [l] was designed for nominal colliding 
beam energies of 9.0 GeV for the HER and 
3.1 GeV for the LER. Most of the other 
studies have chosen a smaller asymmetry, 
usually 8.0 GeV for the HER and 3.5 GeV for 
the LER. Both values will be used in the 
examples but the reasons for preferring one or 
the other will not be addressed. 

There is a further consideration - at what 
energy should the maximum beam power 
occur? When the machine is operating, the 
center-of-mass energy will be varied by 
changing the beam energies. The energy 
asymmetry is a free parameter and will be 
chosen in a way that is not fully predictable 
now. The assumption will be made that the 
beam power will not exceed the maximum 
power at the nominal energy. This implies that 
the beam current, and therefore the maximum 
attainable luminosity, will be reduced at 
energies above the design beam energy 
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. 1.3 Beam Currents 2.2 Higher 5 

PEP-II was based on the concept that both the 
vacuum chambers should be engineered for a 
maximum current of 3 Amps. This criteria 
should be maintained, so all calculations in this 
paper will be done for 3 Amps rather than the 
currents required to produce the nominal 
luminosity. 

All of the arguments in this paper will be valid 
. for other projects if equal maximum beam 
- curre_t$s are assumed in the two rings. In 

some optimizations of the beam parameters, an 
equal “tune print” is assumed. In this case, the 
beam current is inversely proportional to the 

:a energy - E.1 is a constant. This makes the 
design of the LER Vacuum chamber even 

-harder. 

In the calculations, I have used PEP-II 
parameters. This does not affect any of the 

- --. conclusions significantly. 
._. ..- 

2 BEAM-BEAM TUNE SHIFT 5 

It is now common in most of the B Factory 
designs to adopt a nominal value of the beam- 
beam tune shift of 0.03 in both planes for both 
beams. This is about half the value achieved 
routinely in PEP and about that obtained in 
CESR. This value was chosen to be 
conservative but nevertheless we should 
examine the strategy to be followed if the 
nominal value cannot be reached and also for 
the c&e where higher values can be attained. 

Initially, let us examine the case of both beams 
having equal tune shifts. 

211 Lower 5 

_ Since the maximum current will be limited by 
other factors (installed RF power, multi-bunch 
instabilities etc.), the luminosity will be 
directly proportional to 5 if the emittances are 

-scaled-ag=sording to l/c. So if a worst case for 
x is taken as ‘0.015, the emittance required 
would be 

GO = twice the nominal value. 

If the beam-beam tune shift is higher than 0.03 
in both planes (as it always was in PEP) then 
the emittance will need to be reduced or the 
number of bunches decreased with the same 
total current. In this case the luminosity will 
increase as l/t If the beam-beam tune shift is 
0.06 with the nominal bunch number, then the 
the emittance required would be 

E,O = half the nominul value. 

2.3 Higher 5, 

Let us assume that the beam-beam tune shift is 
higher than 0.03 in the vertical dimension, a 
common occurrence in many storage rings. 
The appropriate response would be to reduce 
the vertical beam height. In this case the 
luminosity will increase proportional to 5v1n. 

It is therefore important to design the insertion 
for a conservative value of the emittance ratio 
to be certain that we can profit from higher 
vertical tune shifts. (A ratio of 25:l was 
adopted for PEP-II, comfortably below the 
40: 1 routinely attained in PEP.) 

Flexibility for optimizing the 
emittance and the coupling is vital 

2.4 Unequal Beam-Beam Tune Shifts 
(SHER > SLER) 

Note that to date, all of the proposals have set 
the beam-beam tune shift for the two beams 
equal. Since the high energy beam is more 
rigid than the low energy beam, the tune shift 
is likely to be higher for the high energy beam. 
Let us assume that the ratio of the tune shifts in 
the two beams is Rt where: 

The standard tune shift formula for unequal 
energy beams is [2]: 



- 
- -.-- 

- 
re & N+ 

(2) 

where the subscript i means either x or y. 

The optimum luminosity is obtained when the 
beam sizes are equal: 

Oi + = 0: 
1 (3) 

-,, “?- 

(although this is not absolutely necessary and, 
in reality, may be very difficult to attain.) 

.” 
The expression for the ratio of beam-beam 
limits is then: 

(4) 

and the.horizontal emittance ratio RE is: 

So if it is possible to put more current in the 
low energy beam, the emittance can stay 
constant and the luminosity will increase. 

It may not be possible to increase the current in 
the low energy beam (lack of RF power, single 
bunch instabilities, for example). In this case, 
the luminosity may only be increased by 
reducing the spot sizes. 

The preferred way of reducing the spots is: 
LER - reduce the beta function 
l&R - reduce the emittance 

Since it is rather likely that the beam-beam tune 
- shifts are unequal, this possibility should be 

included in the design of the Interaction Region 
right from the start. . -. 

&?e sh&ld be taken in the LER 
design to keep open the option 
of lower IP beta functions. 

3. RADIATION DAMPING 

The transverse damping time in an isomagnetic - 
ring is given by [3] 

2)&c) = 
7.533~10~~ C(m) p(m) 

Jx EGeW3 (6) 

where C is the circumference of the ring (2200 
m) and Jx is the horizontal damping partition 
coefficient (nominally approximately 1). 

One of the indications from the bean-r-beam 
simulations is that the damping of the low 
energy beam should be increased over the 
natural value. Calculations will be made here 
for the extreme case where equal damping 
times are required in the two rings. Using the 
natural values of Jx, the bending radius of the 
LER is given by: 

PLER = PHIER ELER3 
EHER3 

Putting in numerical values gives 

HER LER HER 
Energy Energy Bend 

Radius 

9.0 GeV 3.1 GeV 165m 

8.0 GeV 3.5 GeV 165m 

(7) 

LER 
Bend 

Radius 

6.7 m 

13.8 m 

With beam energies of 9.0 GeV and 3.1 GeV, 
it is almost impossible to produce equal 
damping times unless wigglers are used. For 
beam energies of 8.0 GeV and 3.5 GeV, the 
situation does not seem so hopeless. 

3.1 Wiggler Ring 

The CESR-B proposal [4] uses a “wiggler” 
ring. The simplest version of this would be to 
use magnets of the same bending field, but 
alternate sign. The exact geometry will not be 
calculated here as we are more interested in 
scaling laws here. 



As an example, consider a ring where the 
dipoles in each half period consist of three 
equal strength magnets of alternating sign. 
The bending radius required to obtain equal 
damping times in this three-bend wiggler lattice 
would be 36 times bigger, a factor of 1.44. 
Putting in this -factor gives: 

HER LER HER LER 
Energy Energy Bend Bend 

Radius Radius 

9.DxjeV 3.1 GeV 165 m 9.7 m 

8.0 GeV 3.5 GeV 165m 19.8 m 

-Producing equal damping times with beam 
energies of 9.0 GeV and 3.1 GeV still seems 
hard even using wigglers. 

_ _.. 4. ENERGY SPREAD AND RADIATION 
DA.MPING IN A STORAGE RING 
WITH WIGGLERS 

* 
- . 

4.1 Energy Spread 

The energy spread in a circular electron ring is 
given by the standard formula [3]: 

(~~ _ 1.476 x 1O-6 E(GeV)2(-$) 

E JE -$ 
0 (8) 

where Je is approximately 2. Separating the 
effects of the wiggler and the arcs gives: 

1476 x 1O-6 E(GeV)2 . 

T& + a\ 

The above formulae reduce to the well known 
expressions when there are no wigglers and all 
the damping is done by the arc magnets. In 
this case, the bending radius of the arcs is the 
minimum value Pmin and the strength of the 
arc bends tends to be similar to the wigglers 
discussed below. ~ 

ULER = 8.85 x 10 
-5 E(GeV)* 

au 
\ P& PAI Pmin W) 

. -. (‘) and 
There:& two-extremes: the damping is all 
done by the arc magnets; the damping is 1.476 x lO& E(GeV)2 
primarily due to the wigglers. JE Pmin (14) 

4.2 Synchrotron Radiation Loss 

The formula for the synchrotron radiation - 
energy loss in a storage ring is given by [3]: 

u 
0 

= 8.85 x 10m5 E(GeV)* 
1 ds 

2X 
lJ2 (10) 

The total synchrotron radiation produced 
U LBR is the sum of the radiation in the 
wigglers (U,) of bending radius rw and total 
length Lw and the radiation produced by the 
arc magnets of bending radius rA and length 
2nrA (the effect of the other bends used for the 
IR are usually much smaller) 

U 
LER = 8.85~10~~ E(GeV)* 

27c 

If equal damping times are required, the 
additional damping produced by the wigglers 
is such that the total energy loss in the two 
rings is proportional to the beam energy: 

ULER - UHER 
ELER EHER (12) 

4.3 Uniform Ring - No Wigglers 

4 
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. 4.4 Approximation for Strong Wigglers 

In the case where the wigglers are very strong 
compared to the bending magnets (rw << rA) the 
energy lost in the wigglers is approximately 
equal to the total energy lost in the ring. So in 
this case: 

L w= ULER 
2 Pw 1.409 x 10s5 E(GeV)* 

1.476 x lO& E(GeV)2 

JE PW 

4.5 Comparison of the Two Cases 

(15) 

(16) 

Since, the damping times are to be the same in 
- --. -the two-cases: 

w_-z..E- L 
*- 

PS Pmin . (17) 

and 

Pmin z- 
Pw 

(18) 

4.6 Scaling Laws 

Of interest are the scaling laws. The relative 
energy spread is 

-l/2 
is proportional to Pw or L;?‘* 

This is an extremely weak dependence. 

- -. The .enefgy spread in the beam will be 
stro%Ty d$endent on the damping rate 
required but insensitive to the magnetic 
con&uration used to obtain it. 

5 

5. EMITTANCE 

The emittance of an electron storage ring is - 
given by [3]: 

where &XO is the uncoupled horizontal 
emittance, Jx is approximately 1, 

cq,3uL- = 1.47 x 1O-6 m(GeVr2 
32fi 2x (moc2)3 

and 

PX 

The emittance of a ring with uniform bends 
then reduces to the well known formula 

E o= co- hag 
X TX PA 

where 1 1 31 Mag is the average over 
bending magnets. 

the arc 

5.1 Emittance with Wigglers 

It is useful to write the expression for the 
emittance with wigglers in a dimensionless 
form by comparing the emittance with wigglers 
eW to the emittance in the same lattice without _ 
wigglers ExOs 

(20) 



The emittance is therefore affected by the arc 
bending radius, the lattice functions in the arc, 
the wiggler length, the wiggler bending radius 
and the lattice functions at the wiggler. For 
maximum flexibility, 

The wigglers should be placed in a region 
where the dispersion can be modified to 
tune the emittance to the desired value. 

Energy Bend Linear 
Radius Power 

Production 

3.1 GeV 6.7 m 87.6 kW/m 

3.1 GeV 9.7 m 41.8 kW/m (Wiggler) 

3.5 GeV 13.75 m 33.6 kW/m 

3.5 GeV 19.8 m 16.2 kW/m (Wiggler) 
. 6. SYNCHROTRON RADIATION POWER 

There-&e simpie scaling laws for synchrotron 
radiation power production. The laws for 
energy deposition are somewhat more 

:* complicated and allow some degree of freedom 
for optimization. (For the HER. the bends are 

%.rfficiently long 
important.) The 
given by 

‘that the distinction is not 
peak power production is 

_ --. - 
- Ppd.(kW/m) 

- 

= 88.5 E(GeV)* I(A) 

2 71: Pm2 (21) 

Pprod the linear power production density 
E the beam energy in GeV 
I the current in Amps (calculate for 3 A) 
P the bending radius in metres 

6.1 HER 

The .power production is the same as the peak 
power dissipation because the bends are long. 
For PEP-II, the power densities are: 

Energy Bend Linear Power 
Radius Density 

b.0 GeV 165 m 10.2 kW/m 

- 8.5 GeV 165 m 8.1 kW/m 

$2 LER 
The t%@imum power dissipation can be 
considerably less than the power production 
because of geometrical effects. The power 
production for PEP-II is: 

6.3 GEOMETRICAL EFFECTS 

There is a difference between the peak power 
production in the short bends and the peak 
power deposition on the chamber wall due to 
geometry. Let us take the bending radius of 
the LER to be 13.75 m, corresponding to a 
bending length of 90 cm per period, and 
examine the options available to reduce the 
peak synchrotron radiation power deposition 
on the chamber walls. 

For LER at 3.5 GeV, full current and a 
bending radius of 13.75 m, a geometrical 
factor of 3.4 is required for the maximum 
radiation density to be less than 10 kW/m. 
This means that the synchrotron radiation 
produced in a 90 cm bend should be spread 
out over 3.1 m. 

6.4 Magnet Layout 

Let us consider the synchrotron radiation 
distribution from a short bend. In this case, 
the synchrotron radiation is projected out of the 
magnet and strikes the vacuum chamber wall 
downbeam. 

The maximum value of the linear synchrotron 
radiation deposition occurs at the nearest point 
of contact where the angle of incidence is 
greatest. This maximum is always less than 
the linear synchrotron radiation production by 
an amount that is larger if the synchrotron 
radiation first strikes the chamber further 
away. This means: 

Short bending magnet 
Wide vacuum chamber 



Svnchrotron Radiation Power Distribution 

The formula for the power dissipation is [5]: 

_- P&s = 14.1 E* I 
P2 w3 .~ -+ 
2 2(L2+rp-L?jL2+2rp)(22) 

where, r is the distance of the trajectory from _ _.. the chamber wall and L is the distance along 
the straight section (L= 0 at the exit face of the 
bend). - 

PPrd i l- + rP 
Pdiss 2 2 ( L2+rp - L lhZi&J(23) 

The expression on the right hand side of this 
equation is the geometrical reduction factor. If 
L = 0, the factor reduces to unity as expected. 

If -all. the synchrotron radiation strikes the 
chamber wall outside of the bending magnet, 
the peak value of the dissipation occurs at a 
value of L given by: 

L Pcpb 
min= --- 

Gb 2 (24) 

- where ob is the bending angle of the dipole. 8. 

-6.4 Magnet-End Effects : .i 
In the%odel discussed up till now, the peak 
power density occurs at the nearest point of 
contact of the synchrotron radiation with the 

chamber wall. In fact, the magnet is not “hard 
edged”, the field falls off from the core end 
over a distance roughly equal to the gap width. 
The radiation striking the wall at the point of 
closest approach actually starts from the fringe 
field and does not correspond to the maximum 
power density. 

The field extends beyond the core for a 
distance roughly equal to the gap width. So a 
core of 38 cm with a gap of 7 cm will have a 
magnetic length of 45 cm. The maximum 
synchrotron radiation density on the chamber 
wall will actually be produced near the front 
face of the core which results in a smoothing 
of the peak over more of the chamber wall. 

The equations given for the square magnetic 
field can be generalized to the case of the 
trapezoidal field. In practice, it is necessary to 
do an exact calculation to include all of the 
details of the vacuum chamber profile. 

7. SUMMARY 

In a new kind of colliding beam machine such 
as an Asymmetric B Factory, the most 
important design goal should be flexibility. 

The LER lattice should provide: 

An emittance that can be varied by a factor of 
two above and below nominal. 

Variable coupling down to half of nominal. 

Variable IR Beta functions down to half of 
nominal. 

The synchrotron power distribution must be 
carefully evaluated since geometrical effects 
have an important influence. 
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