SLAC-PUB-5799
IFM/13, RU92/10/B
April 1992

T/E

CP Asymmetries in B® Decays in the
Presence of Flavor-Changing Neutral Currents

G. C. BraNCO

CFMC/INIC and Instituto Superior Técnico
Av. Prof. Gama Pinto, N° 2, 1699 Lisboa Codez, Portugal

and

*
T. MOROZUMI

The Rockefeller University, New York, New York 10021-6399, USA
and

P.A. PARADAJ‘

CFMC/INIC and Instituto Superior Té€cnico
Av. Prof. Gama Pinto, N° 2, 1699 Lisboa Codez, Portugal

and

M. N. REBELOI

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94309, USA

Submitted to Physical Review D

X Work supported under contract DOE-AC02-87ER40325 TASKB.
‘+Work supported by a JNICT grant number BD/1504/91-RM.
1 Work supported by the Department of Energy, contract DE-AC03-76SF00515
" and by a fellowship from OTAN (NATO).



ABSTRACT

We study in detail models with vector-like quarks, with special emphasis on
their implications for CP asymmetries in B? decays. In this class of models
* ‘there are deviations from unitarity in the Cabibbo-Kobayashi-Maskawa matrix
and flavor-changing neutral currents which, although naturally suppressed, may
have important consequences. We show that even a relatively small contribution
of Z mediated flavor changing neutral currents to B® — B’ mixing can lead to sig-
nificant departures from the predictions of the standard model for CP asymmetries

in B? decays.



I - Introduction

The measurement of CP asymmetries in B? decays {1] provides an opportunity to test
various aspects of the standard model (S.M.), including the unitarity of the Cabibbo-
Kobayashi-Maskawa matrix (CKM) and the standard K.M. mechanism of CP violation. The
simplest extension of the standard model where deviations from unitarity of the CKM matrix
paturally arise consists of introducing extra quarks which are isosinglets but which mix with
the standard quarks. Isosinglet quarks have been suggested in a variety of models, including Eg
grand-unified theories and some of the superstring inspired models. The addition of isosinglet
quarks to the S.M. provides [2] a possible connection between CP breaking at a high cnergy

1scale and the observed CP violation at low energies and furthermore it gives a simple solution

to the strong CP problem [3], [4].

Some of the features of models with isosinglet quarks and their implications for CP
violation have been analysed by Branco and Lavoura [5] and by Nir an Silverman [6]. The

present work complements these two previous analyses.

The paper is organized as follows. In the next section we briefly describe the model,
identifying the new CP violating phases which arise when both Q = -3 and Q = £ isosinglet
» -chgil.;rrks are present and also show how deviations from unitarity and flavor-changing necutral
cutrents (F.C.N.C.) are closely related and both naturally suppressed in the model. In scction
IH ;Ne advocate the use of rephasing invariant parametrizations which are specially convenient
for models with isosinglet quarks. We give two examples, one with one down-type vector-like
quark, and another with one down-type and one up-type vector-like quark. This section of the
paper is logically independent of the other sections and therefore it may be skipped by the
reader not interested in the question of how to parametrize the CKM matrix. In section 1V we
study B%-B° mixing and CP asymmetries in B decays. For simplicity, we cousider the casc of
one down-type vector-like quark (1dVLQ), but we will show that the analysis continues to be
valid for an arbitrary number of down-type vector-like quarks. Nir and Silverman have
analysed [6] in detail CP asymmetries in the 1dVLQ model under the assumption that BU-BY
mixing is dominated by Z exchange tree diagrams. We will do the analysis so that it can be;,
applied to the general case, including the one where the Z exchange and the S.M. box diagram
contributions to B%-B° mixing are of comparable strength. We point out that if one takes into
account the recent upper limit [7] on B u* =X decays, then B,-B, mixing can still be
dominated by the Z mediated F.C.N.C., while in the case of B,-B, mixing Z exchange can at
rgost compete with the S.M. box diagram. We show that even a relatively small contribution
by ﬂTe 7 exchange diagrams to B%-B® mixing can drastically modify the predictions of the S.M.

for CP asymmetries in B decays. Finally in section V we present our conclusions.



II - The Model

We will assume the standard SU(2)xU(1) gauge theory, with the addition of N, charge
-% and Ny charge % isosinglet quarks. The quark field content of the model will be denoted in

the following way:

(u® do)l_| 1=1,..,n
D, p=1,.. N,
Uy, g=1, .., Ny (1)
- DR, a=1,..,0+ N,
_ URg B=1,..,n0+ Ny

The quark mass terms are:

Ly = 00 (m0)isURky + UL, (My)sUks + d1(mg)iaDie + DY ,(Mp)raDi,, (2)

- The dimensions of the four mass matrices are readily inferred from the index range convention

of Eq. (1). Although most of our considerations apply to arbitrary n, N,, Nu, we will, for

six‘nplvicity, take n = 3, N; = Ny = 1. The weak gauge currents can be written:
Lg =2y + 2,
- B CKM H .
Ly = _Jf)uLaVaﬁ Y4y g W (3)
(a, f =1,...,4)

_ g - u d 3 b 202 Iz
'jLZ _,m&gﬁuhﬂ U s — Zapd| Y d; ; — sin OWJem:)Z,,

where uq, dg are mass eigenstates and:

\ _
CKM

Vep ' = ;-; Ul Wig (da)

Z:p = 5aﬁ - Uza U4ﬁ (4b)

ziﬁ = 60,5 ha VV:G W4ﬁ (4C)
W .

‘where U, W denote the matrices which relate the weak and mass eigenstates:



uf u; d; d;
= , = 5
yo T D° B )
L L L L

Due to the presence of the vector-like quarks there are flavor changing neutral currents which
are closely connected to the deviations from unitarity in VEKM, Indeed, using the unitarity of

U and W, one readily obtains:

(VV¥),p = 24 (6a)
(V=VEKM)
.y (V+V)aﬁ = ziﬁ . (6b)

An attractive feature of models with vector-like quarks is the fact that although deviations
from unitarity in VXM and FCNC arise, they are related through Eqgs. (6) and are both
suppressed in the standard quark sector by the ratio of standard quark masses to the vector-
like quark masses. This can be readily seen by making an approximate diagonalization of the
quark mass matrices. By choosing an appropriate weak basis one can put, without Joss of

- generality, the quark mass matrices in the form:

my Gd Jd
My = = . (7a)
r r . 7
My Gu Ju
Jﬂau - == ~ (Tb)
M. 0 M,
L L J

where Gu, My, M, are diagonal real positive matrices of dimension n, Ny, N,. The matrix G,
~is n-dimensional and complex, while J;, Ju are (nxN,), (nxNy) complex matrices. Through a
phase redefinition, one can climinate N;, N, phases from J,, Ju, respectively. It is convenient

to write in block form the unitary matrices W, U which diagonalize ./ﬂ)d./ﬂ);, Moy M3

respectively:
A K, R
W = 4 = 4 4 (8)
- B, Sa Ty
=

with analogous expressions for U. Let m the mass scale of (G4, J;) and M be the mass scale of

M,. Since G, J4 are Al = 3 mass terms while M, is a Al = 0 mass term, it is natural to
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‘assume M > m. One can then find an approximate solution for W:
T,; = IINd S; ~ —(M7'IDK,
R, = J Mg (9)

while K, is, up to O(m?/M?), the unitary matrix which diagonalizes G,G7. Analogous

expressions obviously apply to U. The VEKM 1hatrix is then given by :

-

v + +1 xr-1
VEKM _ (AtA,) = el fedaMa (10)
: MK, ML MY
Using unitarity of W, U one readily obtains:
(V) = 6 — [JuMT23E;;
(V*V),; = 645 — [K;JdM;,?J;Kdlj (11)

where we have taken into account the fact that we have chosen to work in the weak basis
where G, is diagonal and therefore Ky =~ l3. Since Ju, J, are O(m) it is clear from Egs. (11),
that deviations from unitarity and FCNC for the standard quarks will be suppressed by the

ratio m?/M?.

III - Rephasing Invariant Parametrization of VCOKM

Since the CKM matrix is no longer unitary, it is less obvious to find the number of
indépendent CP violating phases for arbitrary n, N;, Ny. In Ref. [5] Branco and Lavoura have
studied the restrictions that CP invariance imposes on the quark masses of Eq. (1). This was
done by constructing the most general CP transformation which leaves invariant the charged

and neutral current interactions. They obtained for the number of CP restrictions:
Ne = 3(n-1)[(n-2)+2(N;+Nu) ] (12)
c 2 d u
T?ié_corfesponds in general to the mumber of independent CP violating phases N, which

appear in VEKM At this point it is worth noting that although the expression for VKM given

by Eq. (10) is only approximate, it contains the correct number of physical phases, namely:



Ky = j(0-1)(n-2)

Jg — (n-1)N, (13)

Ju — (n-1)Nu

We turn now to the question of {inding an exact parametrization of VEKEM 61 models
with vector-like quarks. There are two different approaches to the problem: one , more
traditional, parametrizes VKM through Euler angles and phases; the other uses rephasing
yrvariant quantities [8] to parametrize VEKM 1 the case where there are only isosinglet

VEKM matrix consists of the first n

quarks of a given charge (e.g. Nu=0, N, =arbitrary) the
lines of a (n+N,) dimensional unitary matrix, and the problem amounts to finding a
parametrization of this unitary matrix where %(n—l)[(n—2)+2Ndj physical phases appear in the
first n lines. This problem was solved in Ref. [5], where an explicit parametrization through

Euler angles and phases was given. At this point, it is worth mentioning that, for more than

one vector-like quark the “standard” parametrization [9] of VEXM 4oes not have the above

- _property and therefore it is not adequate. Although the solution presented in Ref. [5] is

mathematically correct, parametrizations through Euler angles and phases are not the most
convenient, especially when isosinglet quarks are present. Therefore, we will proposc here the
use of rephasing invariant parametrizations and analyse the two simplest cases, namely (N,=1,

N,=0) and (N;=N.=1).

The case N ;=1, Nu=0

In this case there are three phase variables and six angle variables. We propose the following

choice: .

Phaée variables:
pr = arg(Vy,Va3VisVay)
¢, = arg(V1;VasVisVar) (14a)
3 = arg(Vy3Vs2V32Vas)

Angle variables:

-.:_;LYIIL Vol [Vails [Vasls {Vials V3l (14b)

-

We. have chosen a complete set of variables containing quantities that are either alrcady

measured or likely to be directly mcasured in the future. Indeed it will be seen that ¢,, ¢, ¢3



R

‘correspond to the angles v, a, 3, respectively, which appear in the unitarity quadrangles of the

1dVLQ model (see Figs. 1, 2).

We will show next that one can obtain the remaining elements of VM from - the
input data of Eqgs. (14). In order to facilitate our task, we work in the weak basis where my is
diagonal, real. Let us consider the unitary matrix W defined by Eq. (5), whose first three lines

constitute VEKM.

r 7 (15)
Vs Vus Vi Vg
W VEKM | Veo Ve Va Ve
W4i th Vta Vzb VtB

B W41 W42 W43 W44

Without loss of generality, one can choose the quark phases so that the second row and the

third column are real. Then ¢,, @., @3, {ix the arguments of V,;, Vg, V3,, respectively.

3
Normalization of the first column (| W,“|2 =1- E|V,~1|2) gives us | W,;|. Then orthogonality
. i=1

of the first and third columns together with normalization of the third column give us

ar,é( Wﬂ), |Vysl, |Wasl. At this stage, the first and the third columns are completely
determined and in the second column |Vg,|, argVs,, argV,; are also known. The remaining
elements in the second column can determined from orthogonality of the second column to the
first and third, together with normalization of the second column. We have omitted the usual
ambiguities [8], [L0] which arise in reconstructing the CKM matrix from input data. Note that
our parametrization is such that for angle variables we have only used the moduli of yEKM
connecting the standard quarks. Therefore VCKM can be reconstructed without directly
measuxlingl the coupling of the isovector quark B to the standard quarks. We have considered
the case Ny=1. The extension to N,>1 is straightforward. However, there are some special
features which only hold for N;=1. For example, for N;=1, it can easily be verified that one

can choose the quark field phases in such a way that the couplings 24, are all real. In general
q g af £

this is not possible for N;>1.

VEKM where invariant

VCKM

We have presented a rephasing invariant parametrization of
phases and moduli were used. In the standard model, one can also parametrize using
only independent moduli [11]. One may ask whether that parametrization is also possible in
tﬁéﬁ:esehce of isovector quarks. We will show that it is only possible for N;=1. The number

of independent moduli (Npy) is:



. The parametrization of

Nm = n(n+Nd-1) Ndzl (16)
While the number of angles is:
No = 3n[(n+Nz-1)+N] (17)

Taking into account that the number of independent phases N, is given by Eq. (12), with

Nu=0, one obtains:
N, = N¢+Na = Nm+(Ny-1)(n-1) (18)

Therefore for N;>1 the number of parameters exceeds the number of independent moduli, and

a parametrization through moduli is no longer possible.

The case N;=Nu=1

We consider now the case where there are both isovector quarks of charge —% and of charge §
VEKM s less obvious in this case, since there no longer exists a weak
basis where either the up or down quark mass matrices are diagonal. It is convenient to

introduce the auxiliary matrix X defined by:

VCKM B:-
X =
B, 0
(19)

where VERM ATA,, and Ay, Ay, By, By were defined in Eq. (8). For the moment n, N, N
arc arbitrary. X is a (n+N;+N.) dimensional matrix and it can readily be verified that X is
unitary. The fact that VEKM is a submatrix of a unitary matrix, obviously facilitates the task
of finding an appropriate parametrization. We will specialize now to the case Nyj=N.=1. There

are five phase variables and nine angle variables. Our choice is:

Invariant phases:
P1 = arg(vll\/:zsvravj:l)
P2 = @rg(VUV%VI*ngl) (20)
"“‘:‘790_3 =arg(V3,V13V33V32)
P4 = arg(VuVmVI‘sVIl)
Y5 = arg(V1,V Vi1V3s)

s ¢
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"Moduli:
IVals IVial IVails [Vaals IVaals [Vaals [Vasls [Vails [Vasl

It can be readily seen that these input parameters enable one to reconstruct the CKM matrix

using unitarity of the auxiliary matrix X.

IV CP Asymmetries in B® decays

In this section we study B-B mixing and CP asymmetries in B? decays in models with
vector-like quarks. In ref. [6], Nir and Silverman have studied these asymmetries under the
~gssumption that Z mediated FCNC give the dominant contribution to B-B mixing. We will
consider here the more general case where non-standard contributions compete with the
standard box diagram at inducing B°-B° mixing. The relevance of this analysis stems from the
fact th~* even a relatively small contribution from new physics can produce significant

departur~s from the S.M. predictions for the CP asymmetries in Bdecays.

This section is organized as follows. First we present a general analysis of CP

asymmetrics in B? decays when new physics is added to the mixing matrix. Then we

“ particularize to the model with charge -% vector-like quarks. It turns out that it is sufficient to

consider the case where there is only one such quark, since CP asymmetries cannot distinguish

N, =1 from N >1.

Let us assume that the off diagonal element of Bg-By is changed by a factor A, as a

result of a new contribution from physics beyond the S.M.:
M, = M$'A =d 21
12 = V2 B (a=d, s) (21)

where ‘Mgg) is the box diagram contribution. We will assume that all amplitudes contributing
to the decay have the same CKM phase and furthermore that 1‘5?«1\452). In this case the CP

asymmetry is given by:

"(B°—)-T(B°—=f)

= — ~ —sin(AMt)si 22
= REOSDTT(EI o © S n(AMb)sing (22)
where:
_ (0 A%
¢ - ¢ +a‘rgAbq? Abq - Aqb
T ; (23)

)55

*
ORIt
p; MY

12



- <=~ The index (0) denotes the contributions arising within the three generation S.M., and A(f),

A(f) stand for the decay amplitudes from the initial state |IBY), |B°%) to a CP cigenstate |f).
From Eq.(23) it follows that there are two possible sources which may change the S5.M.
prediction:

(i)- The presence of the phase of A, , which determines the deviation from the box diagram
contribution ¢(O). It is possible to incorporate different new physics contributions for B, and
Bs, if argA,; # argl,,.

(ii)- Although the expression for ¢(0) is the one given by the S.M., the actual numerical valuc
of qS(O) may differ from the S.M. prediction. This is due to the fact that models beyond the

S.M. allow in general for a different range of the CKM matrix elements.

In table I, we establish our notation by explicitly giving ¢ for various final states. For

comparison, the standard model values are also shown.

We turn now o the detailed analysis of models with charge -% vector-like quarks. The
new contribution to tue AB=2 effective hamiltonian arises from Z exchange tree graphs and

one readily obtains:

- 216
"'-‘Abq =1 + r4e Wog
’ 2
- 1 qu ¢
Tg = —=— (24)
V[E(x)||Vis Vi,
Zp
Oy, = arg[ﬁ:}
q
_ 2
where v = —%—— and E{x,= Sl is an Inami-Lim function for the top quark box
. 47rsm20w Mw

~ diagram. Note that vE/x;)=-0.0046 for m,=140 GeV. We assume the same QCD

correction factor for both the box diagram and the Z exchange diagram. This should be a good
approximation since QCD corrections above the scale of M, are negligible. From Eq.(24) one

readily obtains:

A _i|  Tesin20,,
argly, = tan 1+4rgc0820,,

(25)

W .

155 = (1+r3+2rqc0520bq)1/2

10



- «-~ ‘There are two distinct cases of interest in the study of CP asymmetries:
(a) - Z exchange and box diagrams give comparable contributions to B,-By mixing.
(b) - Z exchange gives the dominant contribution to Bg-By mixing.
Thes two cases are distinguishable by the value of the parameter rg:
(a) - rg=1
(b) - rg>1
Case (b) was studied in Ref.[6]. Therefore, our emphasis will be on case (a); we find that even
a relatively small contribution from Z exchange to Bg-B, mixing can imply very significant

departures from the S.M. predictions for CP asymmetries.

T In order to derive the numerical predictions for the CP asymmetries, one has to take

into account the unitarity constraints. The relevant ones for our purposes are:

* *
ViV +Va VgtV Vue = 2,
(26)
*
VEVL+VEV VLV, = 2,
- which lead to the unitarity quadrangles of figs. 1, 2. In order to determine the angle ¢ for the
various final states (Table 1), one has to know the values of the angles a, 8, #s shown in figs.

1, 2 One readily obtains:

cos(a-6) =

|Vubvud|2+(Ivtbvtd‘2_’2|vtbvtd||zbdicosobd+|Zbd‘2)_|vcbvcdl2

1/2
Q[Vubvud|(‘V1bvtd|2—2lvtbvtd'|2bdlcosabd+Izbdlz) /

Vcos‘(ﬁ-{'—é) =

Voo Veal +(IVaVeial* =21V Vgl 21ale0styg+ 12,1 )= 1V oV al?

172
2|Vcbvcd|(Ivtbvtd|2—21vtbvtd||Zbdlcosobd+|zbd|2)

6 = a,rg_\_/&d_ — ta,n_l |Zbd|sin0bd
V::b\/td"zbd lvtbvzd{mlzbdlcos()bd
. 2 2 2
(;S,Bs = |thvt" +|VCbVCs| —.izbsl

2]V1bvt.s] lvcbvc&‘z

11



*~" Where we have neglected |VusV ;|- When z,,=0, 6=0, one recovers the S.M. expressions giving

a, B, Bs in terms of the sides of the S.M. unitarity triangles. We turn now to the experimental
constraints on z,,. A recent experimental search [7] for the decays B — Xutp=— by the UAL

collaboration [7] has led to the upper bound:
Br(B — Xpu*u-) < 5.0x107° (28)

At this point, it is worth noting that for m,~150 GeV and withtin the context of the S.M.,
the above branching ratio is predicted [13] to be Br(B%—Xu*u~)=(6-8)x107°, therefore one

_order of magnitude smaller than the UA1 bound. From Eq. (28) one derives the bounds:

EZY
Vcb

Zps
cd

< .029 < .029 (29)

These bounds on z,, are almost an order of ma_nitude stricter than the bounds considered in

Ref.[6]. If one writes Eqs.(26) as:

*
thvtq _ zbq

* .. *
SRR Vcb Vcb

Vi Vaug

— ch - th q= d, S (30)

and takes into account the experimental constraints:

9734 < |Vl < .9754 ; 2173 < |[Vaus| < 2219 ;
(31)
[y V b
187 < |V, < 221 ; 07 < |2t < 13
cb
Vel > .8
one readily obtains:
* * .
——V”’Y“‘ > .031; )V———‘b:/“ > .73 (32)
2 V 2
ch cb
Combining Eqs.(29, 32) one finally gets:
%bd Zs (
— < .93; =21 < .04. (33)
v e v

Now the condition for Z exchange to give the dominant contribution to B4-B, mixing is that

qu
*
thvtq

> .07 for m,=140 GeV. One therefore concludes that in the case of B, the dominant

12
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contribution to the mixing may arise from Z exchange, while in the case of Bs, Z exchange can

at most compete with the box diagram contribution. This completes our analysis of the

unitarity constraints in the model.

We consider now B;-B; mixing which is given by:

AM, G} = .
Xqg = “T—d = é—ﬁ,anQCDMBBBFZBM\ZNIE(x,)l|V,dV,b|2|Abdl (34)

Where we have followed standard notation. For BBFZB we will use the range suggested in a

.recent review by Buras and Harlander [12]:

-160 Mev < [BgF} < 240 MeV (35)
following recent lattice calculations in the static limit. For ngcp we wil use here the value

1qcp= 0.55, which is consistent with the renormalization u :d in obtaining Eq.(35), and for
g we will take Tg= 1.2840.06 ps which is the recent world average for 7o including the

LEP results [13]. Eq.(34) fixes for us the experimentally allowed range for the product

172 .
. Ivtdvtb”A__bdl / , given by:

1/2 1/2
X 1/2 G X4 1 g
IV'thtb”Abdl = 5 3 3 = (36)
- GEngcoMwMe | |78 "By Fg |{IE(x)|

The terms in the first bracket are taken as exact. In the second bracket, 7y, BIB/zFB are
constained to be within the indicated ranges, while x; is within the range implied by the
experimental results of ARGUS, CLEO, and LEP [14]:

xy = 0.67x0.10 (37)

We are now in a position to evaluate CP asymmetrics in the model, taking into
account all the experimental and theoretical constraints. At this point it should be obvious
that the number of dVLQs is irrelevant to the discussion. None of the input in this section is.

dependent on the value of N;>1.

For given values of ry and 0,, one obtains argA, ., |A,| from Eqgs. (25) and then

Eq.(36) fixes the allowed range of |V, V.

In fig.3 we present our main result. Recall that one of the most important predictions
o{%{ohe S.M. is the sign of some of the CP asymmetries in the B® decays. In particular,
sen($,,) = —sen(éy,) is predicted to be positive and in fact [15] for m,>120 GeV and
FB>170 MeV, a(¥K;)>0.26. This is no longer true in the presence of dVLQs. In fig.3 we

indicate the region in ry, 0,, space where the asymmetry a(¢K;) has a sign opposite to the one

13



~*-" predicted by the S.M.. It is seen from fig.3 that a positive sign for sen(#,;) can be obtained

even for a relatively small value of r,.

In Figs. 4-9 we give the values of various CP asymmetries as a funcion 0,,, for various
values of r,. For comparison, we also give the prediction of the S.M., for the same choice of
m,, BgFg, 75> X4 [Vals IVl (@=c,t). We have used m,= 140 MeV, and the central values of
the ranges indicated above for the other parameters. We choose values of r; ranging from 0.2
to 2.5. It is clear from the Figs. that even a relatively small contribution of the Z exchange
diagrams (i.e. ry<1) to B,-B, mixing can lead to substantial deviations from the S.M.
predictions. For example in Fig. 5, sen(¢,,) is plotted in terms of #,, for r;=0.6, and one sees
that for some regions of 6,4, a,; can have a sign opposite to the one predicted by the standard
madel. For large values of r;, which corresponds to dominance of the Z exchange diagrams,
one recovers the results presented in Ref. [6], that is that ¢,;,—28', ¢5,— —2a’ (sec Figs. 6

and 9).

Finally we consider briefly the influence of the Z mediated ¥ <NC on the CP
asymmetries of the BJ decays. The S.M. predicts B,~0, and due to the experimental

restriction Eq. (29), this result holds in the dVLQ model also. However a significant value for

- t‘h‘é‘"angle“q&“ is not ruled out in the dVLQ model. From Egs. (24, 33) one deduces the

maximum value of ry possible:
1, < 0.35, for m, =140 GeV. (37)

One readily verifies that for rg<1, the maximum value of argA,, is given by:

(argA = tan™| —2 (39
bg/maz
J1 —-rg

Therefore argA,, < 21°. As the mecasured angle is ¢;,= —2f8,+argA,,, strong deviations {rom

the S.M. prediction are again possible.

V Conclusions

We have analyzed some of the main features of a minimal extension of the S.M. where
vector-like quarks are introduced. We show that in these models deviations from unitarity and
F.C.N.C. are related and both are naturally suppressed. We advocate the use of rephasing
invariant parametrizations of the CKM matrix and give two examples for N,;=1, Ny=0 and for

Nd:]" Nu-:l.

_\"_ Special emphasis was given to the consequences of the model for CP asymmetries in BY

deca,ys. It was shown that even a small contribution of the Z exchange diagrams to B% 3¢
mixing can lead to drastic deviations from the S.M. predictions for CP asymmetrics in 130
decays.

14



After this work was essentially completed we have received a preprint by Soares and
Wolfenstein [17] where the authors examine the implications of new physics on CP
asymmetries in B® decays. We thank Jodo Soares for having given us a copy of the paper. We
have also noticed a recent paper by D. Silverman [18] whose content partially overlaps with
our section IV. However D. Silverman only considers the case of FCNC Z exchange dominating
Bg-I_Bg mixing. As previously emphasized, the main point in section 1V is that even a small
contribution of Z-exchange to B%-B° mixing can lead to predictions for CP asymmetries in B°

decays drastically different from those of the standard model.
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Table 1

initial quark final ¢ standard beyond standard
state subprocess state model model
b—tcs YvKs | ¢14 —2p —2ftargl,y
B, b—ccd D*D™ | ¢qy —2p —2B+argl,y,
b—aud A Sl - 2a 2atargAy,
b—tcs DiD; | ¢y, —28, =20 +argl,,
B, b—gcdd YK, Gas —28, —2fs+argh,,
b—uud K b3, | —27—20s —2y-28+argh,,
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Figure Captions
Figure 1: The unitarity quadrangle in the B, sector, corresponding to the first of Eqs. (26).

Figure 2: Unitarity in the B, sector. We have neglected |V __V ;| and exaggerated |z,4| to show
the angles.

Figure 3: The regions of r, 8, space where:

-,

a) The model predicts sen(¢,,) to be positive, thus contradicting the standard model

- result.

b) The model predicts sen(¢,,) to be negative.

c) The unitarity quadrangle does not close. For these values of ry, 0,; Eq. (26) is not
consistent with Egs. (25, 36).

For this figure the values m,=140 GeV, |V ,|=0.9744, |Vub}/|Vcb|=0.1, IV.q21=0.204,

and BBF2 =0.2 GeV, were used.

Figure 4: sen(¢,,) as a function of 8,,, for r;=0.2. The values of the other parameters are as in
» Fig. 3. Even for this low value of r;, the dVLQ model value can differ significantly
from the S.M. prediction, which is sen(d)lS,;M'):—().GS for the parameter values

indicated.

Figure 5: The same as in Fig. 4, but with r;=0.6. For this value of r;, sen(¢,;) can take on

large positive values. Compare with Fig. 3.

Figure 6: sen(¢,4) and senf’ for r;=2.5. For this larger value of r; these functions are

almost the same.

Figure 7: sen(¢,,) as a function of #,,, for r;=0.2. Again all other parameter values are as in

Fig. 3. The S.M. prediction is sen(¢§'M'):0.99.

Figure 8: The same as Fig. 7 but with r;=0.6.

Figure-9: sen(¢,,) and sen(—2a') for r;=2.5.



Caption for table I

The predicted values for the angles ¢;,. The values shown are for CP even final states. Thus
V. Vi V..Vi
$a=—28=—¢yk, By defintion a=arg| — —td_tb | B—argl — —cd " cb |
‘ v VuaVas ViaVis

* v, ., V¥ vV _v*
y=arg —\MV—‘;" ; ol =arg —“;Yl" . p'=arg| —t4_ |; Be=arg| — =T |
Vcdvcb bd Vcdvcb Vtavtb

+8ee Figs. 1 and 2.
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