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ABSTRACT 

We study in detail models with vector-like quarks, with special emphasis on 

their implications for CP asymmetries in B” decays. In this class of models 

‘there are deviations from unitarity in the Cabibbo-Kobayashi-Maskawa matrix 

and- flavor-changing neutral currents which, although naturally suppressed, may 

have important consequences. We show that even a relatively small contribution 

of 2 mediated flavor changing neutral currents to B” - B” mixing can lead to sig- 

nificant departures from the predictions of the standard model for CP asymmetries 

in B” decays. 
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-  . -  ‘-A I -  In t roduc t i on  

_  - T h e  m e a s u r e m e n t  o f  C P  asymmet r i es  i n  B ” d ecays  [l] p r o v i d es  a n  oppo r t un i t y  to  test, 

va r i o us  aspec ts  o f  t he  s t a n da r d  m o d e l  (S.M.) ,  i n c l ud i ng  t he  un i ta r i ty  o f  t he  C a b i b b o -  

K o b a y a s h i - M a s k a w a  mat r ix  ( C K M )  a n d  t he  s t a n da r d  K .M. m e c h a n i s m  of  C P  v io la t ion.  T h e  

s imp les t  ex t ens i on  o f  t he  s t a n da r d  m o d e l  w h e r e  dev i a t i ons  f r om un i ta r i ty  o f  t he  C K M  mat r ix  

na tu ra l l y  a r i se  cons is ts  o f  i n t r oduc i ng  ex t ra  q u a r k s  wh i c h  a r e  isos ing le ts  bu t  wh i c h  m ix  w i th  : 

t he  s t a n da r d  qua rks .  Isos ing le t  q u a r k s  h a v e  b e e n  s u g g e s t e d  i n  a  var ie ty  o f  mode l s ,  i n c l ud i ng  E , 

g r a n d - u n i i i e d  t heo r i es  a n d  s o m e  of  t he  supe rs t r i n g  i n sp i r ed  mode l s .  T h e  add i t i o n  o f  isosi i rg lct,  

q u a r k s  to  t he  S .M. p r o v i d es  [2] a  poss i b l e  c onnec t i o n  b e t w e e n  C P  b r e a k i n g  a t  a  h i g h  e n e r g y  

:sea l e  a n d  t he  o b s e r v e d  C P  v io la t i on  a t  l ow  e n e r g i e s  a n d  f u r t h e rmo r e  it g i ves  a  s imp l e  so lut io i i  

t o - t he  s t r ong  C P  p r o b l e m  [3], [4]. 

S o m e  of  t he  f ea tu res  of  m o d e l s  w i th  i sos ing le t  q u a r k s  a n d  the i r  imp l i ca t i ons  fo r  C l -’ 

v io la t i on  h a v e  b e e n  a n a l y s e d  b y  B r a n c o  a n d  L a v o u r a  [5] a n d  b y  N i r  a n  S i l v e rman  [6]. T h e  

p r e sen t  wo r k  c omp l emen t s  t h ese  two  p r ev i o us  ana l yses .  

T h e  p a p e r  is o r g a n i z e d  a s  fo l lows.  In  t he  nex t  sec t i on  w e  br ie f ly  d esc r i b e  t he  r i iodc l .  

i den t i fy ing  t he  n e w  C P  v io la t i ng  p h a s e s  wh i c h  a r i se  w h e n  b o t h  Q  =  - 3  a n d  Q  =  $  isos ing lct .  

’ q u a r k s  a, rc  p r e sen t  a n d  a l so  s h o w  h o w  dev i a t i ons  f r om un i ta r i ty  a n d  f l a vo r - c hang i ng  i icut ra l  

cu r r en ts  (F.C.N.C.)  a r e  c lose ly  r e l a t ed  a n d  b o t h  na tu ra l l y  s u p p r e s s e d  i n  t he  mode l .  III sec t i on  

III w e  a dvoca t e  t he  u s e  of  r e p h a s i n g  i nva r i an t  pa r ame t r i za t i ons  wh i c h  a r e  spec ia l l y  conven ie i i t j  -  

fo r  m o d e l s  w i th  i sos ing le t  qua rks .  W e  g i ve  two  examp l es ,  o n e  w i th  o n e  d own - t y p e  vecto r - l i ke  

qua r k ,  a , n d  a n o t h e r  w i th  o n e  d own - t y p e  a n d  o n e  up - t y pe  vecto r - l i ke  qua r k .  Th is  sect io i l  o f  t he  

p a p e r  is log ica l ly  i n d e p e n d e n t  o f  t he  o t h e r  sec t i ons  a . n d  t he r e f o r e  it m a y  b e  s k i p ped  l )y t he  

r e a d e r  no t  i n t e res ted  i n  t he  ques t i o n  o f  h o w  to  pa r ame t r i z e  t he  C K M  matr ix .  In sec t i on  I\’ w e  

s tudy  B ”- 1 3 ’ m ix i ng  a n d  C P  asy rnme t r i es  i n  B ” decays .  Fo r  s impl ic i ty, w e  cons i d e r  t ,he cast  o f  

o n e  d own - t y p e  vecto r - l i ke  q u a r k  ( I dVLQ ) ,  bu t  w e  wi l l  s h o w  that  t he  ana lys i s  con t i n ues  t.o b c  

va l i d  fo r  a n  a rb i t r a ry  n u m b e r  o f  d own - t y p e  vecto r - l i ke  qua rks .  N i r  a n d  S i l v e rman  l iav( l  

a n a l y s e d  [S ] i n  de ta i l  C P  asymmet r i es  i n  t he  1 d V L Q  m o d e l  u n d e r  t he  a ssump t i o n  that  D o - U ” 

m ix i ng  is d o m i n a t e d  b y  Z e x c h a n g e  t r ee  d i a g r ams .  W e  wi l l  d o  t he  ana lys i s  s o  that  it ca .n  b e  

a p p l i e d  to  t he  g e n e r a l  case ,  i n c l ud i ng  t he  o n e  w h e r e  t he  Z  e x c h a n g e  a n d  t he  S .M. b o x  d i ag ra r t i  

con t r i bu t i ons  to  B ”- B ” m ix i ng  a r e  o f  c o m p a r a b l e  s t reng th .  W e  po i n t  ou t  that  if o n e  t ,akes irtt,o 

a ccoun t  t he  r ecen t  u p p e r  l imit [7] o n  B ’- + , L + ~ - X  decays ,  t h e n  B ,-]3, m ix i ng  c a n  st.ill b c  
-  

d o m i n a t e d  b y  t he  Z  med i a t e d  F.C.N.C., wh i l e  i n  t he  c ase  of  B ,-B, m ix i ng  Z  e x c h a u g e  ca l i  at. 
. .~  

xost  c o m p e t e  w i th  t he  S .M. b o x  d i a g r am .  W e  s h o w  that  e v e n  a  re la t ive ly  sma l l  con t r i bu t i on  . 

b y  tz Z  e x c h a n g e  d i a g r ams  to  B ”- 1 3 ’ m ix i ng  c a n  drast ica l ly  mod i f y  t he  p red i c t i ons  of  t he  S .hl. 

fo r  C P  asymmet r i es  i n  B ” decays .  F ina l ly  i n  sec t i on  V  w e  p r e sen t  o u r  conc lus i ons .  



11 - The Model 

We will assume the standard SU(2)xU(l) gauge theory, with the addition of N, charge 

_- t and N, charge 3 isosinglet quarks. The quark field content of the model will be denoted in 

the following way: 

Cue d”)Li 
0 

DLP 

uLq 

The quark mass terms are: 

i = 1, . . . . n 

p = 1, . . . . N, 

q = 1, . . . . N, 

Cr=l , “‘> n + Nd 

p = 1, . . . . n + N, 

(1) . 

_ The dimensions of the four mass matrices are readily inferred from the index range corr\‘cntiorl 

of Eq. (1). Although most of our considerations apply to arbitrary n, N,, N,, WC: will, fog 
. - 

simplicity, take II = 3, N, = N, = 1. The weak gauge currents can be written: 

(0, p = 1,...,4) 

where ua, d, are mass eigenstates and: 

(3) 

where U, W denote the matrices which relate the weak and mass eigenstatcs: 



- - .-‘-^ [;“]L= “;jL 
_ - 

(5) 

Due to the presence of the vector-like quarks there are flavor changing neutral currents which 

are closely connected to the deviations from unitarity in VCKM. Indeed, using the unitarity of 

U and W, one readily obtains: 

(““‘L, = “Zp 
(kVCKM) 

((ia) 

L.,., (V’V),, = z& . (Gb) 

An attractive feature of models with vector-like quarks is the fact that although deviations 

from unitarity in VCKM and FCNC arise, they are related through Eqs. (6) and are both 

suppressed in the standard quark sector by the ratio of standard quark masses to the vcctor- 

like quark masses. This can be readily seen by making an approximate dia.gonalization of tire 

quark mass matrices. By choosing an appropriate weak basis one can put, without loss of 

generality, the quark mass matrices in the form: 
. . ‘. -‘: 

where 6,, k,, sl, are dia.gonal real positive matrices of dimension n, N,, N,. The matrix G, 

is n-dimensional and complex, while J,, J, are (nxN,), (nxN,) complex matrices. Throug11 a 

phase redefinition, one can eliminate N,, N, phases from J,, J,, respectively. It is convenient 

to write in block form the unitary ma.trices W, U which diagonal& -A,,_Ati, &.,Kz, 

respectively: 

sd Td 
(8) 

with analogous expressions for U. Let m the mass scale of (Cd, Jd) and M be the mass scale of 

ad. since G,, Jd are Al = i mass terms while tid iS a AI = 0 mass term, it is natural t,o 
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a s s u m e  M  > >  m.  O n e  c a n  t h e n  f i nd  a n  a p p r o x ima t e  so l u t i on  fo r  W : 

T, X  IN s, x -(ti j l,‘J,)K, 
d  

R, N  , Jd61 ,1  ( 9 )  

wh i l e  K , is, u p  to  O ( m ”/M*),  th  e  un i t a ry  mat r ix  wh i c h  d i a gona l i z es  G ,G i. A n a l o g o u s  

exp r ess i ons  obv i ous l y  a pp l y  to  lJ. T h e  V C K M  mat r ix  is t h e n  g i v e n  b y  : 

Us i n g  un i ta r i ty  o f  W , U  o n e  r ead i l y  ob ta ins :  

pv+ j i j  =  si, -  [J,M ;~ J :],, 

. 
- (“+ V )i j =  b i j  -  [l;:Jd M ,*J;K d -- j j  ( 11 )  

w h e r e  w e  h a v e  t aken  in to  a ccoun t  t he  fact, that  w e  h a v e  c h o s e n  to  wo r k  i n  t he  w e a k  bas i s  

w h e r e  G ;, is d i a g o n a l  a n d  t he r e f o r e  I< , ” I,. S i n c e  J,, J d  a r e  O ( m )  it is c l ea r  f r om Eqs .  ( 1  l), 

that  dev i a t i ons  f r om un i ta r i ty  a n d  F C N C  f o r  t he  s t a n da r d  q u a r k s  wi l l  b e  s u p p r e s s e d  b y  t i le 

ra t i o  m2 /M2 .  

III -  R e p h a s i n g  Inva r i an t  P a r a m e tr izat ion o f VC l cM  

S i n ce  t he  C K M  mat r ix  is n o  l o n g e r  un i ta ry ,  it is less o bv i o us  to  f i nd  t he  n u m b e r  o f  

i n d e p enden t ,  C P  v io la t i ng  p h a s e s  fo r  a rb i t r a ry  n ,  N,, N,. In  Ref .  [5] B r a n c o  a n d  L a v o u r a  h a v e  

s t ud i ed  t he  rest r ic t ions that  C P  i nva . r i ance  imposes  o n  t he  q u a r k  masses  of  Eq .  (1 ) .  Th is  w a s  

-  d o n e  b y  cons t ruc t i ng  t he  mos t  g e n e r a l  C P  t r ans fo rma t i on  wh i c h  l e aves  i nva r i an t  t he  c h a r g e d  

a n d  neu t r a l  cu r r en t  in te ract ions.  T hey  o b t a i n e d  fo r  t he  n u m b e r  o f  C P  rest r ic t ions:  

N C  =  $ (n - l ) [ (n -‘L ) + ‘L (N ,+ tNo) l  ( 1 2 )  

^ -  .- -  
Tki  r s _co r ; e sponds  i n  ge r r e ra l  to  t he  n u m b e r  o f  i n d e p e n d e n t  C P  v io la t i ng  p h a s e s  N +  wh i c h  

a p p e a r  i n  V C K M .  A t th is po i n t  it is wo r t h  no t i n g  that  a l t h o u g h  t he  e xp r ess i o n  fo r  V C K M  g i v en  

b y  Eq .  ( 1 0 )  is on l y  app r ox ima te ,  it con ta i ns  t he  co r rec t  n u m b e r  o f  phys ica l  p hases ,  name l y :  

5  
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Kd - &l-l)(n-2) 

Jd +  (II-l)N, (13) 

JU 4 (n-1)Nu 

We turn now to the question of finding an exact parametrization of VCKM for models 

with vector-like quarks. There are two different approaches to the problem: one , more 

traditional, parametrizes VCKM through Euler angles and phases; the other uses rephasing 

ldtrariant quantities [8] to parametrize VCKM. In the case where there are only isosinglet 

quarks of a given charge (e.g. N,=O, Nd=arbitrary) the VCKM matrix consists of the first, II 

lines of a (n+Nd) d imensional unitary matrix, and the problem amounts to finding a 

parametrization of this unitary matrix where i(n-l)[(n-2)+2Nd] physical phases appear in the 

first n lines. This problem was solved in Ref. [5], where an explicit parametrization through 

Euler angles and phases was given. At this point, it is worth mentioning that, for more than 

one vector-like quark the “standard” parametrization [9] of V  CKM does not have the above 

_prgperty and therefore it is not adequate. Although the solution presented in Ref. [5] is 

mathematically correct, parametrizations through Euler angles and phases are not the most 
. -. 

convenient, especially when isosinglet quarks are present. Therefore, we will propose hcrc the 

use of rephasing invariant parametrizations and analyse the two simplest cases, namely (N,=l, 

Nu=O) and (N,==N,=l). 

The case N =l N,=O d 7 -- 

In this case there are three phase variables and six angle va.riables. We propose the follo\viug 

choice: 

Phase variables: 

93 =  ardVl lV23VT3V3 

v2 = ardVllV33V~3V~l) 

p3 = ardV23V32VZ2V~3) 

Angle variables: 

I (141)) , .~ 
-y&lI? IV21/, IV,,l, W,,l, lV,,l, IV,, 

. 
- 

(14a) 

We have chosen a complete set of variables containing quantities that are either illlCdJ 

measured or likely to be directly measured in the future. Indeed it will be seen that +1, &.,, &3 
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- .- X-’ -correspond to the angles 7, Q, pd respectively, which appear in the unitarity quadrangles of the . 

1dVLQ model (see Figs. 1, 2). 

We will show next that one can obtain the remaining elements of VCKM from the 

input data of Eqs. (14). I n order to facilitate our task, we work in the weak basis where mu is 

diagonal, real. Let us consider the unitary matrix W defined by Eq. (5), whose first three lines 

constitute VCKM: 

v ud v,, v,, vu, 
v cd vc, v,, vc, 

Vtd vt, Vtb v,, 

w41 w42 w43 w44 

(15) 

Without loss of generality, one can choose the quark phases so that the second row and the 

third column are real. Then cpl, pzr (p3, fix the arguments of VII, Vsl, Vs2, respectively. 

Normalization of the first column (I W,,12 = 1 - $IV;,12) g ives us I W,,l. Then orthogona.l ity 

. . ‘. *‘.- 
of the first and third columns together with normalization of the third column give us 

a&II/,,), IV,,/, ) Cll,,(. At this stage, the first and the third columns arc complct,ely 

determined and in the second column IVS2(, argV32, argVz3 are also known. The rernaill ing 

elements in the second column can determined from orthogonality of the second column to the 

first and third, together with normalization of the second column. We have omitted the usua.l 

ambiguities [S], [lo] 1 1 w lit I arise in reconstructing the CKhl matrix from input data. Note that 

our parametrization is such that for angle variables we have only used the moduli of VCKM 

connecting the standard quarks. Therefore VCKM can be reconstructed without directly 

measuring the coupling of the isovector quark B to the standard quarks. We have considered 

the cast N,=l. The extension to Iv,>1 is straightforward. However, there are some special 

features which only hold for N,=l. For example, for N,=l, it can easily be verified that one 

_ can choose the quark field phases in such a way that the couplings zip are all real. In general 

this is not possible for N,>l. 

We have presented a rephasing invariant parametrization of VCKM where invariant 

phases and moduli were used. In the standard model, one can also parametrize VCKM using 

only independent moduli [ll]. 0 ne may ask whether that parametrization is also possible irr 
-&; 

the pfesekce of isovector quarks. We will show that it is only possible for N,=l. The numbcl 

of independent moduli (N,) is: 



- 
- .- s-r Nm = n(n+N,-1) N,?l (16) . 

While the number of angles is: 

N, = +[(n+N,-I)+&] (17) 

Taking into account that the number of independent phases N, is given by Eq. (12), with -’ 

N,=O, one obtains: 

LI, N, = N++N, = Nm -k(Nd-l)(n-l) (18) 

Therefore for N,>l the number of parameters exceeds the number of independent moduli, and 

a parametrization through moduli is no longer possible. 

The case N,=N,=l 

W7e consider now the case where there are both isovector quarks of charge -$ and of charge $. 

_ .Tlm parametrization of VCKM is less obvious in this case, since there no longer exists a weak 

basis where either the up or down quark mass matrices are diagonal. It is conveuicnt, to 
. -. 

introduce the auxiliary matrix X  defined by: 

VCKM B+ 
u 

X= I I ‘3, 0 
(19) 

where VCKM = AZA,, and A,, A,, B,, B, were defined in Eq. (8). For the moment II, I\‘,, N,, 

are arbitrary. X  is a (n+N,+N,) d imensional matrix and it can readily be verified that X  is 

unitary. The fact that V  CKM is a submatrix of a unitary matrix, obviously facilitates the t.a.sk 

of finding an appropriate parametrization. We will specialize now to the case N,=N,=l. There 

are five phase variables and nine angle variables. Our choice is: 

Invariant phases: 

p1 =  argWll~~23V~3V~l> 

p2 = ardV~lV33VF3Vfl> 
._- 

-ic:. ‘p3 =~arg(V32V23V,*3V~2) - 

p4 =  ardV~~V43VT3VfA 

‘~5 =  wdVl2V2~VT~YZ2) 

(20) 
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Moduli: 

It can be readily seen that these 

using unitarity of the auxiliary matrix X. 

nput parameters enable one to reconstruct the CKM matrix 

IV CP Asymmetries in B” decays 

In this section we study B-B mixing and CP asymmetries in B” decays in models with 

vector-like quarks. In ref. [6], N ir and Silverman have studied these asymmetries under the 

‘Gsumption that Z mediated FCNC give the dominant contribution to B-B mixing. We will 

consider here the more general case where non-standard contributions compete with the 

standard box diagram at inducing B”-Bo mixing. The relevance of this analysis stems from the 

fact th-+ even a relatively small contribution from new physics can produce significant 

departu?-s from the S.M. predictions for the CP asymmetries in BOdecays. 

This section is organized as follows. First we present a general analysis of Cl’ 

asymmetries in B” decays when new physics is added to the mixing matrix. Then we 

.. p&%icularize to the rnodel with charge -3 vector-like quarks. It turns out that it is sufficient to 

consider the case where there is only one such quark, since CP asymmetries cannot distinguish 

N,-1 from N,>l. 

Let us assume that the off diagonal clement of B,-13, is changed by a factor Au!, as a 

result, of a, new contribution from physics beyond the S.hl.: 

M 12 = M(‘)A 12 yb (q=d, s> (21) I 

where ‘M(e) 12 is the box dia.gram contribut,ion. We will a.ssume that all srnplit,udes contributiug 

to the decay have the same CKh4 phase and furthermore that 1 12 <<MI;). In this case the Cl’ T(O) 

asymmetry is given by: 

r(B’+f)--T’(B’+f) 
a - r(Bo - -sin(Ah4t)sind 

-+f)+I?(DO-+f) - 

where: 

4 = d(‘)+argA,,, Abe = AT, 

(22) 

(23) 



I 
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- .- %-- The index (0) d enotes the contributions arising within the three generation S.M., and A(f), 

A(f) stand for the decay amplitudes from the initial state IB’), Iis”) to a CP eigenstate If). 

From Eq.(23) it f 11 o ows that there are two possible sources which may change the S.M. 

prediction: 

(i)- The presence of the phase of Abg, which determines the deviation from the box diagram 

contribution d(O). It is possible to incorporate different new physics contributions for B, and 

B,, if argAbd # argAb,. 

(ii)- Although th e expression for 4 (‘I is the one given by the S.M., the actual numerical value 

of $5(O) may differ from the S.M. prediction. This is due to the fact that models beyond the 

:S;M. allow in general for a different range of the CKM matrix elements. 

_~ In table I, we establish our notation by explicitly giving 4 for various final states. 1701 

comparison, the standard model values are also shown. 

We turn now 3 the detailed analysis of models with charge -3 vector-like quarks. The 

new contribution to tile AB=2 effective hamiltonian arises from Z exchange tree graphs and 

one readily obtains: 

(24) _ 

=bq Cl,, = arg 1; [ 1 vt,vtI, 
where U= CY 

477sin20w 
and E(x,=(~)~) is an Inami-Lim function for the top quark box 

diagram. Note that vEcx,)= -0.004G for m,=140 GeV. We assume the same QCD 

correction factor for both the box diagram and the Z exchange diagram. This should be a good 

approximation since QCD corrections above the scale of M, are negligible. From Eq.(24) one 

readily obtains: 

argAbq = tan 

l+ri+2rqcos206q 1’2 
> 

(25) 

10 



-  

-  I - .  . The r e  a r e  two  d ist inct cases  of  in te rest  i n  t he  s tudy  of  C P  asymmet r i es :  

( a )  L  Z  e x c h a n g e  a n d  b o x  d i a g r ams  g i ve  c o m p a r a b l e  con t r i bu t i ons  to  B ,-B, m ix ing .  

( b )  -  Z  e x c h a n g e  g i ves  t he  d om i n a n t  con t r i bu t i on  to  B ,-B, m ix ing .  

T hes  two  cases  a r e  d i s t i ngu i shab l e  b y  t he  v a l u e  o f  t he  p a r a m e t e r  rq :  

( a )  -  r qE l  

( b )  -  r , >> l  

C a s e  ( b )  w a s  s t ud i ed  i n  Ref.[6]. T h  e re f o r e ,  o u r  emphas i s  wi l l  b e  o n  c ase  (a ) ;  w e  f i nd  that  e v e n  

a  re la t ive ly  sma l l  con t r i bu t i on  f r om Z e x c h a n g e  to  B ,-B, m ix i ng  c a n  imp ly  ve ry  s ign i f icant  

d e p a r t u r e s  f r om t he  S .M. p red i c t i ons  fo r  C P  asymmet r i es .  

; - -  In  o r d e r  to  de r i v e  t he  nume r i c a l  p r ed i c t i ons  fo r  t he  C P  asymmet r i es ,  o n e  h a s  to  t ake  

in to  a ccoun t  t he  un i ta r i ty  const ra in ts .  T h e  r e l evan t  o n e s  fo r  o u r  p u r p o s e s  a re :  

( 2G )  

wh i ch  l e a d  to  t he  un i ta r i ty  q u a d r a . n g l e s  o f  f igs. 1 ,  2 .  In  o r d e r  to  d e t e rm i n e  t he  a n g l e  &  fo r  t he  ‘. .’ : 
va r i o us  f ina l  s ta tes (Tab l e  l), o n e  h a s  to  k n o w  t he  va l ues  of  t he  a n g l e s  o ,  /3, p s  s h o w u  i n  f igs. 

. -. 
1 ,  2.. O n e  r ead i l y  ob ta ins :  

6  =  a r g  v:bvtr l =  t an -’ I zbd l s i nObd  _ _ -  

V ~ b V t d  - ‘b d  IV tLVtd I  - / z b d koSobd  

1 1  



- 
_ ‘- ‘-’ ‘Where we have neglected ]VusV,b]. Wh en zbq=O, 6=0, one recovers the S.M. expressions giving 

CY, B,.pb in terms of the sides of the S.M. unitarity triangles. We turn now to the experimental 

constraints on zbq. A recent experimental search [7] for the decays B - Xp+p- by the UAl 

collaboration [7] has led to the upper bound: 

Br(B -+ Xp+p-) 5 5.0~10~~ (28) 

At this point, it is worth noting that for m,- -150 GeV and withtin the context of the S.M., 

the above branching ratio is predicted [13] to be Br(B”-+X/l+p-)=(6-8)x10-6, therefore one 

;o_r_der of magnitude smaller than the UAl bound. From Eq. (28) one derives the bounds: 

_~ 
I I Zbd < .029 
vcb - 

(29) 

These bounds on zbq are almost an order of ma,,nitudc stricter than the bounds considered in 

Ref.[6]. If one writes Eqs.(26) as: 

- vcq 
v:bv’J, q = d, s (30) 

and takes into account the experimental constraints: 

.9734 5 IV”,1 5 .9754 ; .2173 5 IV,,] 5 .2219 ; 

(31) 

.187 5 IV,,] 5 .221 ; 

one readily obtains: 

(32j 

Combining Eqs.(29, 32) one finally gets: 

%bd I I ~ 5 .93 ; 
v:bvtd 

-G-- - 

(33) 

Now the condition for Z exchange to give the domina.nt contribution to B,-B, mixing is that 

2 .07 for m,=140 GeV. One therefore concludes that in the case of B, the domiuant, 



I 

- .- I-’ 

contribution to the mixing may arise from Z exchange, while in the case of B,, Z exchange can 

at most compete with the box diagram contribution. This completes our analysis of the 

unitarity constraints in the model. 

We consider now B,-B, mixing which is given by: 

(34) 

Where we have fol lowed standard notation. For J---- B,Fi we will use the range suggested in a 

-rgcent review by Buras and Harlander [12]: ” - 

-~I60 Mev 2 i-B < 240 MeV (35) 

following recent lattice calculations in the static limit. For qqcD we wil use here the value 

vqcD= 0.55, which is consistent with the renormalization u -d in obtaining Eq.(35), and fool 

~~ we will take TV= 1.28f0.06 ps which is the recent world average for 7 
B 

o, including the 

LEP results [13]. Eq.(34) f axes for us the experimentally al lowed range for the product 

Ivtdvtbll$11’2y given by: 

. l%dV,bl iAbdt’2 = (36) 

l/2 
The terms in the first bracket are taken as exact. In the second bracket, 7B, B, F, are 

constained to be within the indicated ranges, while xd is within the range implied by the 

experimental results of ARGUS, CLEO, and LEP [14]: 

xd = 0.67f0.10 (37) 

‘W e are now in a position to evaluate CP asymmetries in the model, taking into 

account all the experimental and theoretical constraints. At this point it should be obvious 

that the number of dVLQs is irrelevant to the discussion. None of the input in this section is 

dependent on the value of N,>l. 

For given values of rq and Obq, one obtains argAbq, IA,,1 from Eqs. (25) and then 

Eq.(36) fixes the al lowed range of IVtdVtbl. 

In fig.3 we present our main result. Recall that one of the most important predictions 

%$be S.M. is the sign of some of the CP asymmetries in the B” decays. In particular, . 

sen(?&) = -Sen(hd) is predicted to be positive and in fact [15] for m,>120 GeV and 

FB>170 MeV, a($I<,)>0.2G. Tl lis is no longer true in the presence of dVLQs. 111 fig.3 we 

indicate the region in rdr O,, space where the asymrnetry a(ll,KJ) 1 las a sign opposite to t,hc one 

13 



- 
- ‘- ‘-* predicted by the S.M.. It is seen from fig.3 that a positive sign for sen(dld) can be obtained 

eveh for a relatively small value of rg. 

In Figs. 4-9 we give the values of various CP asymmetries as a funcion Obd, for various 

values of rd. For comparison, we also give the prediction of the S.M., for the same choice of 

m,? BBFk7 TBy xdy IV4dl, Iv,,I (q=C,t>- w e ave used mt= 140 MeV, and the central values of h 

the ranges indicated above for the other parameters. We choose values of rd ranging from 0.2 

to 2.5. It is clear from the Figs. that even a relatively small contribution of the Z exchange 

diagrams (i.e. r,<l) to B,-B, mixing can lead to substantial deviations from the S.M. 

predictions. For example in Fig. 5, sen(dld) is plotted in terms of o,, for rd=O.6, and one sees 

;tfht for some regions of e*d, aId can have a sign opposite to the one predicted by the standard 

model. For large values of rd, which corresponds to dominance of the Z exchange diagrams, 

one recovers the results presented in Ref. [6], that is that dld+2p’, 4sd-+-2~’ (see Figs. 6 

and 9). 

Finally we consider briefly the influence of the Z mediated l+dNC on the Cl’ 

asymmetries of the By decays. The S.M. predicts ps~O, and due to the experimental 

restriction Eq. (29), this result holds in the dVLQ model also. However a significant value fool 

’ the& angle- dl, is not ruled out in the dVLQ model. From Eqs. (24, 33) one deduces the 

maximum value of rs possible: 

i, 5 0.35, for m,=140 GeV. (37) 

One readily verifies that for r,<l, the maximum value of argAb, is given by: 

(argAlg),,, = tan-’ A [ 1 r- 1-r; 
(39) 

Therefore argAhs _ < 21”. As the measured angle is dls= -2/3,+a,rgAe,, st,rong deviations from 

the %.M. prediction are again possible. 

V Conclusions 

We have analyzed some of the main features of a minimal extension of the S.M. where 

vector-like quarks are introduced. We show that in these models deviations from unitarit,y and 

F.C.N.C. are related and both are naturally suppressed. We advocate the use of rephasiug 

invariant parametrizations of the CI<M matrix and give two exarnples for N,=l, N,=O and for 

N,=l, N,=l. 

-G-- Special emphasis was given to the consequences of the model for CP asymmetries in B0 - 

decays. It was shown that even a small contribution of the Z exchange diagrams to BO-fj” 

mixing can lead to drastic deviations from the S.M. predictions for CP asynlnlctrics ilr 13” 

deca.ys. 

14 
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- .- se- After this work was essentially completed we have received a preprint by Soares and . 

Wolf&stein [17] where the authors examine the implications of new physics on Cl’ 

asymmetries in B” decays. We thank Jogo Soares for having given us a copy of the paper. We 

have also noticed a recent paper by D. Silverman [18] whose content partially overlaps with 

our section IV. However D. Silverman only considers the case of FCNC Z exchange dominating 

Bi-Bz mixing. As previously emphasized, the main point in section IV is that even a small : 

contribution of Z-exchange to B”-B0 mixing can lead to predictions for CP asyrnmetries in B” - 

decays drastically different from those of the standard model. 

We thank Jo50 Soares for some useful conversations. TM thanks CFMC/GTAE Lisboa for 

hospitality. The work of MNR was partially supported by a fellowship from OTAN (NATO) 

and by a grant from the U.S. Department of Energy under contract number DE-AC03 

76SF00515.U.S; the work of TM was supported from the U.S. Department of Energy .nder 

grant number DOE-ACO2-87ER-40325.TASRB; the work of PAP was f inanced by JNICT- 

Programa Ciencia, under grant number BD/1504/91-RM. 

‘: . -. 

15 



Table 1 

L -- 

initial quark 
state su bprocess 

final 
state 

dJ standard beyond standard 
model model 

Bd 

BS 

L--+CCS 

b-cd 

b-+i iUd 

i i+FC% 

b-cdd 

- 
6-tuud 

-28 

--2P 

-28i-argAbd 

-2P+argA,, 

?T+lr- 4 3d 2c% 2a-karg& 

DfD; & -20s -2Ps +argAb, 

$L bs -2Ps -2B, +argAbs 

PKS  43s -2y-2p, -2y-2p,+argAb5 
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Figure Captions 

Figure 1: The unitarity quadrangle in the 13, sector, corresponding to the first of Eqs. (26). 

Figure 2: Unitarity in the B, sector. We have neglected lVusVubl and exaggerated 1.~~~1 to show 

the angles. 

‘. 

Figure 3: The regions of rd, 8,, space where: 

L *- a) The model predicts sen(4rd) to be positive, thus contradicting the standard model 

_~ result. 

b) The model predicts sen(4rd) to be negative. 

c) The unitarity quadrangle does not close. For these values of rd, O,, Eq. (26) is not 

consistent with Eqs. (25, 36). 

For this figure the values m,=140 GeV, lV,,(=O.9744, IV,,//IV,,I=O.l, IV,,I=O.204, 

and B,F,=0.2 GeV, were used. F 
. 

Figure 4: sen(4,,) as a function of Obd, for rd=0.2. The values of the other parameters are as in 

Fig. 3. Even for this low value of rd, the dVLQ model value can differ significantly . 

from the S.M. prediction, which is sen(~~~“.)=-0.68 for the parameter values 

indicated. 

Figure 5: The same as in Fig. 4, but with r,=0.6. For this value of rd, sen(+rd) can take on 

large positive values. Compare with Fig. 3. 

Figure 6: sen(4rd) and senp’ for rd=2.5. For this larger value of rd these functions are 

almost the same. 

Figure 7: sen(dgd) as a function of Obd, for r,=0.2. Again all other parameter values are as in 

Fig. 3. The S.M. prediction is sen(4zh”.)=0.99. 

Figure 8: The same as Fig. 7 but with rd=0.6. 

Figur9: ien( 4sd) and sen( -2a’) for rd=2.5. 
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- .- X-L 

Caption for table I 

The predicted values for the angles q5ip. The values shown are for CP even final states. Thus 

q51d=-2P=-~~Ks’ By defintion -=arg( - $$--; pcarg( - $$$); 

LSee Figs. 1 and 2. 
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