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ABSTRACT 

We describe a nonperturbative numerical technique for solving the Hamilton- 

Jacobi equation of a nonlinear Hamiltonian system. We find the time-periodic 

solutions which yield accurate approximations to invariant tori. The method is 

suited to the case in which the perturbation to the underlying integrable system 

has a periodic and not necessarily smooth dependence on the time. This case is 

important in accelerator theory, where the perturbation is a periodic step function 

in time. The Hamilton-Jacobi equation is approximated by its finite-dimensional 

Fourier projection with respect to angle variables, then solved by Newton’s method. 

To avoid Fourier analysis in time, which is not appropriate in the presence of step 

functions, we enforce time-periodicity of solutions by a shooting algorithm. The 

method is tested in soluble models, and finally applied to a non-integrable example, 

the transverse oscillations of a particle beam in a storage ring, in two degrees of 
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freedom. In view of the time dependence of the Hamiltonian, this is a case with 

“2 l/2 degrees of freedom”, in which phenomena like Arnol’d Diffusion can occur. 

I. INTRODUCTION 

Examples of nonlinear Hamiltonian systems abound in applications of classical 

and semi-classical mechanics: the problem of N bodies interacting via gravitational 

or electromagnetic forces, the beam-beam interaction in storage rings with collid- 

ing beams, and the control of magnetic field configurations in plasma containment 

devices, to name but a few. Most of these problems are not soluble by quadra- 

tures and not completely integrable in the technical sense of the Liouville-Arnol’d 

the0rem.l Interesting examples of completely integrable systems have been stud- 

ied intensely, but they are essentially different from generic problems of nonlinear 

mechanics.2 

We are concerned with systems that may be viewed as perturbed integrable 

systems. If the perturbation is sufficiently small, and the unperturbed Hamilto- 

nian satisfies a non-degeneracy condition, the Kolmogorov-Arnol’d-Moser (KAM) 

theorem may apply.3 The unperturbed system has toroidal surfaces in phase space 

that are invariant under time evolution, and these tori foliate the space. That is, 

the trajectory passing through any point in phase space lies on an invariant torus. 

The KAM theorem asserts that certain of these tori, those that have rationally 

independent perturbed frequencies, survive in a slightly distorted form when a suf- 

ficiently weak perturbation is imposed. These are called KAM tori; they form a set 

of large measure, but they are interleaved by regions in which tori need not exist, 

the so-called resonant regions of phase space corresponding to rationally dependent 
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unperturbed frequencies. Resonances exist in an arbitrarily small neighborhood of 

a KAM torus, so that the tori no longer foliate phase space. 

For systems of sufficiently small phase space dimension, the existence of invari- 

ant tori has a direct implication for stability of the motion. The effective dimension 

of phase space is D = 2d + 7, where d is the number of mechanical degrees of free- 

dom, and r = 0 for an autonomous system, while r = 1 if the Hamiltonian depends 

periodically on the time; (we exclude non-periodic time dependence). If D 5 4 

an invariant torus divides the space into two disjoint regions, an inside and an 

outside. It is clear that an orbit beginning inside the torus must stay there forever. 

This amounts to a useful statement of stability, if the inside is a bounded domain 

representing a desirable region of phase space for the problem at hand. 

If D > 4, the KAM tori have too few dimensions to separate regions of phase 

space, just as a point does not divide a two-dimensional plane into disjoint regions. 

In this event, an orbit initially close to an invariant torus (though not on one) 

can follow a “stochastic web” associated with resonances, and eventually deviate 

greatly from the torus. Such an effect was demonstrated by Arnol’d in an example 

with D = 5, and similar phenomena are referred to broadly as Arnol’d DiffusionP 

For the study of stability of nonintegrable systems, it is useful to compute 

approximations to invariant tori, even in cases with D > 4. In contrast to exact 

invariant tori, a family of approximate invariant tori, corresponding to various val- 

ues of an approximately invariant action, may foliate a region of phase space. Such 

a family is equivalent to a canonical transformation to new action-angle variables, 

such that the action is an approximate invariant. By studying the relatively weak 

variation in time of the new action, one can set bounds on the motion for a long 

-.. . . 
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but finite time.6 This argument is in the spirit of the Nekhoroshev Theorem7, and 

proceeds in the same way for any D. 

In a less formal way, a nearly invariant torus is useful in giving information on 

the dominant resonances. When the torus is represented as a Fourier series in angle 

variables, the magnitude of the Fourier coefficient in a particular mode measures 

the strength of excitation of a resonance in that mode. Also, the derivatives of 

the Fourier coefficients with respect to action, which determine the Jacobian of 

the transformation of angle variables in an associated canonical transform, have 

been identified as a sensitive indicator of the onset of large-scale chaos, at least 

for a class of models5 with D = 3. Generally speaking, a difficulty in finding 

good approximate invariants is associated with the approach to strongly unstable 

regions, and for that reason it is informative to see what happens to good invariants 

as some measure of nonlinearity is. increased. 

Perturbative methods to compute approximate invariant tori have been em- 

ployed over many decades. Since the advent of the computer, one tendency has 

been to adapt and improve classical perturbative algorithms for machine calcu- 

lation, so as to carry the perturbation series to relatively high orders. Another 

tendency has been to invent non-perturbative techniques, again taking advantage 

of computers. Even with the power of computer implementations, perturbative 

methods may be ineffective in interesting parts of phase space, particularly near 

the onset of strong instability. Appropriate non-perturbative methods may have 

a larger region of validity, and even present some advantages in cases for which 

perturbation theory is adequate. 
-.. .* 
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This paper describes a particular nonperturbative technique:‘g based upon 

iterative solution of the Hamilton-Jacobi equation. The method is designed to 

handle a Hamiltonian with periodic time dependence, allowing for the possibility 

that the time dependence may not be smooth. Following the pattern of canoni- 

cal perturbation theory, the technique makes use of the action-angle variables of 

the underlying integrable system, and finds a transformation to new action-angle 

variables so that the new action is nearly constant. The generator of this trans- 

formation, an approximate solution of the Hamilton-Jacobi equation, provides an 

explicit representation of a nearly invariant torus. 

The generator is represented as a finite Fourier series in angle coordinates. 

Departing from the method first used in iterative solution of the Hamilton-Jacobi 

equation: we avoid Fourier analysis in time. Since the perturbations of present 

interest are discontinuous functions of time, a Fourier analysis would be inefficient 

and poorly convergent. Lacking the automatic periodicity of Fourier analysis, we 

enforce periodicity of the generator in time by a “shooting method” in which initial 

conditions are varied systematically until periodicity is achieved. 

We illustrate the procedure with examples from accelerator theory with D = 3 

and D = 5. The examples deal with oscillations of particles transverse to the 

direction of the beam, the so-called betatron oscillations. Nonlinearity of the mo- 

tion arises from fields of sextupole magnets, which are introduced to counteract 

dependence of the oscillation frequencies on the longitudinal momentum of the 

beam. In these examples the method has a large domain of convergence, including 

regions of strong nonlinearity. It produces close approximations to invariant tori; 

this is checked by following single orbits, originating on the tori, through accurate 
..T 
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numerical integration of the equations of motion. 

A comparison to related work requires some awareness of technical features 

of our approach; for that reason we defer comparisons to the final section of the 

paper. 

In Section II, we derive the Fourier projection of the Hamilton-Jacobi equation 

in a form suitable for the shooting algorithm. The shooting method is formulated as 

a fixed-point problem in Section III. Iterative, numerical methods used to solve the 

fixed-point problem are briefly discussed. In Section IV, the technique is tested 

on two soluble examples. In Section V, the method is applied to a nontrivial 

example, the problem of betatron oscillations in a model of an accelerator with 

strong nonlinearities. Calculations of tori for both D = 3 and D = 5 are discussed. 

We give conclusions and try to place the method in a context of related work in 

Section VI. Appendix I contains a proof of convergence of the shooting algorithm 

for sufficiently weak nonlinearities, based on the contraction mapping theorem. 

II. FINITE FOURIER PROJECTION OF 

THE HAMILTON-JACOBI EQUATION 

In this section we derive the projected Hamilton-Jacobi equation for charged 

particle motion in a transverse magnetic field. The discussion is applicable, how- 

ever, to any time-periodic Hamiltonian representing a perturbed integrable system. 

We write the Hamiltonian in the action-angle variables of the integrable part and 

describe the time-periodic canonical transformation to the action-angle variables of 

the entire, nonlinear Hamiltonian. The equation requiring that the new Hamilto- 

nian be independent of angles is the Hamilton-Jacobi equation, a partial differential 
.* 
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equation for the generating function of the transformation. We project it onto a 

finite Fourier basis in the angle variable and find a set of equations and boundary 

conditions for the Fourier amplitudes of the generator. 

For a single charged particle moving in the static, transverse magnetic field 

of a cyclic (“circular”) accelerator or storage ring, the Hamiltonian describing the 

transverse motion can be written in the action-angle variables of the unperturbed 

(linear) Hamiltonian as 
10 

H(@,I,s) = qs)*I+v(aq,s) . (1) 

The time-like variable s is the independent variable of Hamilton’s equations; it rep- 

resents the particle’s azimuthal location in the accelerator, measured by arc length 

along a cjosed reference orbit of circumference C. Boldface characters indicate 

d-component vectors, where d = 1 or d = 2 in all of our numerical examples. For 

d = 2 each component of any vector corresponds to one of the directions transverse 

to the reference orbit. The unperturbed Hamiltonian, a(s) . I, is defined in terms 

of pi(s) = l/n;(s), where /?i is th e C ourant-Snyder beta function which character- 

izes entirely the linear aspects of the applied magnetic fie1ds.r’ Both /3i and the 

perturbation V are periodic in s with period C. 

The Hamiltonian (1) is derived from an initial formulation in terms of phase- 

space coordinates (xi,pi), where xi is the transverse displacement of the particle 

from the reference orbit, and pi = dxi/ds. These coordinates are related to the 

unperturbed angle-action variables (Qi, Ii) by a canonical transformation, 

.* 
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Xi = JZ@j COS Qi , 

Pi = -j/WE@ (Sinai + cYi(S)COSQi) , i = 1,2 , 

where 2ai(s) = -dpi(s)/ds. I n t erms of (xi,pi), the unperturbed Hamiltonian 

takes the form 

(3) 

where the functions Ki(s), periodic with period C, describe linear focusing forces 

from quadrupole magnets. The definition of 1Ci and the determination of pi from 

I(; is explained in Ref. 10. 

When V = 0 the motion is integrable, since it follows immediately from Hamil- 

ton’s equations that Ii is constant, and that @ i(s) = @ i(O) + J” da/Pi(a). With 

V = 0 it is possible to make a further canonical transformation to variables that 

represent simple harmonic motion, but it is not convenient to do so in the following 

work. 

Synchrotron oscillations and synchrotron radiation of the particle are ignored. 

Synchrotron oscillations (oscillations in energy associated with the electric r.f. ac- 

celerating field) occur on a time scale much longer than the betatron (transverse) 

oscillation time. They can have an important effect on long-term stability, but lead 

to a more complicated problem than the one we wish to study here. Synchrotron 

radiation tends to damp the betatron oscillations in electron accelerators, and in 

fact improves stability. 

The form of V for a string of normal sextupole magnets distributed about the 
. . .* 

8 



circumference of the ring is 

V(x1, x2,4 = 5 fn(s)$x: - 3x14) * 

n=l 
(4) 

The function fn(s) is zero everywhere except inside the n-th magnet where 

it is unity. The sextupole strength S,, has units of mV3, and is defined as S = 

(e/cpo) d2B2/i3xf in cgs units, where po is the reference momentum, and the second 

derivative of the vertical magnetic field B2 is evaluated at x1 = x2 = 0. 

We now consider the full nonlinear problem and seek a canonical transformation 

to new action-angle variables,12 

(@,I) -+ PII, J> , (5) 

such that the new action J is invariant. The generating function of the transfor- 

mation is denoted as 

F2(Q,J,s) = +J+G(@,J,s) , (6) 

where the first term represents the identity map. The equations defining the trans- 

formation are 

Q=@+GJ(Q,J,s) , (7) 

I= J+G*(@,J,s) , (8) 

Hl(J,~,s)=H(Q,J+G~p,s)+G, . (9) 
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The subscripts represent partial differentiation, for instance G+ = {dG/dQi}. The 

Hamilton-Jacobi equation expresses the requirement that the new Hamiltonian be 

a function of J and s alone: 

WJ,s)=W-(J+G+)+V(@,J+G+,S)+G, . (10) 

.- 
If G satisfies this partial differential equation, then J is invariant, as a direct result 

of Hamilton’s equations in the new variables. 

We seek a solution G of Eqn. (10) that is periodic in @ with period 27r, and 

periodic in s with period C. Such a solution provides an explicit representation of 

a (d.+ 1)-dimensional invariant torus, through Eqn. (8). Since J will be constant 

along an orbit (Q(s),I(s)), all points of the orbit lie on the surface I = I(@,s; J) 

specified by Eqn. (8). Th e surface is toroidal, which means that I(@, s) is periodic 

in @ and-s. The value of the constant vector J serves to distinguish different 

tori. Since only approximate solutions of (10) can be achieved numerically, our 

computations will lead to tori and actions J that are invariant only to a certain 

accuracy, as verified over a finite interval of s. 

Because of the periodicity in the angles, it is natural to study Eqn. (10) in a 

Fourier basis in @. Accordingly, we expand the generator in a finite Fourier series, 

thus guaranteeing periodicity in a: 

G(@, J,S) = g(0, J,s) + c s(m, J,4eim’* 7 
mEMUW 

2% 

s(m, J+> = J -im’oG(@, J, s) . 

0 

(11) 

(12) 
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In Eqn.(ll), the mode index vector m = (ml, ma,. . . , md) runs over a finite set 

denoted as M U M, which does not include m = (0, 0, . . . , 0). 

The set of indices for the independent, complex Fourier modes is M. The set 

i’@ is simply related to M and represents Fourier modes that are not independent 

of those with indices in M. In the case d = 2, the set M is the set of all integer 

vectors (mr,ma) such that ml E [0, Ml], and 7732 E [-M2, M2] when ml > 0, while 

m;! E [l, M2] when ml = 0. The set i@ is just the negative of M: &f = {(ml, m2) : 

b-m, -m2) E M}. S ince G is real, the Fourier coefficients with indices in &l are 

related to those with indices in M, g(-ml, -m2) = g*(ml, m2). 

For ease of notation, Fourier series are written using indices in the union of 

the two sets M U A?, even though the corresponding amplitudes are not inde- 

pendent. Written using just the set M, the summation in Eqn. (11) becomes 

c mEM 2 Re [g(m, .7, s)eim”] ; this formula is used in numerical computations. 

A projection of the Hamilton-Jacobi equation onto the above Fourier basis 

gives 

&g(m,J,s)+im~Sl(s)g(m,J,s)+~(m,J,s;g)=0 7 me Me (13) 

Here v(m, J, s; g) is the Fourier transform of the perturbation and is a functional 

of the Fourier coefficients {g(m, J,s),m E M} through the action transformation 

in Eqn.(8): 

+-n, J, w) = 
2* d@ J -e-‘m’*V(@, J + G+(@, J, s), s) 
o Wd 

, (14) 

Ga(tD, J,s) = c img(m, J,s)eim” . (15) 
mEMU@ 
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Recall that the set M U &l does not contain the mode m = 0, so that Eqn. (13) 

does not involve m = 0, and is independent of the choice of HI (J, s). Hence, it can 

be solved for g(m, J,s) with m # 0 subject to the s-periodicity condition. This 

completely determines Ga when J is specified. 

Projection of the Hamilton-Jacobi equation onto the m = 0 mode gives 

.- 

Hl(J, s) = a(s) . J + &g(O, J, s) + v(0, J, s; g) . (16) 

Since ~(0, J, s; g) is determined by G+ alone, and the solution of Eqn. (13) gives 

G*, we determine HI by an arbitrary, s-periodic choice of g(0, J,s). 

It is convenient to choose g(0, J, s) to be zero. Different choices give different 

definitions of the new angle !V, but the differences are innocuous, in that the change 

of Xl? during a period of s is always the same. The perturbed tune, or winding 

number, i’ gives the change in !I! in one turn normalized by 27r: Q(C) - q(O) = 

27rv’. From Hamilton’s equation for the evolution of e’, the tune is 

c c 
1 

Y’ = g J dJH$,s)ds = Y + & J aJ@,J,w)ds , 
0 0 

(17) 

where Y is the tune of the unperturbed motion, 

c 
2wu = J Ct(a)da . (18) 

0 

Owing to periodicity in s, the term &g in HI does not contribute to the integral 

(17) , and the tune is invariant to changes in the choice of g(0, J, s). 
. .- 
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The linear term in Eqn. (13) can be eliminated by using the integrating factor 

exp (im . X(s)), where 
S 

X(s) = J St(a)da (19) 
0 

is the linear phase advance, 9(s) - a(O). Eqn. (13) becomes 

- &h(m, J, s) = -eim’X(s) ~(m,J,wdh)) , m E M , (20) 

where 

h(m, J, s) = eim’x(s)g(m, J, s) . (21) 

The.periodicity of g in s implies the boundary condition on the new variable h: 

h(m, J, C) = ezaim”h(m, J, 0) . (22) 

Notice that h has the nice property .of being constant over any interval of s in which 

the perturbation vanishes, i.e., any region in which magnetic fields are linear or 

zero. 

Periodicity of a solution g(m, J, s) of (13) implies periodicity of its derivatives 

with respect to s, at least at generic points where V and St are sufficiently smooth. 

Suppose, for instance, that a(s) and V(@, J, ) s are continuous in s in a neighbor- 

hood of SO, and that V is continuous as a function of J. Then (13) shows that 

asg(m, J, s) is continuous near so, and periodic in s with period C. By differen- 

tiating (13), and assuming more smoothness of V and a, one can make similar 

conclusions about higher derivatives. In the accelerator problem, smoothness will 

be lacking only at sharp edges of magnets. 
‘..__ .* 
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The differential relations and boundary conditions for the h coefficients are 

summarized below: 

&h(m, J,s) = -e im.x(s)v(m, J, s; g(h)) , m E M , (23) 

v(m, J,s;g(h)) = T$$emirn”v(fft, J + G+,s) , (24) 
0 

.- 
Ga= c imh(m, J, s)e im.(O-X(s)) 

7 (25) 
mEMUM 

h(m, J, C) = e2*im*vh(m, J, 0) . P-3 

In the next section, we describe a method to find solutions of Eqn. (23) consistent 

with Eqn. (26). 

III. SOLUTION BY THE SHOOTING METHOD 

In this section, we discuss the-solution of Eqns. (23)-(26) for the Fourier am- 

plitudes h(m, J, s). We formulate the problem as one of finding the fixed point of 

a nonlinear map. We close this section with a discussion of the numerical methods 

for evaluating the map and for finding its fixed point. 

Eqns. (23)-(25) define th e evolution of the initial conditions h(m, J,s = 0) to 

the final values h(m, J, s = C). The integration of Eqn. (23) from an arbitrary 

initial condition h(0) t o a final value h(C) defines the map 17: 

h(C) - h(0) = U(h(0)) . (27) 

Here and elsewhere we suppress reference to m and J, and write h(s) for the vector 

with components h(m, J,s). The boundary condition (26) is not satisfied for an 
. . .* 
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arbitrary h(0). I n erms of the evolution map U, the boundary condition demands t 

that h(0) satisfy the equation 

h(m, J, 0) = e2*imtv _ 1 u(m, J, h(O)) * 

In other words, we seek a fixed point h(0) of the map A , 

h(O) = A(W)) , 

where 

A(m, J, h(O)) = e2rimtu _ 1 u(m7 J? h(o)) 

(28) 

(29) 

(30) 

An essential property of this formulation is that A is proportional to the per- 

turbation strength V. This makes it feasible to solve the fixed point problem by 

iteration, when V is sufficiently small, and the divisor e2sim’Y - 1 is bounded away 

from zero by an appropriate choice of the mode set M and the unperturbed tune 

Y. The change of variable from g to h was needed to create an operator propor- 

tional -to V; the corresponding step in quantum mechanics is to use the interaction 

picture. 

To solve Eqn. (28), we use standard techniques from the study of fixed points 

of nonlinear 13,14 W maps. e d escribe these methods in detail below. 
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A. Simple Iteration 

The most obvious method to find the fixed point of Eqn. (28) is referred to 

here as simple iteration. The iteration proceeds in the following manner, h’+l(O) = 

A(h’(0)) , with the superscript i labeling different iterates. A proof of convergence 

to a unique fixed point is described in Appendix I. 

.- 
Our initial guess, ho(O), will be the approximate solution of Eqns. (23)-(26) to 

lowest order in perturbation theory. This is obtained by putting G+ equal to zero 

in the right hand side of Eqn. (24). Then Eqn. (24) can be evaluated explicitly 

using Eqns. (2) and (4) . The resulting initial iterate is 

C 

h’(m, J, 0) = 2~~~~v, ’ J eim’X(s) o(m, J, s) ds , (31) . 
0 

with 

+-G&s) = $5 .f72(s)S,(S(mL (3,0))i(J1P1(S))3’2 
n=l 

+ S(m - (ho)) (&MA(s))~‘~ - (JlPl(4)“2J2B2(4) 

- 
(qm - W)) + qm - (1, -2)))~(J,p,(s))‘/2ma(s)} (32) 

with m E M. The S(m - (j,k)) are Kronecker deltas with the value 1 when 

m = (j, Ic) and 0 otherwise, and the summation is carried out over N sextupole 

magnets of strength Sn; see Eqn. (4). Notice, at s = 0 the h and g coefficients are 

equal. 

The notorious problem of small divisors near resonances can be seen in the 

leading factor in Eqn. (30). Th e d enominator vanishes when m + u = p, where p 

is an integer. The iterative procedure cannot succeed unless the mode set M and 
(... .* 
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the unperturbed tune u are chosen so that the denominator is nonvanishing. The 

smaller the minimum value of the denominator, the smaller the perturbation V 

must be to secure convergence of the iteration. It follows that for a fixed V this 

method cannot provide arbitrary accuracy. If one attempts to increase accuracy 

by expanding the set of Fourier modes, the minimum divisor tends to zero, since 

- there are vectors u, with rational components close to any u whatever. As we shall 

see, this deterioration of convergence is clearly observed in computations. 

.- 

B. Newton Iteration 

To expand the domain of convergence, we turn to Newton’s method. The small 

divisors have the same impact in this method, even though their role is a bit less 

obvious. Nevertheless, for a given M and u, the Newton method succeeds for much 

larger V than can be handled in simple iteration. 

The desired fixed point is the solution to the complex-valued vector equation, 

F(h(0)) = A@(O)) - h(O) = 0 . (33) 

In Newton’s method we make a first-order Taylor expansion of F around a given 

iterate to define the next iterate as a solution of linear equations. 

The derivative of F is not well-defined in the sense of complex function the- 

ory: F is not an analytic function of h(0). Eqn. (33) should be written as two 

real equations, then the derivative of F with respect to Re h and Imh is well- 

defined. We use a compact notation for the real equations, &’ = (Re F, Im F)*, 

and L(O) = (Reh(O),Im h(0))T. Then Eqn. (33) takes the form #(i(O)) = 0. 
-.... .* 
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To state equations in components, we write i(m) for i(m, J,O). Then Newton’s 

method is defined by the equations 

.- 

P(m,ki) + C B( m, n, Xi) . [L’+‘(n) - i’(n)] = 0 , (34 
NM 

. with 

B(m,n,?1) = 
aReF(m,a)/dReh(n) aReF(m,i)/dImh(n) 

aImF(m,?l)/dReh(n) aImF(m,k)/dImh(n) > 
* (35) 

This system of equations is solved for the new iterate ki+‘, given &‘, by a direct 

method (Gaussian elimination). The Jacobian fi of the map is approximated 

numerically by divided differences. Each component of i is perturbed separately 

by a small amount, and fl computed at perturbed and unperturbed points. The 

matrix elements of the Jacobian are then found as 

bF(m,k) F( 
dReh(n) = 

m, h + (E(n), O)T6h) - F(m, h) 
Sh 9 

dF(m,X) F( m, h + (0, ie(n))T6h) - F(m, h) (36) 

dImh(n) = 6h , 

where-6h is a small real number and e(n) = {S(p - n), p E M} is the unit vector 

in the direction corresponding to mode n. In practice, we take 6h = (10m6 - 

The larger domain of convergence of Newton’s method is achieved at a com- 

putational expense that becomes significant for d 2 2. The expense is mainly 

due to the Jacobian evaluation. With d = 2 the total number of independent 

modes in the set M is 2M1 M2 + Ml + M2. In a typical calculation we might 

have Ml = M2 = 15, hence 480 independent modes and 960 map evaluations to 
(... .* 
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approximate the Jacobian. For a general d-dimensional mode vector the number 

of independent components is a little more than 2d-1Ml M2 . . . Md. The calcula- 

tion of the Jacobian quickly becomes untenable as the mode set or the number of 

degrees of freedom is increased. In contrast, the simple iteration requires only one 

evaluation of the map A(h) at each iteration. 

.- We employ two methods to reduce the time for the Jacobian calculation. First, 

Broyden’s update method is used to approximate the Jacobian. Second, we discard 

many modes within the mode set M. 

C. Newton-Broyden Iteration 

For the Newton-Broyden iteration, the Jacobian of the map is calculated fully 

15-17 only once and is afterward updated using the Broyden algorithm. If bi is the 

Jacobian at the i-th iteration then the update of the Jacobian at the (; + 1)-th 

iteration is 

* i+l 
P 

= pi + [j?(ii+l) _ jyii) - fji (ii+1 _ hi)] . (Li+l _ ii)T 

(ii+1 _ ii)T . (ii+1 _ &,i) (37) 

The h are treated as column vectors, and the iT as corresponding row vectors. 

The costly computation (36) is used only to find fro; each subsequent iteration 

requires only one new map evaluation, P(L’+‘). 

The domain of convergence of the Newton-Broyden iteration is still large while 

computation times are much more reasonable than those of a full Newton iteration. 

In practice it converges for strong effective nonlinearities, in particular, for initial 

conditions close to the dynamic aperture in accelerator problems. 
,... .* 
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A more daring and still more economical approximation can be attempted. 

If A were zero in Eqn. (33), the Jacobian would be -1. Putting fro = -1 in 

(37), we were surprised to find that the Broyden updates still provided a region 

of convergence substantially larger than that of simple iteration. In comparison 

to the calculation with fro from divided differences, the region of convergence was 

.- - somewhat smaller, and more iterations were required for adequate convergence. 

D. Mode Selection 

To achieve a certain accuracy, one has to choose a minimum value for the 

maximum mode numbers M;. On the other hand, for a given choice of M; there 

are usually many amplitudes of modes with Im;] < Mi that are quite negligible. 

We apply a simple technique to identify and eliminate the negligible modes within 

the set M. 

We carry out one simple iteration using the full mode set M, as in Section 

A above. We then compute the evolution in s of the resulting h(O), and for each 

m the maximum over s of 1 h( m, J,s)l. When the latter is less than some fixed 

small fraction of max, maxs Ih(n, J, s)I, we throw away mode m in all subsequent 

computations. In our examples with-d = 2, no more than 130 to 200 complex 

amplitudes are retained. Since the time to approximate the initial Jacobian goes 

down with the square of the number of amplitudes, a great deal of time is saved. 
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E. Numerical Integration 

.- 

The nonlinear map U of Eqn. (28) must be evaluated by numerical integration 

of Eqn. (23). W e use a fourth order Runge-Kutta algorithm. Recall that h(m, J, s) 

changes only over the support of the nonlinear perturbation V. Thus, in our 

example the numerical integration need be performed only over the extent of the 

sextupole magnets. The final value h(m, J, C) o bt ained by the integration is used 

in Eqn. (27) to calculate the map U. After the iteration converges to the fixed 

point h(m, J,O), th e coefficients can be evolved in s using the same fourth order 

Runge-Kutta algorithm. 

It has been observed that the number of Runge-Kutta integration steps per 

nonlinear element must be increased to maintain accuracy as the effective non- 

linearity is increased by going to large amplitudes J. Similarly, the number of @ 

modes must increase. The number of integration steps in the s-direction along the 

(d + 1)-dimensional torus is analogous to the number of Fourier modes to repre- 

sent variation along the @ direction. As the nonlinearity increases, the invariant 

torus becomes more distorted in both the s and the @ directions, so that both the 

number of steps and the number of modes must go up. 

Working at large amplitudes and using the above stated guess for ho, we find 

that the iteration can reach a fixed point only for a relatively small number of 

integration steps. To perform the calculation at a large number, the result from an 

intermediate number of steps must be used as the starting point. The fixed point 

found at the intermediate point is then used as the initial iterate for a calculation 

with a larger number of integration steps. This has the added advantage of cal- 
‘(.__ .* 
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culating the initial Jacobian with a smaller number of integration steps and thus 

saving computing time. 

IV. TESTS OF THE METHOD 

.- 

We test the technique introduced in the previous section on two model problems 

that can be solved analytically. For the case of two autonomous, linearly coupled 

harmonic oscillators, we compare the exact invariant surface with that from nu- 

merical solution of the Hamilton-Jacobi equation. We also compare the analytic 

and numerical tune shifts-for a linear example in which uncoupled betatron motion 

is perturbed by a quadrupole term. 

A. Linearly coupled harmonic oscillators 

For two linearly coupled harmonic oscillators, the Hamiltonian can be written 

as 

NOW the Pi are constants, but they are defined in analogy to the pi(s) of Eqn. (1). 

The x and pz are column vectors of coordinates (21, ~2)~ and momenta (~1 ,PZ)~, 

respectively. Since Eqn. (38) is independent of s there exists a canonical transfor- 

mation producing an uncoupled Hamiltonian. This is equivalent to a transforma- 

tion diagonalizing the matrix KC. 

For the numerical solution of the Hamilton-Jacobi equation, the coupling term 

F&s2 serves as the perturbation. Written in the action-angle variables of the 
. . . . .* 
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unperturbed Hamiltonian, the full Hamiltonian has the form 

H(@,I) =~o~I+21’~~cos~1cos~2 , (39) 

.- 

where 520 = (l/pl,l/&) and xi = dmcos<pi, pi = -dmsinQi. 

Let (u,pU) be variables in which the Hamiltonian appears uncoupled. They 

are related to the original variables (x,pZ) by th e orthogonal transformation 5’ 

that diagonalizes Kc; we let Kd = STKcS, where Kd = diag(l//?f,, l/&). The 

new beta parameters @iu for the uncoupled case are related to the eigenvalues of 

the matrix I(, through the above definition of I<d. The matrix S is 

s= lN(; 
-r 

> A ’ (40) 

where 

lNI-2 = 2[A! + F2 + Ad-] , 

A=A+dA2+r2 , (41) 

A=;($-+) , 
2 

The beta parameters for the u-motion found from the eigenvalues of I(, are 

C+Ja”L-tT’z 

c-dDTF > ’ (42) 

with 

The parameters are chosen so that the right hand side of Eqn. (42) is positive. The 

@iu are defined to be positive. 
. . . . .s 
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We take the following steps to generate points on an invariant surface I(@) 

to compare with the numerical solution of the Hamilton-Jacobi equation. We 

introduce the action-angle variables (IU, au) of th e uncoupled motion. To generate 

points on the torus, we hold I, fixed and allow ep, to vary on a uniform 40 by 40 

grid. Working through the transformations 

- 

PJU) I-b (u, Pu) b-b (X,Pz) I-+ (@,I) , (43) 

we finally obtain points I(@) with invariant action I, to compare with the numerical 

solution of the Hamilton-Jacobi equation. The action-angle transformation is 

(44) 

As a measure of the difference between.the Hamilton-Jacobi solution IHJ and the 

analytic solution IA, we compute the normalized sum of deviations 

(45) 

The summation is over the 40 by 40 grid in the QU space. 

TABLE I gives the values of 6; found for several coupling strengths r with I, = 

(10B5 m, 10e5 m), ,& = .50336 m, p2 = 1.29322 m, and a ring circumference of 

1 m. The mode spectrum was truncated to Ml = M2 = 7, giving 112 independent 

complex modes. A subset of significant modes within this set was selected by 

the method described in the previous section. The analytic and Hamilton-Jacobi 
.(... .* 
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TABLE I. Comparison of surfaces from the Hamilton-Jacobi equation with analytic 
surfaces for the linear coupling model with different coupling strengths I?. The 
parameters 6i, defined as in Eqn.(&), measure the discrepancy. 

C = l.Om, I, = 10B5m, Ml = M2 = 7 

r (mB2) 61 62 modes 

selected 

0.04 1.406.10-4 2.881.10-4 5 

0.10 5.799.10-4 6.606.10-4 7 

0.50 5.430.10-5 6.186.10-5 42 

0.65 3.782.10-4 11.480.10-4 38 

invariant solutions agree very well. Notice that at I’ = 0.50 mm2 more modes are 

kept and a significant increase in accuracy over the other cases is achieved. 

FIGS. 1 and 2 show the two components of the invariant surface, normalized by 

11, and 1%) at any s (time-independent problem) and for I’ = 0.65 m-‘. They are 

displayed as functions of the angles 9, normalized by 27r, and on a vertical scale 

with 0 at the origin. In terms of the generating function, we are plotting Ii/Ii, = 

1 + Gai(‘,I,)/‘itt,, with i = 1,2. The constants I, serve to distinguish different 

surfaces. Notice that the departure from a plane surface is quite pronounced. In 

FIG. 1 showing the 11 surface, the distortion is f61%, and in FIG. 2 showing the 

12 surface, it is f55%. This nonlinearity displayed by the coupled variables 1; is of 

course not an essential feature of this basically linear problem. In problems with 

genuine nonlinearity one must be careful to separate any effects of linear coupling, 

which can be confused with the real effects of interest in plots like those of Figures 

1 and 2. 
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B. Quadrupole perturbation 

- 

For a quadrupole perturbation, it is interesting to compare the tune shift found 

by matrix methods with that from the numerical solution of the Hamilton-Jacobi 

equation. The perturbation due to a quadrupole is V = K(s)(z2 - y2)/2, where 

K(s) is constant within the magnet and zero elsewhere. In action-angle variables, it 

takes the form V = K(s)(p 1 I 1 cos2 @r - ,&I2 cos2 Qpz). The strength I( is measured 

in units of rnm2. 

From Eqns. (16) and (17) we see that the tune shift in the Hamilton-Jacobi 

formalism is 

(46) 

Given G+, the integral is calculated with a Simpson’s rule for the s integration and 

with a fast Fourier transform for the @ integration. The derivative is estimated 

with a simple divided difference. 

According to lowest order perturbation theory, the tune shift for a weak quadru- 

pole magnet with strength I< is 

(47) 

This can be found using Eqn. (46) and setting G+ to zero. 

An exact analytic result for the tune shift can be found using matrix methods. 

Consider two magnetic lattices, one where the first element is a drift (i.e., it cor- 

responds to free particle motion) and another where the drift is replaced by the 
,... .^ 
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quadrupole perturbation. The 4 x 4 matrix representations of the full-turn maps 

of the two lattices can be compared, and the tunes extracted using the traces of 

the matrices. If the full-turn map for the lattice that begins with the drift element 

is T, then the full-turn map for the same ring, but with the drift replaced by the 

quadrupole perturbation, is T’ = T.T~~*TQ, where TD is the matrix representation 

for the drift and TQ is the matrix representation for the quadrupole perturbation: 

TD = 

TQ = i 
cosfid -& sin a d 0 0 

-flsinfid cosad 0 0 

0 0 cash A/?? d --& sinh fi d 

0 0 flsinh fl d cash fi d I 
(48) 

These matrices act on the phase space vector (2r,~l,x2,~2)~. The length of the 

drift, and the quadrupole, is d and the quadrupole strength is I<. 

If there is no coupling between x1 and x2 motions, the matrices T and T’ are 

block diagonal; we label the blocks as T(“), i = 1,2. The perturbed tune Y! is 

l8 obtained from the trace of T’(‘) through the formula 2 cos 27rv! = Tr T’(‘). The 

matrix T(‘) is represented in a standard notation as 18 

T(‘) = COS 27TUi + Cri sin 27rVi pi sin 27r Vi 

-(I + Cyf) Sin27rUifPi COS 27rUi - CYi sin27rv; > ’ (49) 

again with 2oi = -dpi/ds. Th e analytic forms for the tune shifts are found to be 

cos 27rui = cos fi d cos 27ry + d (’ lpp” sin 2rul 
> 

.* 
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cm 27ru1 + ( fi d al - A/??& - 

The lattice functions ai( pi(s) are evaluated at the beginning of the drift. 

We studied several cases with a single quadrupole of strength varying from low5 

to 0.3 mS2. The lattice used for T is that given in the next section in TABLE II 

with the sextupoles removed, i.e., replaced by drifts. The first sextupole space 

is either the drift or the quadrupole perturbation in the above discussion. The 

values of the tune shift from the Hamilton-Jacobi solution, normalized by the 

quadrupole strength, are compared with the analytic formula given above. The 

results are in FIGS. 3 and 4. The dotted.line follows the analytic formula, Eqn. (50), 

and the (x) marks results from the numerical solution of the Hamilton-Jacobi 

equation. The relative error of the Hamilton-Jacobi result, defined as [C(z#’ - 

wy2/ C(wHJ)2]1/2, is 9.97 + 10S6 for Aul/I<, and 9.73 . 10S6 for Au2/IC. The 

sum runs over the points marked by (x), and wHJ = AuZFJ/IC is the normalized 

tune shift from the Hamilton-Jacobi equation, and wM = Au,g/K is the analytic 

result from the matrix method. 

The distortion of the invariant surfaces for the largest quadrupole strength of 

K = 0.30 mm2 is f5.9% for the 11 surface and f36% for the 12 surface. The 

constant actions chosen for the above study are J = 10V5m. The results for the 

tune shift seem to be independent of J for several different values that were checked. 
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V. A NON-INTEGRABLE EXAMPLE: 

SEXTUPOLES IN A STORAGE RING 

We present some examples of numerical solutions of the Hamilton-Jacobi equa- 

tion in non-integrable cases with d = 1 and d = 2, with Hamiltonian periodic in the -. 

time-like independent variable s. The examples are based on a simplified model of 

an electron storage ring, with the nonlinearity provided by strong sextupole mag- 

nets. The behavior of this system is generic, in broad characteristics, for storage 

ring models with d 2 2, even for models with more elaborate and realistic repre- 

sentations of the magnetic lattice. Indeed, the behavior is fairly generic for a large 

class of nonlinear systems in various fields of physics. 

The sextupole magnets, always present in a modern synchrotron or storage 

ring, serve to correct the energy dependence of the focusing from the quadrupole 

magnets. They are placed in a diseersive region of the ring, where particles of dif- 

ferent energy have different transverse positions. Since a sextupole field gradient 

is proportional to the transverse displacement, and since the latter is proportional 

to the-energy deviation, a sextupole can be used to counteract the effect of weaker 

quadrupole focusing for particles of higher energy. This is called chromatic correc- 

tion of the focusing. 

In addition to the desired chromatic correction, the sextupoles cause undesired 

nonlinear effects, even though they are arranged with appropriate spacing and 

strengths so that nonlinear effects cancel to a large extent. At sufficiently large 

amplitudes of transverse oscillations, the residual nonlinear effects dominate, and 

lead to unstable motion in which particles are lost from the beam. 
. . .* 
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The example considered here is a single “cell” of the magnetic lattice for the 

Berkeley Advanced Light Source (ALS), an electron storage ring operated as a 

synchrotron radiation source. The cell contains four sextupole magnets. The 

actual lattice of the ALS contains twelve such cells, now somewhat modified from 

-- 

.- 

the early design that we use, and complications from other magnetic elements 

and errors, all of which we ignore. Our cell is taken from the Berkeley Advanced 

lg Light Source Conceptual Design Report. TABLE II gives the relevant parameters 

describing the cell, in both linear and nonlinear aspects. The position (leading 

edge), strength, and length of each sextupole magnet is listed, together with the 

linear lattice parameters pi(S), CVi(S), Xi(S) evaluated with s at the leading edge of 

the sextupole. The phase advance Xi is defined in Eqn. (19). The linear tunes vi, 

the ring circumference (cell length) C, and the initial values of pi and ai are also 

listed. 

TABLE II. Parameters for a single cell of the ALS storage ring. The first four 
columns specify the sextupole magnets, while the remaining columns give the linear 
lattice functions, evaluated at the leading edge of the sextupole. 

n Lame 

SD 

SF 

SF 

SD 

position 

m 

5.775 

6.875 

9.325 

10.425 

l- 
C=16.4m, l/12 of ring, u1=1.18973, u2=0.68158 

I I I 
strength length 

mW3 m Pl,m 

-88.090 .20 1.472 

115.615 .20 3.984 

115.615 .20 3.137 

-88.090 .20 2.297 

at s=O, &=ll m, 

parameters phase 

P2,m al a2 X1, rads X2, rads 

10.696 -1.779 8.401 2.480 0.866 

1.580 2.272 0.417 2.819 1.222 

1.443 -1.963 -0.268 4.600 2.92s 

7.603 2.345 -7.062 4.886 3.395 

L&=4 m, cq=a2=0 I 
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To gain a broad understanding of single particle motion for this Hamiltonian, 

a stability plot is made giving initial conditions for trajectories stable or unstable 

within 5000 turns. Each point in FIG. 5 represents the action I of the initial 

condition for a trajectory. The initial angles @ are zero. The equations of motion 

are integrated over the nonlinear elements by means of an explicit, fourth order, 

20 symplectic integrator. On each turn the trajectory is tested; if the position x; 

is greater then 1 m, or the angle dxi/ds is greater than 1 radian, that trajectory 

is considered lost or unstable. The stars and dots represent initial conditions of 

trajectories that are lost or not lost , respectively, after 5000 turns. The boundary 

between the regions occupied by stars and dots is called the “5000 turn dynamic 

aperture”. More- loosely, the “short-term dynamic aperture” usually refers to a 

few thousand turns. The “physical aperture”, imposed by the dimensions of the 

vacuum chamber in which the particles move, is preferably smaller than the short- 

term dynamic aperture. 

A. One-Dimensional Example 

We first treat one-dimensional motion-only the coordinate 21 is allowed to 

vary. The trajectories should be stable, under the definition of FIG. 5, out to an 

initial action around Il(Qr = 0, s = 0) x 2. 10m5 m. The corresponding maximum 

value of the constant action 51 will have roughly the same order of magnitude. 

This yields an approximate upper limit on the constant action that could yield 

approximate invariant tori from the numerical solution of the Hamilton-Jacobi 

equation. 

_- In FIG. 6, three representative solutions (approximate invariant tori) with 

.* 
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different constant actions are plotted. These curves are sections of the 2-torus 

II = Jl + G,(@l,J, > t 1 s a s = 0 and are plotted as a function of @1/27r. The 

s-dependence can be found by evolving the Fourier coefficients with the nonlinear 

time evolution map as defined in Section III. Several items characterizing each 

solution of the Hamilton-Jacobi equation are given in Table III. 

In TABLE III, the accuracy of the solution 61 is estimated by comparing the 

curve with the result of accurate numerical integration of Hamilton’s equations 

(“tracking”), again using an explicit fourth-order symplectic integrator. 2o Sixteen 

initial conditions are chosen on the invariant surface, and each is tracked for 1000 

turns, thus defining a trajectory. To compare the values of action on the tra- 

jectory, ITR(s = &), with the corresponding values on the computed surface, 

PJ(qys = T&C)), we define an error parameter 

61 = max gi!!,” IIyJ(@lTR(S = nc)) - pcs = nC>I 
{@.101 -g&ylI,“qq”(s = nc,) - Jll * (51) 

The summation is over the number of turns the trajectory was followed (1000 turns 

in this case), and the maximum is taken over a set of 16 initial angles which are 

uniformly distributed. Notice that 61 is normalized so that it measures the error 

in the departure from linear motion. Instead, one could normalize by replacing the 

denominator in (51) by J1, so as to measure the error in 11 itself; this would give 

considerably smaller values. 

Several other parameters are given in TABLE III. The distortion of the in- 

variant surface from a plane gives a measure of the strength of the nonlinearity; a 

21 similar quantity is called “smear” in accelerator physics. We define the distortion 

to be the average of the maximum excursion above the mean and the maximum 
._. .* 
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excursion below the mean, divided by the mean, Jr. A characteristic displacement 

of the trajectory is the value of x1 at ipr = 0,s = 0: x10 = d-. The 

nonlinear tune shift as defined in the previous section, and the CPU time to find 

the fixed point on the IBM 3090 Model 200 E, are also shown. 

.- 
TABLE III. Parameters for numerical solutions of the Hamilton-Jacobi equation 
with d = 1. The corresponding approximate invariant curves are given in FIG. 6. 

case case 

constant mode constant mode 

action action set set 

A(m) Ml A(m) Ml 

2.10-7 15 2.10-7 15 

2.10-s 31 2.10-s 31 

2. 1O-5 2. 1O-5 63 63 

tracking initial tune cpu time 

comparison offset distortion shift IBM 3090 

61 xlo(mm) % Au (4 

1.51 * 1o-5 2.1 f2.8 -1.068. 1O-4 

1.04 * 10-4 7.5 f9.0 -1.073 * 10-3 

3.67 - 1O-3 21.4 f31.6 -1.220 * 10-2 

5 

19 

28 

As the amplitude Jr increases, a larger mode set (all modes in the set are 

being selected) is required to maintain even moderate accuracy. The tune shift is 

approximately linear with amplitude, as is expected for sextupole magnets. The 

initial- offset x10 for case (c) comes close to the value 22.5 mm given in the ALS 

Conceptual Design Report lg for the maximum x1 coordinate of the short-term 

dynamic aperture of the ideal lattice (i.e., the configuration of magnets that we 

study, without errors). 

._. . . 
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B. Two-Dimensional Example 

We present several results for the full two-dimensional sextupole problem. We 

discuss the tune shifts found from a family of approximate solutions and show that 

they are almost linear in the constant actions. We also present two solutions in 

detail: one for small J and one for large J. 

In FIGS. 7 and 8, the nonlinear tune shifts, found from several numerical 

solutions, are plotted in a contour plot as functions of the constant actions Jr 

and J2. The (x) marks points where numerical solutions of the Hamilton-Jacobi 

equation were found. The tune shifts were fitted to a global, cubic polynomial in 

the constant actions, and this was used to make the contour plots. The discrepancy 

between the fit and the data, measured by the root mean square of the deviation 

normalized by the data, was 2.61 . low3 for Av~ and 2.27 . 10S3 for AZQ. From 

the figures and the fit, it is clear that the tune shifts are nearly linear functions of 

the actions. This is what is expected for sextupole nonlinearities from low order 

perturbation theory. 

The solutions found for FIGS. 7 and 8 used the modest mode set of Ml = 

it42 = 7. Of the 112 modes only the 30 largest were selected to do the calculation. 

This kept the computation time for the solution at the largest value of the action 

J = (6 . 10S6m, 6 . 10S6m) to 271 seconds on the IBM 3090. Comparison with 

short term tracking, as described above, gives Sr 5 0.31 and S2 < 0.56, and these 

large values only for the largest J. The majority of the solutions in the figures give 

Si 5 10m2. Th e wo lmensional 6i are defined in analogy to the one-dimensional t -d’ 

case. In the two-dimensional definition, the initial angles (@lo, @20) are distributed 
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evenly in a 4 by 4 grid in the @ plane. 

In FIGS. 9-12, we give three-dimensional plots of invariant surfaces, showing 

A(@, J, O>/Jl and k@, J, 0)/J 2 as functions of (@p1/27r, @2/27r) for J1 = J2 = 

2. lo-’ m and J1 = 52 = 4. 10m6 m, respectively. As expected, the distortion from 

a planar surface is greater for the case with larger constant action. In the initial 

.- action space of FIG. 5, these two solutions correspond to points A and B. 

TABLE IV gives some relevant parameters for the two-dimensional solutions 

shown in FIGS. 9-12, as well as two other solutions, indicated as C and D, whose 

invariant surfaces we do not show. The corresponding initial actions for C and D 

are given in FIG. 5. All solutions have Mr = Ms. The number of modes actually 

used in the calculation is shown, along with the total number of independent modes 

in the set from which they were selected. The initial number and final number of 

integration steps per sextupole are given under NRI( (number of full Runge-Kutta 

steps, each requiring four evaluations of the right-hand side of the differential 

equation). The parameters giving the comparison to short term tracking are shown 

as 6;. The distortion from a planar surface is reported for each case; it is defined 

as the.average of the excursions above and below unity of the ratio Ii/J;. Finally 

we give the total computation time, including both the surface calculation and 

program diagnostics, on the SLAC IBM 3090 Model 200 E ; the time is dominated 

by the surface calculation. 

We see from TABLE IV that for larger actions, and greater distortions, a larger 

mode set must be used and more modes must be chosen to represent the surface 

accurately. Larger actions also require more integration steps per nonlinear element 

to get numerical convergence to a fixed point. This leads to a big increase in the 
. . 
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TABLE IV. Parameters for representative numerical solutions in two-dimensions 
including those in FIGS. 9-12. These correspond to the initial conditions marked 
in FIG. 5. 

case case Jl,Jz Jl,Jz 
( 10S6m) ( 10S6m) 

-. 
A A 0.2, 0.2 0.2, 0.2 

.- -B -B 4,4 4,4 

-c C 1, 3 1,3 

D D 3, 1 3, 1 

s+odes / NRK / tracking 

Mi I I I 61 

15 501480 2/10 2.66. 1O-4 

31 180/1984 7/16 3.88. 1O-2 

31 1251480 5/16 5.64. 1O-3 

31 180/1984 4/16 5.73. 1O-4 

62 I1 

4.37 - 10-4 f6.2 

1.62 . 1O-2 f33.3 

5.16 s 1O-3 f35.4 

9.59 * 1o-4 f15.3 

distortion (%) cpu time 

computation time. 

We compute the offsets in (ICI, 22) for the surfaces of cases A and B. For 

@ = 0, we use xi0 = Jm; the beta functions at s = 0 are given in TABLE II. 

For J1 = J2 = 2. lo-’ m, case A, we find ~~10 = 2.2 mm and 520 = 1.3 mm. For 

J1 = J2 = 4. low6 m, case B, we find &o = 10.8 mm and ~20 = 6.1 mm. 

The approximate solutions can be sensitive to the mode set used for the calcu- 

lation. As the set is increased, the likelihood of encountering a resonance increases 

and the whole technique can break down. For a suitable mode set, not so large 

as to spoil convergence, the Fourier amplitudes of G+ appear to follow, with con- 

siderable scatter, a trend of exponential decrease with increasing IrnrI and lrnzl . 

One expects this for a function that is analytic in a strip about the real axis in 

the complex plane of @I or @2. That is, the Fourier amplitudes of such a function 

should be bounded in modulus by an exponentially decreasing function of [ml I and 

Imp/, and the rate of decrease is conditioned by the width of the strip. In KAM 

theory, G+ is indeed analytic in strips. An argument based on analyticity is not 
. . 
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directly relevant in our approximation, however, since our Ga has only a finite 

number of modes and is analytic in the entire complex plane of Qi. 

In FIGS. 13 and 14, we give a logarithmic plot of the normalized modulus of 

Fourier amplitudes of Ga,, namely Imlh(mr, Jl,O)l/J1 versus lrnrl for two one- 

-. dimensional solutions, cases b and c of FIG. 6 and Table III. As expected, the 

._ magnitudes of the Fourier coefficients do not decay exactly exponentially, but 

roughly follow an exponential trend. Moreover, the rate of decrease of Fourier 

coefficients diminishes with increasing J1, reflecting the general expectation and 

experience that more and more modes are needed for accurate computation of 

invariant surfaces at large actions. 

For two-dimensional surfaces, the graphic representation of the decrease of the 

Fourier amplitudes with mode index is not as obvious as in the one-dimensional 

case. For a graphical display we have made a least-squares fit of the moduli of 

amplitudes, for cases A and B given in TABLE IV, to an exponential function, 

Im;h(m, J,O)l/llJII M Cexp(-almrl - blmzl). In FIGS. 15-18, we plot the loga- 

rithms of the data and the fitted function (crosses and dashed line, respectively), 

versus~ulmll + blm2l. A s in the one-dimensional case, an exponential trend is evi- 

dent, albeit with considerable scatter. Again, the decrease is slower at the relatively 

large action of FIGS. 17 and 18. 

In this section, we have shown that the technique for solution of the Hamilton- 

Jacobi equation works well in non-integrable s-dependent cases with d = 1, even 

in regions of phase space close to domains of large scale instability. In similar cases 

with d = 2, it was difficult to approach such domains in reasonable computation 

time. Nevertheless, rather accurate invariant surfaces could be obtained under 
-I.__ . . 
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conditions of substantial nonlinearity. 

VI. COMPARISON WITH OTHER WORK AND CONCLUSIONS 

-. We have demonstrated a possible nonperturbative method for numerical solu- 

tion of the Hamilton-Jacobi equation when the nonlinear perturbation is a peri- 
._ 

odic function of the independent variable, in particular a periodic step function. 

The primary goal of such a solution is to construct approximations to invariant 

tori. Consequently, any method that yields invariant tori, whether based on the 

Hamilton-Jacobi equation or not, should be evaluated in competition with the 

present method. 

We have found that the technique described is quite expensive in computation 

time when applied for d = 2 at large amplitudes of oscillation, at least when high 

accuracy is required. This means that it is not very promising as it stands for a 

fully realistic model of accelerators, which must have d = 3 to allow for synchrotron 

oscillations as well as betatron oscillations. It is therefore imperative to find a more 

economical approach, either by improving the present method or by other means, 

if one is to study long-term stability of higher dimensional systems along the lines 

mentioned in the Introduction. 

A well-established method in nonlinear mechanics is to work with the Poincare 

return map, which takes a surface of section in phase space into itself. In this way 

one effectively eliminates one dimension of phase space, and one can hope that 

there are corresponding advantages in computational cost. In accelerator physics 

a convenient surface of section in the (2d + 1)-d imensional extended phase space 
. . 
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is defined by specifying a point on the reference orbit, say s = 0. The return 

map then propagates the other 2d phase space variables once around the ring, to 

s = C; it is called the “full-turn map”. An invariant surface of the return map 

is a d-dimensional section of the (d + 1)-d imensional torus. It is represented by 

Eqn. (8)restricted to s = 0. This section of the full torus usually provides all 

necessary information on stability. In any case, the full torus is easily found from 

the section by a simple integration of the Hamilton-Jacobi equation with respect 

to s, taking G+(Q, J,s = 0) as initial condition. 

We review two approaches to determination of invariants of the return map. 

In the first approach, which might be called the “many orbit picture”, one states 

equations that an exact invariant surface or invariant function must satisfy. De- 

scribing the invariants by appropriate parameters, for instance Fourier or Taylor 

coefficients, one finds approximate solutions of the equations through perturbative 

or non-perturbative determination’of the parameters. In the second approach, the 

“single orbit picture”, one takes advantage of the fact that a single orbit is tran- 

sitive on an invariant surface; i.e., it comes arbitrarily close to any point on the 

surface. Knowing the orbit, it should be possible to fit a surface to a subset of 

points on the orbit, again by determination of appropriate coefficients describing 

the surface. Notice that the many orbit and single orbit pictures correspond to 

the historical viewpoints based on partial and ordinary differential equations, re- 

spectively; that is, the Hamilton-Jacobi equation for consideration of all orbits at 

once, and the Hamilton equations for single orbits. 

An obvious necessity in applying the return map method is to have a repre- 

sentation of the map that embodies the dynamics of the system with sufficient 
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accuracy. For studies of real laboratory systems such as complex accelerators, 

simple formulas for maps like those popular in the literature of nonlinear dynam- 

ics (standard map, quadratic map, etc.) are usually not adequate. One has to 

adopt formulas allowing greater complexity, for example a power series in Carte- 

sian phase-space variables with a substantial number of terms:’ or a finite Fourier 

series in angle variables with some flexible representation for the action dependence 

of the coefficients (say through polynomials or spline functions).23 Such representa- 

22,23 
tions are being studied for accelerator theory, along with necessary corrections 

24,25 
to enforce the symplectic condition. A more cautious and currently more re- 

liable approach is to define the return map as the result of symplectic numerical 

integration through one period in s. In fact, formulas for maps are best derived as 

-. 

._ 

approximations to maps defined by symplectic integrators. 

Let us first consider methods based on the many orbit picture. The require- 

ment that a surface in phase space be left invariant by the return map can be 

formulated as a functional difference equation. As formulated by Moser in his 

original paper 3 on the Twist Theorem (KAM theorem for area-preserving maps 

of the.plane), this is an equation for the canonical transformation that conjugates 

the map to a pure rotation. For proof of the Twist Theorem, Moser solved the 

equation by a sequence of transformations, using an algorithm that has come to 

be known as “super-convergent perturbation theory”. Since the super-convergent 

perturbation theory is awkward to implement in numerical computation, it is inter- 

esting to consider either ordinary perturbation theory or nonperturbative methods 

for numerical solution of the functional equation. 

There are at least two ways to formulate the functional equation, correspond- 
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ing to different ways of parametrizing the invariant 26 surface. If the surface is 

parametrized by the angle variable @ of the underlying integrable system, as in 

the representation of Eqn. (8), th en the functional equation is quite analogous to 

the Hamilton-Jacobi equation, in that the constant action J is an input parameter, 

and G+ (now evaluated at s = 0 only) is the unknown function. On the other hand, 

the surface may be parametrized by the new angle variable Q, in which case the 

unknown is a pair of functions J(Q, I), !&(@,I) defining the canonical transforma- 

tion to new variables. This latter formulation gives Moser’s equation, generalized 

to systems of arbitrary dimension. 

Experience to date in nonperturbative solutions of the functional difference 

equations is quite limited. A program was written to solve the equation for G+ 

for betatron motion with d = 2, for the same model that we treated here in 

Section 6. The results, reported briefly in Ref. 27 , confirmed that considerable 

computation time could be saved in comparison to the present method, even if the 

return map is represented by a symplectic integrator rather than by an explicit 

formula. Nonperturbative solutions of the generalized Moser equation would be 

interesting, but have not yet been attempted for d = 2. That equation allows, in 

principle, a better control of small divisors. In practice it gives a transformation 

that is not precisely canonical, however, since the transformation is obtained in 

explicit form rather than in the implicit form determined by a generating function. 

When the map is given as a power series, the perturbative calculation of in- 

variants of the return map may be cast in the language of Birkhoff normal forms, 

leading to a recursive algorithm that allows a practical generation of the perturba- 

tive series to rather high order.28’2g In applications to accelerators this approach 
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has been much aided by a new method to compute the Taylor coefficients of the 

map, 22’28 given a symplectic integrator for the accelerator model at hand. The 

method uses automatic differentiation (“differential algebra”) to generate deriva- 

tives of the map defined by the integrator, to machine precision. 

-. 

._ 

A drawback in principle for this type of perturbation theory is that it aspires to 

compute an invariant function defined globally on phase space, rather than a single 

invariant surface. No such function exists in an exact sense, and the formal series 

for the function diverges. The series has an asymptotic character at best. Indeed, in 

practice one finds that computed invariants improve in quality initially, but finally 

deteriorate as the order of the calculation is increased. Since Moser’s method 

aspires to find only an isolated invariant surface, on which invariant functions can 

be defined, it avoids this limitation in principle. 

A more direct way to find a globally defined and approximately invariant func- 

tion is to solve the defining equation of the function in a least-squares sense. If 

z = (q, p) is a point in phase space, an invariant function K of the return map 

M is one such that K(z) = K(M(z)). In Ref. 30, this equation was solved in 

a least-squares sense on a finite mesh in z-space, with I< represented as a linear 

combination of monomials in the components of z. For an example in 1 l/2 de- 

grees of freedom, the Henon map, it was found that curves around the origin and 

a fifth-order island chain could both be described by the same function. 

Turning next to the single orbit approach, we consider the problem of deter- 

mining a surface so that it passes through a subset of points on a single orbit of 

the return map. As in the case of functional equations, the fitting algorithm will 

depend on the choice of parametrization of the torus. Suppose that the torus is 
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parametrized as in Eqn. (8), so that the “curve parameter” is the unperturbed 

angle a. Then the problem can be stated as one of fitting a function I(@), repre- 

sented as a finite Fourier series, to orbit points (I(s),+(s)), s = 0 (mod C). An 

efficient method to perform such a fit was described in Ref. 31. When applied to 

the problem of Section V, at amplitudes Ji close to those of Case D in Table IV, 

the method produces an invariant torus with all modes such that lmil 5 Mi = 30 

in 2 minutes on the IBM 3090, versus 2 hours for the calculation of Table IV. More- 

over, the calculation is much more accurate, since fewer modes were discarded; it 

gives 61 M 2 x 10-7, 62 M 2 x 10s6. The fitted orbit was calculated by the same 

symplectic integrator used in Section V. A further saving in time might be attained 

by using an explicit formula for the map, rather than the integrator. 

Since the Hamilton-Jacobi method seems uneconomical in comparison to sur- 

face fitting, is there any reason to consider it further for practical computations? 

There could very well be a reason, if the method of integrating the Hamilton-Jacobi 

equation with respect to s could be made more efficient. Our primary interest in 

this paper was to show that the shooting method for s-periodicity is convergent and 

workable. We gave little attention to making the s-integration efficient, and in fact 

used a method that was familiar from earlier work but probably far from optimal. 

It involves making a d-dimensional Fourier transform and also an inverse Fourier 

transform, for every evaluation of the right-hand side of the ordinary differential 

equation (23); i.e., four such transform pairs for every Runge-Kutta step. These 

myriad transforms might be avoided by using values of G on a mesh, rather than 

its Fourier coefficients, as unknowns. One has to enforce periodicity in $, but that 

might be done by using periodic B-splines to interpolate the function values. A 
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point in favor of the Hamilton- Jacobi shooting method is that it seems to have a 

bigger region of convergence than the analogous algorithm based on the functional 

27 equation. 

If the invariant surface is parametrized by the new angle !P, conjugate to the 

constant action J, then the surface to be fitted to orbit data at constant J is given 

by two finite Fourier series, 

q(V!,J) = C q,(J)eim’* , p(XP, J) = C pm(J)eim’* . 
mES mES 

(52) 

Here (q, p) are globally defined phase-space coordinates; they could be Cartesian 

coordinates or angle-action variables of the underlying linear system; their values 

along orbits should be given directly by the return map. On a non-resonant orbit 

we should have Q(&) = 2run, n = 0, 1, . . ., for some tune u that has to be de- 

termined. Substituting this on the right-hand side of Eqn. (52), and orbit points 

MnCL F&L n = O,l,. . .) on the left-h an d ‘d si e, we get a set of equations to 

determine v and the Fourier coefficients (qm, pm). Because Y is initially unknown 

this is not a standard problem in Fourier analysis, backed up by a sound math- 

32 ematical theory. Nevertheless, authors working in molecular dynamics, plasma 

t heoryf3 and celestial mechanics34 have dealt with a similar problem in an heuris- 

tic way, by an adroit use of windowing functions with discrete Fourier transforms. 

It is not clear that the methods used to date are accurate and efficient enough for 

our purposes, especially for s-periodic perturbations in d = 2, but the problem 

would seem to deserve further investigation. The examples given in Refs. 32, 33, 

34 are for autonomous systems with d < 2, thus considerably less difficult than 

our nonautonomous case with d = 2. 
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As is emphasized in Ref. 32, orbits close to resonances (within islands, in case 

d = 1) may lie on invariant surfaces that can be parametrized as in Eqn. (52), 

always with the same choice of (q, p). By contrast, the representation (8) is useful 

only for surfaces that “surround the origin”, i.e., that can be deformed continuously 

into surfaces I=constant, 9 E [0, 27rld. T o t reat surfaces associated with resonances 

by our methods, one has to make a preliminary change of coordinates, and some 

dynamical information is required to choose those coordinates. Moreover, in the 

Poincark framework, one may be seeking invariant surfaces of higher powers of the 

return map, rather than of the map itself. 

The foregoing brief review, which is far from comprehensive, should give the 

impression that the question of how best to compute invariant surfaces is not a 

closed subject, particularly when the surfaces in question do not surround the 

origin. The present study adds a new entry to the list of possible techniques for 

studying this long standing problem. 
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APPENDIX I. CONVERGENCE OF THE SHOOTING METHOD 

In this appendix we discuss the convergence properties of the shooting algo- 

rithm, as realized by solving the fixed point problem (29) through simple iteration. 

We show that under certain restrictions the iteration is governed by the contrac- 

tion mapping theorem 35. It follows that there exists a unique fixed point of A in 

a certain metric space. The argument is valid only when the set of Fourier modes 

of the generating function is finite, and includes no resonant mode. 

Recall that the fixed point problem, ho = A(ho), has the following form ex- 

pressed in terms of vector components labeled by the mode index m: 

c 
ho(m) = ’ e2rim.V _ 1 

J 
dsf(m, h(s; ho), 4 , 

0 

(53) 

where the.function f is defined by. 

f(m, &; ho), s) = 

-eim’x(s) j?[ $1 e-im’*+, J + c inhcn, s; ho)ein’(=+)), s> (54) , 

n 

and h(m, s; ho) is the solution of the following differential equation with initial 

condition ho: 

dh(mi:’ ho) = f(m, h(s; ho), s) . (55) 

To indicate that a function depends on an entire vector having components labeled 

by the mode index, we suppress reference to the index. 
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A. Model Problem 

For the discussion of contractive properties, we consider an analogous problem 

with a complex ho that has only a single component (mode). We thereby simplify 

the notation without losing any essential features. A later generalization to cover 

the full system with many modes will be immediate. The equations for the model 

._ fixed point problem take the form 

ho = $7 dsf (h(s; ho),s) , (56) 
0 

g(s; ho) = f(&; ho),s) . (57) 

with h(0; ho) = ho. The dependence of the solution of the differential equation on 

the initial condition is displayed explicitly. The small divisor is represented by D 

and is analogous to the divisor, exp(2@m * Y) - 1, that appears in Eqn. (53). 

The contraction mapping theorem, which will be applied at two different levels 

to solve this problem, is as follows. Suppose that an operator F maps a complete 

metric space S into itself, and is contractive on S. Then there exists a unique fixed 

point z = F(z) in S. Moreover, x may be computed by iteration, x(P+l) = F(x(P)), 

where x(O) is any element of S. The contraction condition is that 

d(F(xl),I+$) I +wx2) , (58) 

for all z1,x2 E S and a fixed CY E (0,l). H ere d(xl, x2) is the distance between 

x1 and x2 in the metric of S, and the iteration converges to the solution x in the 

sense d(x(P),x) = O(aP). 

-~._. .* 
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We suppose that the complex function f(h, s) is piecewise-continuous as a 

function of s on [O,C], and is bounded and Lipschitz-continuous as a function of 

y , as follows: 

If(Y,S)l Go , 

MY174 - f(Y2,S)I <fl IYl - y2I , 

._ 
Id9 Id, lval <r , s E [W] . (59) 

The positive constants r, fo, fi will be restricted to meet the requirements of the 

proof. 

-B. Solution of the Differential Equation 

We first discuss existence and uniqueness of solutions to the differential equa- 

tion (57), and estimate the dependence of a solution on the initial condition. 

We work with the equivalent integral ‘equation. After the substitution Z(S) = 

h(s; ho) - ho it has the form 

5(s) = s dT+(g) + ho,a) , 
J 

(60) 
0 

or 5 = F(z) with the integral operator F defined by the right hand side of (60). 

For analysis of (60) by th e contraction mapping principle, the complete met- 

ric space S will be a ball I/X]] < rl in the Banach space of all continuous com- 

plex functions z(s) on [O,C] with norm ]]z]] = SUP,~[~,C] ]x(s)]; the distance is 

+1,x2) = II 21 - 2211. Suppose that ]ho] < ro. Then F will take S into itself if 

.* 
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. 
(ii) Cfo < 7-l (61) 

Here C is the sum of the lengths of intervals within [0, C] on which f(y, s) is non- 

zero. (Recall that in the accelerator problem, the analogous function is non-zero 

-~ only over the extent of sextupoles, so that C is much less than C itself). Conditions 

(61) are evidently sufficient, since 

Ix(s)1 I J s da IfW~ + ho, a>l 

5 i sup If(+) + ho,4 
@WI 

I&o , (62) 

if [z(s) + ho] < r, whereas Is(s) + ho] I IX(S)] + Iho] < rl + To. 

To show that F is contractive on S,, assume that ]]z1 I], ]]22]] < rl and note that 

if lz;(fl)+hol < r, which is implied by (61). Th e contraction condition is guaranteed 

by adding the condition 

(iii) Cf, < 1 (64) 

For later account of the boundary condition, we have to know how the solution 

of the differential equation depends on the initial condition ho. Suppose that 
_. .I 
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Iho; < ro and Iz(s; ho;)1 < rr,i = 1,2 and form the difference 

qs; hod - &; ho2) = ho1 - ho2 + ' da[f(+; hol),4 - f(+; h02), a)] 
J 

. (65) 

0 

Since Ih(o; hoi) I < r we have 

.- I+; ho1) - h(s; h02)I L Iho1 - ho21 + j&sup Ih(a; hfJl) - h(0; ho2)l 
) (66) 

u 

thus 

IIW; hOI) - h(.; hl32)ll 5 I”,“’ iI;’ , - (67) 

in view of Eq.(64). 

C. Solution of the Fixed Point Problem 

Having learned enough about solutions of the differential equation, we can now 

apply the contraction mapping principle to solve the one-dimensional fixed point 

problem (56) for the initial condition ho that meets the boundary condition. Here 

the complete metric space S is a disk in the complex plane, all complex numbers 

z with IzI < ro. We assume the conditions (i), (ii), (ii;) derived above, so that 

the solution of the differential equation satisfies Ir(s; ho)1 < rr with lhol < ro, and 

condition (67). 

If jhol < ro, then 

(68) 



which is to say that A maps S into itself provided that 

. 

(4 IDI cfo < to (69) 

Finally we verify the contraction condition, with the help of (67). Supposing 

.- 
that Iholl, [ho21 < rg we have 

IA(hol) - A(ho2)l I &, J4f(+; ho&) - f(+; h02),4 

0 

I flfi 
IDI SUP I&; ho1) - qs; h02)l 

9 

<fit 1 
- ml _ flC lh - ho21 

The operator is contractive if the coefficient of lhol - ho21 is less than one, or 

a1 
@) IDI < 

1 

1+ PI 

(70) 

(71) 

To summarize, under the conditions on f stated in Subsection A there is a 

unique solution of our problem with ~~cc~~ < rl and IhoJ < rg provided t’hat condi- 

tions (i) through (v) hold. If f(y, ) s contains an adjustable multiplicative constant, 

like the sextupole strength in the example of Section V, then the constant can be 

adjusted to make fo and fi so small as to satisfy all the conditions (i) - (v). 
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D. The Original Problem 

The original problem defined by (53) and (54) can be treated in close analogy to 

the model problem. Now f is a vector, with components labeled by the mode index 

m, and has a vector argument with similarly labeled components. Boundedness 

and continuity conditions are as follows: 

- 

Ifb-4Y,S)I <fo , 

If~m,iw) - fbw2,s)I <filly1 - ~211 , 

mEM , IIYIL IML lb211 <r , s E [O, C] . (72) 

The norms for the extended spaces are defined in the obvious way, 

IIYII = SUP IYGWN 7 ll~oll = SUP Ihob-4 * (73) m,s m  

It is now easy to check that all the steps of the proof for the model problem 

go through for the full problem under conditions (72), if one merely takes the 

supremum over m as well as s, whenever a norm is to be estimated. We of course 

require that there be no resonant modes within the finite set of modes allowed, 

and define ID ( as the minimum value of the small divisor: 

le 2rim.Y -ll>lDl . (74) 

To complete the argument, we have to find conditions on the Hamiltonian 

perturbation V such that requirements (72) will be met. We assume that V(Q, J, s) 

iscontinuous in & E [0,27r], piecewise continuous in s E [0, C], and has a continuous 

., .__ . . 
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derivative with respect to J in a region to be specified presently. Sums on mode 

numbers m run over the set M U h?l; let n/ be the number of elements in this set, 

and M the largest value of lrnjl for elements of the set. Then 

sup C imjy(m, s)e im-(+-x(s)) 5 Mn/llyII , 
*,s m 

(75) 

- 
and by (54) the first inequality of (72) will hold if 

sup (V(+, J + K,s)l < fo , II(jl < MNr . (76) 
9,s 

By the mean value theorem, 

If(m,~l,s) - f(m,~2,4I 

LsupIV(~,J+Kl,s)-V(~,J+Kz,s)l 
*,s 

s ;uKpsc 9 , i 
IvJ,(@, J + K,s)/ IKlj - Ic2jI 7 (77) 

where 

I(,j = C imjYp(m, s>e im.(*-X(s)) 
7 (78) 

m 

and the supremum with respect to K is over IICj I 5 max[lI(rj(, Iri;jl] 5 MNr. 

Since IKlj - -fczjI 5 MNllyl -y2//, we verify the second inequality of (72) if 

(79) 

where d is the number of degrees of freedom. 
-,... .* 
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Thus, apart from reasonable conditions of continuity, our main sufficient con- 

ditions for the shooting method to succeed are that V and dV/dJ be sufficiently 

small. Of course, the conditions we have derived are very far from necessary, being 

based on pessimistic upper bounds. The point of the above discussion is to show 

that the shooting algorithm has a solid theoretical basis, at least under favorable 

circumstances. 
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Figure Captions 

FIG. 1. The 11/1r, surface for linear coupling with strength I? = 0.65 rnm2. 

-. 
FIG. 2. The I /I 2 2,, surface for linear coupling with strength l? = 0.65 rns2. 

-- FIG. 3. The normalized tuneshifts Av, HJ/K as a function of the normalized 

quadrupole strength. The dotted line is the analytic result, and the (x) mark data 

from numerical solution of the Hamilton-Jacobi equation. 

HJ FIG. 4. The normalized tuneshifts Au2 / I< as a function of the normalized 

quadrupole strength. The dotted line is the analytic result, and the (x) mark data 

from numerical solution of the Hamilton-Jacobi equation. 

FIG. 5. Initial actions I(@ = 0,s = 0) of trajectories stable (e) and unstable 

(*) after tracking for 5000 turns in the ALS cell. The points A through D mark 

two-dimensional solutions that are discussed in some detail in the text. 

FIG; 6. Approximate one-dimensional invariant curves 1r(@l, J1,O) found from 

the numerical solution of the Hamilton-Jacobi equation. The angle variable is 

normalized by 27r. See TABLE III and text for details. 

FIG. 7. Contours of constant nonlinear tune shift 1000 . Av~. Points where 

numerical solutions were found and used in the global fit are marked with x. 

FIG. 8. Contours of constant nonlinear tune shift 1000 . Av2. Points where 

ntimerical solutions were found and used in the global fit are marked with x. 
-, ,e 
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FIG. 9. The Ir(@, J,O)/Jl p ro’ec ion of the invariant surface for J1 = J2 = J t 

2. lo-’ m. This corresponds to A in FIG. 5 and in TABLE IV. 

FIG. 10. The 12(@, J,O)/Jz projection of the invariant surface for J1 = J2 = 

2 . lo-’ m. This corresponds to A in FIG. 5 and in TABLE IV. 
-. 

-- FIG. 11. The 1r(9, J,O)/Jl projection of the invariant surface for J1 = 52 = 

4 . 10m6 m. This corresponds to B in FIG. 5 and in TABLE IV. 

FIG. 12. The 12(Q, J,O)/J2 projection of the invariant surface for J1 = 52 = 

4. low6 m. This corresponds to B in FIG. 5 and in TABLE IV. 

FIG. 13. Modulus of Fourier amplitudes of one-dimensional surfaces shown in 

FIG. 6 with J1 = 2 . 10S5 m, case c. Notice the fast decrease of the Fourier 

amplitudes with mode number typical of good solutions. 

FIG. 14. Modulus of Fourier amplitudes of one-dimensional surfaces shown in 

FIG. 6 with J1 = 2 - 10S6 m, case b. 

FIG. 15. Decrease of the Fourier amplitudes with mode number for J1 = J2 = 

2.10W7 m-case A of TABLE IV. The figure shows values of log(lmlhl/dJf + J,“), 

indicated by crosses, plotted versus alrnll + blm2l with a = 0.396 and b = 0.485. 

The constants a and b were determined by a least squares fit to the function 

log C - ajrn~l - blm21, which is plotted as a dashed line. 
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FIG. 16. Decrease of the Fourier amplitudes with mode number for 51 = J2 = 

2.10S7 m-case A of TABLE IV. The figure shows values of log(lm2hl/~~), 

indicated by crosses, plotted versus aIrnIl + blrn21 with a = 0.493 and b = 0.438. 

The constants a and b were determined by a least squares fit to the function 

-. 1ogC - alrnll - blrn21, which is plotted as a dashed line. 

- FIG. 17. Decrease of the Fourier amplitudes with mode number for J1 = J2 = 

4~10~~ m-case B of TABLE IV. The figure shows values of log(lm1hl/~~), 

indicated by crosses, plotted versus alrnl\ + b/m21 with a = 0.0456 and b = 0.154. 

The constants a and b were determined by a least-squares fit to the function log C- 

aImI I + blrnal, which is plotted as a dashed line. 

FIG. 18. Decrease of the Fourier amplitudes with mode number for J1 = J2 = 

4 * 10v6 m-case B of TABLE IV. The figure shows values of log( jm2 h//,/m), 

indicated’by crosses, plotted versus altill + blm21 with a = 0.107 and b = 0.0999. 

The constants a and b were determined by a least-squares fit to the function log C- 

alrnll + blm21, which is plotted as a dashed line. 

60 



Fig. 1 

.- 

.- 



I 

- 

.- 

7133A2 

Fig. 2 

.- 

.- 



x 
’ 0.0297 4 

2 

2 
2, 0.0296 

2 0.0295 

a 

: 0.0294 
;= 

$ 
k 
c 0.0293 *III! I I 11,111 I I I11111 1 I111111 I 1 I,,,,, I III 

10-5 10-4 10-3 10-2 10-l 

quadrupole strength, K (mB2) 7133A3 

Fig. 3 



. . . . _ .x............x............x............x, 
. . . . 

. 

X 

is 

quadrupole strength, K (mm”> 1133A4 

Fig. 4 



g 1.0 ’ .d 4 . . 
ii 

1 

. . 
2 ‘0.5 .d G Y .r( . . 

3x 

2’1 ,I\ 

. 

. 

. 

. 

. 

I 

x ,,\ 

\,I 
hi 

YL ,a\ 

f;f 

3’: ,,\ 

x ,,\ 

. 

. 

. 

. 

. 

I I I I I I I I I I I I I I I I II 

0 0.5 1 1.5 2 

initial action, Ilo (lo+ m) 
7 133A5 

Fig. 5 



I 

10-7 

c, J, = 2-10m5 m 

- 

b, J, = 2-10m6 m 

a, J, = 240-’ m 
I I I I I I I I I I I I I I I 1 I 1 I I 

0 0.2 0.4 0.6 0.8 1 

angle, @ , /2n 7133AEi 

Fig. 6 



6.00 T 

t 

-11.00 

-1.00 -3.00 -5.00 -7.00 

I 
0.00 2.00 4.00 

constant action, J, (1 OT6 m) 

-9.00 

0.001 

5.00 

7133A10 

Fig. 7 



E 
W 

I 
0 
H 
V 

6.00 

-7.00 

-5.00 

-3:oo 

- 1.00 

L 
-1.00 -3.00 

t I 0.00 2.00 4.00 6.00 

constant action, J, ( 10v6 m) 
7133A17 

-11.00 

-9.00 

-7.00 

-5.00 

Fig. 8 



7133A7 

Fig. 9 



I 

t Ir 

7133A8 

Fig. 70 



7133A9 

Fig.11 



1 /J 2 2 

7133AlO 

Fig. 12 



I 

10-l 

10-2 

10-3 

1d-4 

10-5 

20 40 

J,=Z.O .10v5 m, mode m, 
60 

7133A11 

Fig. 73 



10-3 

10-6 

10-g 

10-12 

0 

r 

10 20 

J,=2.0 10m6 m, mode m, 7133A12 

30 

Fig. 14 



+ \ ’ \+ \ + +++ ‘+ \ + \ \ + 
3 5 

mode combination (a,b)-(m,,m,) 
J,, J, = 2.0 10B7 m 7133A14 

Fig. 15 



- 
5 - 
2 
0 
II 
rn 

z 

ET - 

10-2 

10-3 

10-4 

10-5 

10-6 

P”l”“l ““l”“l”“l ““i 

k + \ \ 

I 

\ \ +’ + + \ \ ’ *+ + \ \+ +‘+\ + + ‘,+ + 
+‘d + + \+ + + + 3 + + \ ‘++ , +‘, + + ( 

10-7 r 
T \+ + + 

+ ++ +’ \ \ 
+ \ - \- 

10-8 rl ’ ’ ’ 1 ’ ’ ’ ’ 1 ’ ’ ’ ’ 1 ’ ’ ’ ’ 1 ’ ’ ’ ’ 1 ’ ’ ’ l+ 
0 1 ? 3 4 5 

mode combination (a,b)-(m,,m,) 

J,, J, = 2.0 1OB7 m 7133Al3 

Fig. 16 

, * 



10-l 

10-2 

10-3 

10-4 

10-5 

10-6 

10-7 

c ‘+ “‘.+++ ++ +++*+ 
++T ‘+ :+ +;yyz $I-++ +2++ + 
+$: + +t ++ ++ $ I&\ ++++ 7 + + +k \+ + + + +++ + +++ +z++\ .+ ++ . . \Y + -s 

+ + 
+ 

I 1 I I I I 1 1 I I I 1 I I I 7 
0 1 2 3 

mode combination (a,b)-(mI,m2) 

J,, J, = 4.0 10B6 m 7133~16 

Fig. 17 



I  
. . -_ .  

- 
cl, 
\ 
= . 
0  
II V I 

z 

E ” 

10- l  

10 -2  

10 -3  

10 -4  

W -5 

10 -6  

10 -7  

+  +  :c,= kt+ +  + + p +  + + +  +  + J- + + i 
i# +  +  + + +  

+  + + +  -IF +  ,+  4 + + +  + +  +  z+ + +  + + +  +  .+ $  + +  -+ + .% + + + +  +  
+ 4  + +  $  + +  + ‘ + +  *..g +  + + +  -t? t+  

$ +  : -i 
+  +  I. 

m o d e  c o m b in a tio n  (a ,b ) - (m, ,m ,) 

J,, J, =  4 .0  lo -” m  7 1 3 3 A 1 5  

Fig . 1 8  


