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ABSTRACT 

Alice strings are cosmic strings that turn matter into antima,tter. Although they arise 

naturally in many GUT’s, it has long been believed that because of the monopole problem 

they can have no cosmological effects. We show this conclusion to be false; by using the 

Langacker-Pi mechanism, monopoles can in fact be annihila.ted while Alice strings are left 

intact. This opens up the possibility that they can after all contribute to cosmology, and we 

mention some particularly important examples. 
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- 1. Introduction. m-p 

Alice strings [1,2,3] are a class of cosmic string with the remarkable property that a 

particle travelling around one will come back as its own antiparticle. They may be formed 

in any Grand Unified Theory in which the charge conjugation operator is contained in the 

original gauge group. This occurs, for example, in the standard SO( 10) GUT. The existence .- 

of such objects could obviously have dramatic consequences for cosmology. It has long been ’ 

appreciated [4] th t a a simple spontaneous symmetry breaking pattern that gives rise to 

Alice strings will also create magnetic monopoles. Since the monopole density of the present 

- Universe is known to be very low, some mechanism must exist for getting rid of them. 

The most common solution is to claim that the pertinent phase transition occured before 

. . some inflationary era. The monopoles would then have been swept outside our horizon, 

easily satisfying any observed bounds on their density. However, a feature of this solution _~ 
his that inflation would have erased any other topological defects in exactly the same way. 

In particular, since Alice strings were produced at the same phase transition, none would 
_ -. survive- to cosmologically interesting times. 

.__ ._- 
There is, however, an alternative explana.tion for the scarcity of present day monopoles 

due to l!&gacker and Pi [5]. In this, the U niverse enters a temporary superconducting phase 

after the original phase transition. This causes the ma.gnetic flux to be confined to tubes that 

end at (anti) monopoles. The high tension in these tubes causes monopoles to annihilate 

extremely quickly. This rate may be increased even further by the tendency of the flux tubes 

to break, forming monopole-antimonopole pairs along their length [6,7]. Annihilation then 

need only occur between neighbouring particles. When the superconducting phase is exited, 

the monopole density has been reduced to acceptable values, which may be far less than one 

per horizon volume [7]. 

At first glance, it- may seem that the Langacker-Pi mechanism is rather contrived; we 

might worry about how elaborate a theory must be in order to give an intermediate super- 

- conducting phase. Surprisingly, though, it turns out that even a simple extension of the 

- Standard Model with one additional charged scalar is capable of producing this phase strut- 

ture [9]. The Langacker-Pi mechanism must therefore be taken very seriously as a potential 

C solution&the monopole problem. 
k. 

In the present paper we examine the effects of this mechanism in a model containing 
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- _ *Alice strings. We find that breaking U(l),, x Z2’ to different discrete subgroups leads to 

different networks of flux tubes, which contain both Alice strings and magnetic flux lines. 

For our purposes, there are three categories into which such networks fall, and we analyze 

them using simple toy models. In the first case, U(l),, x Z:! is partially broken such that - 

each magnetic monopole has at least two flux tubes attached to it. Because these tubes 

will generally be pulling the monopoles in different directions, the annihilation efficiency is 

fairly low -[ 1 I], and it is not known whether it can occur fast enough to solve the monopole 

problem. In the second case, U(l),, x Z2 is completely broken, which means that the flux 

.tubes all have trivial holonomy. If the hierarchy$ is large, then as before a network of strings 

- will_fp_rm. Although each monopole is attached to just one flux tube, there will also be loops 

of string that are multiply magnetically charged. These will not be neutralised quickly, and 

so the usual Langacker-Pi mechanism will be evaded. The efficacy of monopole annihilation . . 
in either of these cases is not yet known and a verdict must await more thorough studies of 

_~ 
network evolution. 

For the third case, we introduce a new model containing Alice strings. In this, it is 

- -. --possible to break U(1) em completely while leaving Z2 unbroken. If this is done at a low 

-h* ierarchy~thkn we can show that monopoles annihilate much faster than the rest of the 

network: Thus the monopole bounds may be satisfied while leaving behind a high density of 

Alice strings. A variant of this mechanism, motivated by the work of Kibble and Weinberg 

[7], enables us to prevent monopoles from forming in the first place. 

We conclude that it is possible for the pertinent phase tra.nsition to occur after any infla- 

tionary era. This means that Alice strings may contribute interesting effects to cosmology, 

particularly after the superconducting period. Of course we know that today C is not a 

symmetry of the vacuum. This is not a problem, since a necessary condition for a model 

to contain Alice strings is that C be a member of the original ga,uge group. It can later be 

spontaneously broken (together with CP), whereupon Alice strings become the boundaries 

of, possibly superconducting, domain walls. String-bounded walls eventually decay, and can 

have interesting consequences without dominating the energy density of the Universe [8]. In 

a future publication we discuss the cosmological implications of Alice strings further, and 

show in particular how these domain walls could account for the baryon asymmetry [12]. 

. -. t IJeJe Z, is the discrete group { 1, C} g enerated by the charge conjugation operator C. 
$ T&eFterm.-“hierarchy” refers to the energy-scale difference between the monopole-forming and the flux- 

tube-forming phase transitions. That is, it defines the relative scales of the monopole mass and the 
flux tube tension. 
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2. Alice Strings and the Monopole Problem 

In this section we introduce the simplest model containing Alice strings and show how 

it also leads to monopoles. This consists of a (3+1)-d imensional non-abelian theory with - 

gauge group G = SO(3) and a Higgs field @ in the 5-dimensional irreducible representation. 

We can regard @ as a real symmetric traceless 3 x 3 matrix transforming as 

@ + fllma!f-l for M E SO(3). (2.1) I. 

The Higgs potential is chosen so that (a) ac q uires two degenerate eigenvalues. In the unitary 

gauge, 
; *- 

i 

1 0 

w=P 1 > P-2) 

. . 0 -2 1 
-- where p is some constant. The unbroken subgroup of SO(3) is then H = U(1) XSD 22 E O(2), 

and this is disconnected.* Since we wish to interpret the U(1) factor as being electromag- 

-net&m, it is clear that H also contains the charge-conjugation operator C. 
_ _. 

As ,our interest lies in the topological structures of the theory, it is more convenient to 

work wit-h a simply connected unbroken gauge group. * We can do this by considering the 

double cover of the above model. This has a gauge group G = SU(2), which is broken by a 

Higgs field @ in the spin-2 representation. As before, Q may be regarded as a real traceless 

symmetric 3 x 3 matrix that transforms as in equation (2.1) and acquires the expectation 

value (2.2). Th e unbroken subgroup is now H = Pin(2), where Pin(2) is the double cover of 

O(2) and may be parametrised as 

Pin(2) = {eita3, i02eigu3}, 8 E [0,47r). (2.3) 

Because G = SU(2) 

h(H). 

is simply-connected, we have Ill (G/H) = IIo(H), and also IIz( G/H) = 

_ Since nl(G/H) # 0, the theory admits topologically stable cosmic strings. The result of - 

_ parallel transport around such a string defines its “magnetic flux”, R, an element of H: 

fl=pexp(i{A.dx) EH. 

’ For a-&&g.phose flux lies in the component of H disconnected from the identity, R does 

* The subscript SD denotes a semi-direct product. 

4 



I 
: 

- _ @ commute with the charge operator & E ia3 that generates U(1) c Pin(2). Rather, 

R&R-l = -Q. (2.5) 

Hence, a particle circumnavigating the string will have the sign of its charge flipped when it - 

returns. This behaviour defines an Alice string. As explained in [2, 31, electric and magnetic 

field lines in the presence of an Alice string have their directions reversed as they cross some 

gauge-dependent branch cut. 

Notice that since IIz(G/H) = III(H) # 0, the spontaneous symmetry breaking also 

.. generates magnetic monopoles. This behaviour is generic [4], and in particular persists even 

- if Gantains an explicit factor of U(1). W e may think that the situation can be saved in 

the usual way by simply asserting that an era of inflation is entered after the G + H phase 

. transition. However, as the monopoles are swept outside the horizon, so too will be any 

other topological structures such as Alice strings. It is the purpose of this paper to provide _~ 
a toy model in which the density of monopoles is reduced to satisfy experimental bounds, 

while the density of Alice strings remains high enough to contribute interesting effects to 

- --. cosmolpgy. 

- . 

3. Alice Strings in a Superconducting Universe 

In order to erase monopoles, we shall require the Universe to enter a temporary super- 

conducting phase, following Langacker and Pi [5]. T o understand the effects of this, it is very 

instructive to first consider the fate of monopoles and Alice strings when the group Pin(2) 

is_ broken down to some discrete subgroup. In particular O(2) contains a discrete subgroup 

D2. This is the dihedral group, and consists of rotations of 7r about the principal axes, so 

D2 4 {l,a,b,c} where u2 = b2 = c2 = 1, ab = c, UC = b, bc=a. (3-l) 

Now, O(2) c SO(3), and as SO(3) is lifted to its double cover SU(2), then O(2) is lifted to 

Pin(2). Similarly, D2 is lifted to the quaternionic group Q, where ~ 

& = {fl, fi, *j, flc} E {fl, fiar, ficr2, figs}. (3.2) 

,If we start. with the group SU(2) and break it down to Pin(2), then, as discussed in the 

previ&&se&on, we will generate both Alice strings and magnetic monopoles. Now we 

break the symmetry further to Q, and let k correspond to the generator of U(l),,. 
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- .-* As this breaking occurs, the flux emanating from a monopole will form four tubes! each 

with holonomy k, as shown in figure 1. This is because the holonomy of any closed loop 

must now be an element of Q. Furthermore, it is energetically favourable for a flux tube to 

break into the smallest allowed flux fractions. Since fiar and fia2 correspond to charge 

conjugation operators in the group Pin(2), it should b e c 1 ear that tubes carrying quaternionic 

flux i or j are the remains of Alice strings. 

In addition to monopoles at which four k-tubes meet, there will be vertices at which four 

i-tubes meet; we call them i4 vertices. These correspond to the joining of four Alice strings. 

-- A n i2k2 vertex describes a half-charged monopole$ threaded onto a string, and an ijk vertex 

will’&respond-to. a quarter-charged monopole on an Alice string, and will play a role in 

describing the topologically charged strings described below. It is in fact possible to describe 
. . all fourth-order vertices in terms of cubic vertices. For instance, the magnetic monopole of 

--figure 1 is just the limit of the configuration shown in figure 3 as the loop shrinks to a point. 

Note that in general a flux tube carries more information than just its holonomy. It is 

described fully by the type and direction of the flux that it carries. The holonomy may, of 

-course, -be-computed from these. In our case, a tube carrying, say, j-flux in one direction is 

equivalent to a tube carrying (-j)-fl ux in the opposite direction. It is clearly not equivalent - 
to two k-tubes and three j-tubes bound together, though it could have the same holonomy. 

In fact, the story is a little more complicated since loops of Alice strings can carry 

two types of magnetic charge. The first of these is so-called “Cheshire Charge”. Before 

U( l>eIn is broken, imagine bringing a (magnetic) charge Q from infinity, passing it through 

thestring loop, and then returning it to infinity. Its charge has been changed to -Q, and so 

by the conservation of magnetic charge the Alice string must have acquired a charge +2~. 

This is non-localised, hence the name “Cheshire Charge”. Upon breaking Pin(2) to Q, the 

associated magnetic flux will be confined to tubes, and so a Cheshire magnetically charged 

Alice loop will become, say, an i-loop with some k-tubes passing through its centre. As 

explained above, the direction of the k-flux will reverse as we cross some gauge-dependent - 

_ branch cut. This is illustrated in figure 2. 

The second type of magnetic charge is defined as follows [a]: consider some base point 

. - t In, the Sequel we shall often use the terms “string” and “flux tube” interchangeably. 
$ I&&sse&kd in any Grand Unified Theory that fractionally charged monopoles cannot exist by them- 

selves. The objects that we are considering here, though, can never be separated from the Alice string, 
and so they are allowed. 
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~0. The holonomy of a closed path starting at 20 and linking the Alice loop is an element of c 
i. As this path is deformed around the Alice loop, its holonomy traces out a closed curve 

in H. Since H is not simply-connected,‘the curve may be topologically non-trivial, and so 

the Alice loop carries “twisting” magnetic charge. When Pin(2) breaks to Q, there can no - 

longer be smoothly varying paths in H. Twisting magnetic charge is then manifested by 

quarter-monopoles strung on the Alice string, as shown in figure 3. As the path based at 20 

is moved around the string, its holonomy jumps each time it crosses a k-tube, from i to j 

to -i etc! It is clear in this picture that twisting charge and Cheshire charge are essentially 

. equivalent - at a finite cost in energy, the quarter-monopoles described above could be 

- moyd- together and the k-tubes disentangled to leave an i-loop with several k-tubes passing 

through its centre. In fact, for a non-trivial hierarchy, this will be the energetically preferred 

configuration. . 

_~ In this quaternionic superconducting phase, we have seen that monopoles and Alice 

strings become a network of tubes carrying i, j, and k flux, joined three-fold’ at vertices, 

such that the total holonomy at any vertex is trivial. A typically ugly section of such a 

- --. -configuration is shown in .figure 4. 
.._ ..- 

In order to actually implement this superconducting phase, we take the SU(2) model 

of the previous section, and add a second Higgs field 6, also transforming in the spin-2 

representation. When the first Higgs field acquired an expectation value 

1 0 

(@>)=p i 1 , (3.3) 
0 -2 

1 
we saw that SU(2) was broken to Pin(2). If the second Higgs now gets expectation value 

) (3.4) 

- then the symmetry will be further broken to Q. 

We thus require the effective potential of Q, and 6 to vary with temperature such that, 

as the Universe cools, it passes through the following phases: _ _ 
_. I-- - _ 

5 We thank J.Preskill for discussions on this point. 
7 As mentioned before, a four-vertex can be constructed from three-vertices. 
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- I) Unbroken SU(2) with (@) = (6) = 0 ,-- 

II) SU(2) broken to Pin(2) with (@) = p diag( 1, 1, -2) and ((a) = 0 

III) SU(2) broken to Q with (a) = p diag(l,l, -2) and (i) = @ diag(l,2, -3) 

IV) Same as phase II. 

At phase II, both Alice strings and monopoles are formed, and at phase III they become 

the quaternionic network described above. This network will evolve as the tension in the 

strings pulls the vertices around. In phase IV, the electromagnetic symmetry is restored, 

. -and the k-flux tubes become deconfined. The network will then dissolve into Alice string 

- strus&res and monopoles. Notice that if we had broken SU(2) directly to Q, we would have 

obtained the same type of network before U(l),, was restored. 

. . In the original Langacker-Pi scenario, the magnetic flux in the superconducting phase 

_~ was completely confined. This meant that to each monopole was attached just one flux tube. 

The tension in the flux tubes then brought monopoles together very quickly, causing almost 

all of them to annihilate. In our model, the situation is more complicated. Each monopole 

- --. -is attached not to one, but to four tubes, which will generally be trying to pull it in different 

directions.- Thus it is not clear whether the monopole-antimonopole pairs will be able to 

meet each other sufficiently quickly to satisfy the experimental density constraints. 
- . 

In order to study this question, we must focus on the evolution of the network formed in 

phase III. The vertices will be pulled around by the tension in the strings. In addition, strings 

may cut through each other to form new vertices; for example, two k-tubes may “escape” 

from an i-loop to form a new magnetic monopole as shown in figure 5. The amplitudes 

for-these processes will depend on the vertex masses, and in addition must satisfy various 

topological constraints; in this case it is not possible for just one k-tube to escape, for if 

it did it would have to form a free monopole of half the elementary charge, thus incurring 

Dirac’s wrath. 

The qualitative development of string networks of this form is likely to depend crucially 

on the details of the particular model chosen. The effective Higgs potential will determine 

the string tensions and vertex masses, which in turn control the rates of interconnection. In 

addition, the introduction of friction will change the evolution dramatically. Not surpris- 

ingly, no thorough analysis of such networks has yet been presented. However, numerical c -. 
simul&&s [Ill h ave been undertaken for simplified network models. These indicate that, 

for some range of parameters, a network’s mass will not come to dominate the Universe. 
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- For our applications we require far more than this - we need the network to have become 

i&iciently dilute that after restoration of U(l),, the surviving magnetic monopoles satisfy 

. the experimental density bounds. Thus’the question of whether the model so far described 

can solve the monopole problem will need a more thorough knowledge of network evolution, - 

However, in section 5 we shall present a symmetry breaking scenario in which it is clear that 

the monopole density can easily be reduce d to the desired level. It is this that we regard as _ 

in an Alice model. definitively solving the monopole problem 

; r, 4. Breaking to Smaller Groups 

. . In the previous section we considered a superconducting phase in which Pin(2) was 

--broken to Q = {fl,fi, *j, fk}. A s a natural extension of this, we ask what happens if 

instead we break to some subgroup of Q. Up to conjugacy, there are three such subgroups: 

24 = {fl,fi}, Z2 = {fl}, and th.e trivial group. 

For ease of visualisation, suppose that we first break Pin(2) to Q, and then break this 
.__ ..- 

further in stages. By adding a Higgs field v in the spin-l representation, we can break the 

symmetry to Z4. After (6) has become - . 

1 0 

(6) =fi ( 2 1 ) 

0 -3 

we let v acquire the expectation value 

(v) = ov . 0 0 

(4.1) 

(4.2) 

This breaks Q to 24 = { fl, fi}. At this point, strings of holonomy *j, fk will no longer be 

allowed, and so they must pair up.* A magnetic monopole will now have two (-1)-holonomy 

_ flux tubes attached to it. Note that, as before, a l-string will decompose into smaller flux 

* The pairing-up mechanism can be understood in the following way. As the symmetry breaks, the j- 
_ - and L&rings will become boundaries of domain walls on which (v) remains zero. The tension in these 

~$5, aided by string interconnections, causes them to colla,pse. As they do so they will bring pairs 
of j- and h-strings together. This will occur on a time-scale that is short compared to the subsequent 
evolution of the string network. 
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- _ fractions. Hence the network will consist of i-strings and (-l)-strings, with i2(-1) vertices, 

and beads strung on (-1) strings. The beads will interpolate between the various kinds of 

. flux that the (-l)- t g s rin s can carry. Like our previous quaternionic network, this one will 

evolve by the tension in the strings accelerating the vertices, and by strings interconnecting - 

with each other to form new vertices. Again, the evolution will depend on the details of the 

model, and the question of whether experimental monopole bounds can be satisfied must . . 

await more refined network analyses. 

If we add a further Higgs field v’ in the spin-l representation, and let it acquire expec- 

t at ion value 
0 

( > v' = v' ) 0 0 
(4.3) 

-~ then we see that 24 is further broken to Z:! = (61). S ince strings of holonomy i are not 

allowed, they too must pair up. In contrast to the previous models, holonomy-1 strings 

cannow be stable, since an ijIc-string is unable to break up into anything smaller. Hence 

- -.:the network will consist .of (-l)- and l-strings carrying various types of flux, and with 
.__ ..- 

beads strung on them. There will be l3 and ( -1)21 vertices, and l-tubes will be allowed 

to end ‘(at generalised monopoles). No matter how low the hierarchy, a string of non-trivial - . 
holonomy can never break. However, a l-string can break, forming a generalised monopole- 

antimonopole pair. Thus, in this example, if the Pin(2) -+ Z2 phase transition occurs soon 

after the original SU(2) + Pin(2) transition, then the l-strings will dissolve, leaving just a 

(-1)-string network. Magnetic monopoles, though, have two (-1)-strings attached to them, 

and so as before it is not clear from existing analyses that the subsequent network evolution 

will be fast enough to get the monopole density down to experimentally allowed levels. 

In order to break SU(2) completely, we add a doublet Higgs field, $. This is allowed to 

acquire the expectation value 

($9 = 5 7 0 (4.4) - 

_ which is obviously not left invariant by any non-trivial subgroup of SU(2). Now strings of 

holonomy (- 1) are not allowed, and so they must pair up. This will leave just l-tubes, 

_ carrying various types of flux, strung with beads, and joined together at vertices. The tubes 

will b%able ‘to end, either on magnetic monopoles or on other generalised monopoles whose 

nature. will depend on the flux that they carry. 
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. _ - If the hierarchy is sufficiently low, then the entire network will dissolve almost immedi- 

ately, leaving behind no topological structures. This case is a.s destructive to Alice strings as 

inflation, and hence is of no interest to us. We will assume, then, that the network does not 

polarise too quickly. In this case it will still exhibit a major difference from the partial sym- - 

metry breaking networks so far described; each monopole will now be connected to exactly 

one flux tube. This was the essential property of the usual Langacker-Pi mechanism, and so 

it may seem that the monopole problem would be solved. However, there will also be loops 

of string that are multiply magnetically charged. These will have many flux tubes attaching 

-them to the rest of the network, and so they will move only slowly. At the termination 

of t&-superconducting era, we will be left with magnetically charged loops of Alice string 

which may subsequently break up and contract away to points, giving birth once again to 

the unwanted magnetic monopoles. The actual magnitudes of these effects are unknown and 

await a more detailed analysis. 

We have seen that breaking the symmetry to smaller subgroups leads to the same sort 

of n.etwork that we found in the last section. When l-strings are topologically stable, some 

- ---1qualitatively new features emerge, namely the breaking of strings and the fast motion of 

monopoles. Though it may possibly be found from more complete analyses that some of 

these networks can solve the monopole problem, we do not claim to have reached any such 

conclusion here. However, in the next section we shall present a new model containing Alice 

strings. Even without detailed knowledge of its evolution, it can clearly be seen to eliminate 

magnetic monopoles in the desired way. 

5. Annihilating Monopoles Faster than Alice Strings 

With the deliberations of the previous section in mind, we shall now develop a model in 

which monopoles are quickly annihilated to leave an Alice string network. We have seen that 

the only flux tubes that disappear quickly are those with trivial holono.my; if the hierarchy is 

_ low, they will dissolve into monopole-antimonopole pairs. Thus it would seem desirable that 

the magnetic flux be completely confined into l-tubes soon after the monopoles are formed. 

_ -However, if we completely break the symmetry then the Alice strings will also be dissolved. 

To a&d thiswe need magnetic flux to be completely confined, and Alice flux to be only 

partially confined. This could never have occured for the SU(2) -+ Pin(2) model, since any 
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- _ p-on-trivial subgroup of & contains the element (-l), and so any symmetry breaking that 

does not confine all flux would leave at least two flux tubes attached to each monopole. 

To achieve our goal, then, we shall have to construct a new model containing Alice _ 

strings. For this we consider an SU(3) gauge theory, with a Higgs field A in the 6 = (2,0) 

representation. We can regard A as being a symmetric 3 x 3 matrix with the transformation 

law 

A + MAMT M E SU(3). (5.1) 

.. ‘Now let A acquire the unitary gauge expectation value 

. 
(5.2) 

-~ It is easy to see that this breaks SU(3) down to O(2), and so we have a model containing Alice 

strings. Note that since SU(3) is simply-connected, we don’t need to consider its covering 

‘group. This is the crucial, difference from the SO(3) --+ O(2) model. 

As before, the symmetry breaking will produce monopoles, since 

b(G/H) = IIa(SU(3)/0(2)) = l&(0(2)) # 0. (5.3) 

In order to enter the superconducting phase, O(2) must be broken down to some discrete 

subgroup. As before, for ease of visualisation, we shall imagine doing this in stages. First 

we break the symmetry to the dihedral group D2 = { 1, a, b, c}, consisting of rotations by 7r 

about each of the principal axes of A. This may be achieved by introducing a second Higgs 

field.A, also in the 6 representation, and letting it acquire expectation value 

(5.4) 

in the unitary gauge. At this .point, Alice strings have become a- and b- flux tubes, and 

magnetic flux is confined into c-flux tubes. Each monopole will have two c-tubes attached 

to it. 
_- _ -. 

N’i;s;vwe break D2 down to Z:! = { 1, CL}. This can be done by introducing a Higgs field v in 

the 3 F (1,0) representation of SU(3) and letting it acquire the (unitary gauge) expectation 
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value .-- 

(5.5) 

No longer will b- and c- flux tubes be allowed to exist in isolation, and so they will pair up. In 

particular, a magnetic monopole will now have a single l-tube tied to it, carrying flux c2. We 

will thus have a network of strings of holonomy 1 and a, as shown in figure 6. Now suppose 

that the hierarchy is low. Then the l-strings will dissolve into monopole-antimonopole pairs 

which immediately annihilate. This will leave only strings of holonomy a. There are two 

typ:zof these - ones carrying a unit of u-flux, and ones carrying both b- and c- flux. The 

latter simply consist of a b-string and a c-string bound together. Because of the symmetry 

between a, b and c, it is clear that u-strings have approximately half the tension of bc-strings. 

Thus, since the hierarchy is low, the latter will decay into the former, via the process shown 

in figure 7. This will leave just u-strings sewn with beads at which the direction of the u-flux 

changes. Th ere will be no stable vertices joining more than two u-strings. At the end of 

the superconducting era, then, we see that a relative abundance of Alice strings will remain. 

-Moreover,_these strings will be devoid of magnetic charge, and so there is no danger of them 

later decaying to give re-birth to monopoles. 

. 

Kibble‘and Weinberg [7] h ave pointed out a variant of the Langacker-Pi mechanism in 

which, rather than forming monopoles and then annihilating them, their initial production 

is prevented.* We can implement this scenario by breaking the symmetry directly to Z2 in 

the following way. Let A and v, as before, lie in the 6 and 3 representations of SU(3), and 

let the Higgs pair (A, v) acquire the expectation value 

((W) = ((1 2h I).ia)) (5.6) 

in the unitary gauge. This breaks SU(3) d own to Z2. In a non-singular gauge, then, we have 

((A,+ = (A4 (:: 2h 1) MT,M (9)) , - ME&J(~)/Z~. (5.7) 

Since Hz(SU(3)/&) = Hr(&) = 0, we can see that M, viewed as a 3 x 3 matrix, is 
c  -. 

C-- * T&s argtiinent is valid when the symmetry breaking does not give rise to a network of stable cosmic 
strings with non-trivial vertices. In this case topological structures may be surrounded by spheres on 
which there are no singularities. 
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- topologically trivial on a sphere S2, though not on a circle. 
*-- 

Next we let (v) --f 0, while leaving (A) unalte red. Then we have 

MT, M E SU(3)/0(2). (5.8) 

but still M is topologically trivial on S2, and so there are no monopoles. Summarising, the 

phases of symmetry breaking that we have described are: 

I) SU(3) unbroken. 

II) SU(3) broken to Z2. ((A,v)) = 
. . 

_~ III) SU(3) broken to O(2). (A) # 0, (v) = 0. 

And in phase III we are left with Alice strings but no monopoles. 

‘. 

_ -. This mechanism for preventing the formation of monopoles is really just the limit of the - 
-previous model as the hierarchy is taken to zero. In any case, either of the scenarios of this 

section-can easily account for an abundance of Alice strings with a paucity of monopoles. 
- . 

6. Conclusion 

-In this paper we have studied the Langacker-Pi mechanism as a means of solving the 

monopole problem in models containing Alice strings. We found that the superconducting 

phase transition gives rise to a network of flux tubes which evolves in a complex way. It 

is difficult to analyse this evolution in detail, and we have not done so here. However, for 

the particular symmetry breaking pattern U(l),, x Z2 --f Z2 with a low hierarchy, we have 

shown that magnetic monopoles are quickly annihilated, leaving behind a network of Alice 

- strings. 

This observation opens up the possibility that Alice strings were formed after any infla- 

tionary eras, and hence could have important cosmological effects. Since our Universe today c -. 
has a-&&uum~ which is not symmetric under C, we must postulate that this is the result 

of som,e spontaneous symmetry breaking of a GUT gauge group containing C. When this 
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occured, each Alice string became the boundary of a domain wall. These domain walls are 
- -.-- 

possibly superconducting, and have the property that they can act as “filters” that convert 

antimatter into matter. This could account for the baryon asymmetry of the Universe. We 

shall investigate these matters further in a separate publication [la]. 
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FIGURE CAPTIONS 

- 1) The flux tubes associated with a magnetic monopole after Pin(2) has been broken 

-” - down to Q. 

2) After the superconducting phase is entered, Cheshire magnetic charge is expressed in 

.a terms of flux tubes whose direction reverses as they pass through the centre of an Alice 

_~ loop. 

3) Twisting magnetic charge is described, in the superconducting phase, by quarter- 

monopoles threaded on the Alice string. As the path based at zo is moved around 

the Alice string, its holonomy jumps each time it crosses a k-tube, from i to j to -i _ ..- 
etc. 

4) Bfeakirig SU(2) -+ Q 1 ea s d t o a network of i-, j-, and k-strings joined at vertices such 

that the total holonomy at any vertex is trivial. 

5) Two i&tubes passing through an i-loop can escape, forming a magnetic monopole and 

an uncharged Alice loop. 

-6) Breaking SU(3) -+ Z2 = { 1, u} leads to a network of l-strings and u-strings, with each 

magnetic monopole attached to the end of a l-string. 

_ 7) A &-string has approximately twice the tension of an u-string, and so, if the hierarchy 

is low, sections of it will be replaced by sections of u-string. These will then expand 

until the entire bc-string has been transformed into an a-string. 
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