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1 INTRODUCTION 

The interaction of a beam with the beam environment in accelerators is usually de- 
scribed in terms of the coupling impedances. There is a vast literature dedicated to 
the impedance calculations and their properties, see for example [l]. Most quanta- 
tive results have been obtained using numeric codes [2]. Analytical results in most 
cases are limited to derivation of integral equations which have to be solved numeri- 
cally; Kirchhoff’s equations [3] are sn example of such equations. Although integral 
equations for an impedance may be useful for studing its general properties, the 

- numeric solution of the integral equations is hardly justifkd, since numerical codes 
based on the direct solution of Maxwell equations with appropriate boundary con- 
ditions already exist and have proved to be very successful. 

However, the estimates based on the integral equations may be extended to give 
explicit analytic results for structures of rather general form, especially in the high- 
frequency limit. This approach-being complimentary to numerical calculations- 
may be very fruitful for modern accelerators, where bunches me short compared to 
the beam pipe radius (or, in other words, the frequency content extends well above 
the beam pipe cut-off frequency). At high frequencies, it is possible to formulate a 
perturbation theory based on Kirchhoff’s equations, analogous to the Born series 
in the scattering theory. Essentially, a perturbation theory of this kind was used 

l Work ru~Ported by Department of Energy an&act DE-ACOS-76SFCO515. 
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2 S. HEIFETS 

in the time domain by Novokhatsky [4] in 1988 for derivation of the impedances 
of a step in a beam pipe, and of a pillbox cavity with attached pipes. The author 
[S] used a perturbation theory in 1989 for more general structures in the frequency 
domain. The present paper is a revised version of an unpublished talk given at a 
KEK, Japan workshop in September 1990. The perturbative method is described 
in a systematic way, and is applied to study more cases-particularly, to study 
the impedance of a taper. A axial symmetry is implied in most cases, unless it is 
stated otherwise, although the method also may be applied to study impedances of 
structures without axial symmetry. 

The most difficult problem is formulation of a criterion of applicability of the 
method. The rough estimate of the parameter of expansion can be obtained by 
comparing sequential terms of the perturbation series, as it is usually done for 
Born’s series. It is naturally to expect that for small loss parameters, the parameter 
of expansion is small. However, even a small parameter of expansion does not 
guarantee that Born’s series are convergent (usually, they are not). We choose, 
therefore, another approach, comparing results of the method with numerical and 
analytical results known previously, and judging applicability by this comparison. 

This paper is organized in the following way. In the beginning, we review the 
basic definitions. The idea of the method then is demonstrated, using a simple ex- 
ample from electrostatics for which the answer is well known. This method then re- 
produces Bethe’s result [S] f or a field distorted by a hole in a conductive plane. The 
method is extended to electrodynamics, using Kirchhoff’s integral equations, and 
applied to get Kurennoy’s results [7] for the longitudinal and transverse impedances 
of a hole in a straight pipe. In the next section the general expressions for the 
longitudinal and transverse impedances are derived, Eqs. (65, 72), in the lowest 
nontrivial iteration for a axially symmetric beam pipe with arbitrary variation of 
-the radius. These formulas are used for particular geometries: a shallow cavity, a 
pill-box cavity with attached tubes, an array of such cavities, an abrupt variation 
of the pipe radius, a colliiator, and a taper. This is followed by examples for the 
transverse impedance. The results are summarised in the conclusion. 

2 BASIC DEFINITIONS 

In the ultra-relativistic case, particles interact only through the EM fields excited 
in accelerating structures. The interaction may be described in terms of the wake 
fields in the time domain, or in terms of their Fourier components in the frequency 
domain. The longitudinal wake function W,(s) is related to the energy loss AE of 
a particle with the charge e, following a point-like bunch with the charge q at the 
distance 6 > 0 

AE= -eqWl(s) = e 
J 

dr E’ [z,r,t = (z + 6)/u] , (1) 



BROADBAND IMPEDANCE CALCULATIONS 3 

where Ez is the longitudinal component of the electric field of the leading bun&The 
longitudinal impedance then is defined as the synchronous harmonic of E,: 

G(k) = -We)/ dzE:(z, r) exp{-ikr/P} 

WI(s) = 
J 

(h/274 ZI(~) ew{-WPI - (2) 

The loss factor is given by the convolution of the Fourier component of the bunch 
density with the wake Wr(s). For a Gaussian bunch, the loss factor is 

k, = 2 
/ 

OQ dk exp{-k2a2} Re(Zr(k)/Zo) , (3) 
-CO 

where ZO = 4r/c = 377 Sz and u is the rrns bunch length. 
The transverse wake potential Wl(s) is related to the transverse momentum 

APL = eqroW~(s) experienced by the trailing particle, due to the field excited by 
the leading bunch moving parallel to the z-axes with the offset rg. The transverse 
impedance Z*(k) is proportional to the synchronous harmonic of the transverse 
force and is a frequency harmonic of the transverse wake WL(S): 

Zl(k) = - (i/v-o) /m dz exp{-ikr/P} [I-% + (C/c) x &]I , 
-co 

W*(s) = i 
J 

(dw/27r) Zl(k) exp{-its//?} . (4 

-According to Panofsky-Wenzel theorem, ZA is related to the longitudinal 
impedance: 

kZ1 = (l/ro) (aZ,/&) . (5) 

This follows from the Maxwell equation 9 x I? = ikl? and definitions (2’4). 
Note also the following analytic properties of the impedance: 

Zl(-k’) = Z;(k) , Zl(-k’) = -Z;(k) . 

Therefore, the problem of impedance calculations is reduced to the problem of 
defining EM fields excited by a bunch in an accelerating structure. 

The current density of a particle in free space with a charge e moving parallel to 
the z-axis, with offset rg in the direction of the z-axis, has Fourier components 

;$ = J dt exp(iwt) ip = ei a(~$) [6(r - ro)/r] exp(ikzlP) . (6) 
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Here f is a unit vector along the r-axis,and azimuthal angle 4 = 0 on the z-axis. 
This current produces EM fields given in terms of the potential rPW: 

Hz = 0, Hb = ik(&h,/ar) , I& = -(ik/r) (&L/%), (7) 

where k = w/c and, for r > rc, the potential is 

4” = -(2ie/kc) exp{ikz//?} xexp(im4) 

x {&oh &r/27) - [(I- b0)/2lm0 (a/rd”‘l} . (8) 

The EM field of an ultrarelativistic particle moving inside a straight, circular, cylin- 
drical beam pipe with an ideally conductive wall is given by Eq. (7)’ where 

h&J = (2ie/kc) exp{ikr/P} ~exp{im$) 

x {ho ln(a/r) + [(l - 6,0)/2jml] [(rO/r)lml - (rr0/a2)lml]} . (9) 

The field is zero outside the pipe and in the walls. 
The field in the pipe for the monopole mode m = 0, 

E, = (2e/Pcr) exp{ikz/P} , H+ = P-C , (10) 

is, with accuracy o(lr2), the same as the field of a particle in free space. Therefore, 
jn the Jimit 7 -+ 00 there is no interaction of a particle with the beam pipe and 
the impedances are zero. For the longitudinal impedance it follows also from the 
fact that the radial component of the Pointing vector in this case is zero. For the 
dipole mode Irnl = 1 the field in the pipe is 

Ez = Hz , 

E+ = -H, = El sin($) [l - (r2/a2)] , 

E, = H+ = El c-(4) [l + (r2/a2)1 , 

(11) 

where 

El = (2ero/cr2) exp{ikr/P} , (12) 

giving zero transverse impedance, because the electric and magnetic components of 
the Lorenz force cancel each other with (l/7)2 accuracy. 

This is not the case when the beam pipe geometry varies with Z. In the following 
we discuss a method to calculate impedances for rather general variation of the 
beam pipe cross-section. For simplicity, however, we assume axial symmetry, but 
leave the beam pipe radius a(t) an arbitrary function of z. 
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3 ILLUSTRATION: THE METHOD IN THE ELECTROSTATIC 

The problem of calculating EM fields excited by a bunch in an accelerating structure 
of arbitrary shape is rather complicated. However, the fields are usually small 
compared to the field of the bunch. It is naturally to look for a perturbation 
method that will allow calculation of the induced field by iteration. 

Let us start with au example that illustrates this approach. Consider a well known 
electrostatic problem: find the field of a point-like charge e placed at distance z = a 
from an ideal conducting z, y plane. The field potential for t > 0 is a superposition 
of the potential duct of a charge in free space, 

q&(f,z) = e/[(z -a)’ + f2]1/z , 2 = x2 + y” , 

and the potential of the image charge -e at z = -a: 

(13) 

4o(r, 2) = {e/[(z - a)2 + r2]1/2) - {e/[(z + a)2 + r2]li2} . (14) 

This result may be obtained using Green theorem [3], which defines the field within 
a volume in terms of the field on the surface encompassing the volume: 

qqfi) = &t (I?) + /(d9/4*) [G(I?, @ ) e t@‘) - @ ) V’ G(z, &] . (15) 

The first term here, c&t, is the field of a charge within the-volume if_there is any. 
The Green function of the Laplace equation is simply G(R, R’) = l/](R- $)I. The 
surface element dS = rids, where n’ is a unit normal vector pointed to the outside 
of the volume. The vector R’ = (2, F’), where the 2-D,tangential r’ is orthogonal to 

.n’. Derivatives on the surface are,understood as the limit value of the derivatives 
calculated at the inside the volume. 

The boundary condition on the conductive wall is 4 = 0. Choose the surface 
of integration on the metallic boundaries, and the last term in (15) vanishes. The 
remaining integral may be interpreted as t_he field of the induced surface charge, 
with the surface density proportional to 974 taken on the surface z = 0. 

Solve (15) by iterations: d = d(O) + &) + . . . . In the zeros approximation, 
f$(O) = (b-t. In the nth approximation 

l$‘“‘(E) = 
I 

(dS’/4*) &&‘-‘) (F,O) , n= 1,2,... ) (16) 

starting with rj(O) = r#~=*~. The integral for n = 1 can be calculated easily using the 
integral representation of the Green function: 

G(8) = [4~/(2~r)~)/(df,,q~) exp{irj’l?} . (17) 

This gives 
cp’(d) = -(l/2) e/[(z + a)2 + f2]li2 . (18) 
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In the next iteration, 

p(d) = -C1/2) 6) , 

and so forth. 
The series converges 

fm = A&) - e/[(z + a)2 + r2J112 [(l/2) + (1/2)2 + (l/2)’ - - .] , 

giving the correct answer, (14). 

(19) 

Note that although the final result satisfies the boundary condition, the result 
of any finite number of iterations does not. Hence, the solution of the Laplace 
equation is exact for each iteration, but the boundary conditions are satisfied only 
approximately. 

The same method applied to a magnetostatic problem displays similar properties: 
the series converge giving the right answer. Here, also, boundary conditions for any 
finite number of iterations are satisfied only approximately. 

Let us make the problem a little more complex by adding a small round hole with 
radius b in the conducting plane. Both the the center of the hole and the charge 
areatz=y= 0. The field is described by the potential 0, 

a = 90+4, for z>o, 

@  $9 = for r<O, 

where &I is the solution of the problem without the hole given by (14) for I > 0, 
and ~$0 E 0 for z < 0. The functions d, rl, are to be found by perturbations. 

With the surface of integration in the plane z = 0, Green theorem takes the form 

om = - 
J 

(dS’/4?r) [G(I?, k) (&@‘)/tW)]z~=~ 

- (a/&) Jh(d?/4r) [G(I?, k) qi(?, z’)]zr=o . (20) 

$(if) = j(dg/4r) G&l?‘) (&@?‘)/dz’) + (6’/dz) jh(dp/rla) G(l?J?) 4 . 

(21) 
The last integrals in (20,21) are over the opening of the hole where, generally, Q # 0. 
These integrals can be considered as perturbation. The equations are homogeneous 
and have the trivial solution d = (1, = 0. H owever, this solution is not acceptable, 
because it does not satisfy continuity of the derivative %laz at the opening. 

The conditions of continuity on the hole are 

tl= 4, (hm) = (Wo/Oz) + @?m) . 

The solution of Eqs. (20,21) is given by series 

(22) 

(23) 
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The series for t$ and 11, are bootstraped by conditions (22) in such a way that $,, 
are driven by the derivatives &&.,/a~ and &,, are driven by $,, at the hole. The first 
order n = 1 correction is 

til(@ = 
/ 

(ds’/4?r) G(l?, if’) [8&#‘)/&‘] , 
h 

Ol@) = -(WW &p/44 W’) G@, 2) , 

and for n 2 2, 

(24) 

v&(d) = / (&I*) {G(i?i, 2) [&&ii’)/6’z’] + $,x-1 (a/&) G(fi, I?)]) 
h 

+ 
J 

G(8, I?) [&bn-l(k)/c9~‘] , 
Au 

4n(@ = - J (dS’/4r) {G(E, 2) [W,&)/Oz'] - $,,(z') [6’G(l?, @)/iW]} 
h 

-I (dS’/4r) G(E, k) [6’t$n-l(l?‘)/c3z’j . (25) 

Here indexes (h) and (M) mean integration over the hole and the metallic surfaces, 
correspondingly. 

In the first approximation, we consider Eq. (24)) with $0 given by Eq. (14). For 
a small hole b < a, 

and 

E0(0) ‘= (&JO/~) It=0 = (2e/a2) , (26) 

tlrl(r,z) = (eVa2)/m(4/d JlW) J&r) exp{+Il - (27) 

Consider the first order correctioi 41 to the potential due to the hole for z > 0 at 
large distances R > b. Expanding G(x, I?‘), we obtain 

41(@ = (a/h) (eb/R) (O/as) 

X ] (dS’/rZ*a) [l + (r?/R2) + . . .I (dqlq) Jr(cIb) Jo(nr’) - 
h 

The term r?/R2 does not contribute. The rest of the integral is easy to calculate. 
Thii gives the field of an electric dipole d: 

41(@ = -W/R3) , d = (2/3~) (eb3/a2) , (28) 

which is exactly the Bethe [S] result d = Eob3/37r, where the unperturbed field EO 
at the opening is given by Eq. (26). 
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Note that the boundary condition for z < 0 is not satisfied and has to be corrected 
in the next approximation. 

4 KIRCHOFF’S EQUATION-IMPEDANCE OF A HOLE 

We use the same method of iteration to solve the exact integral equation of the 
electrodynamics. Kirchhoff’s integral equations [3] are the analog of the Green 
theorem considered above: 

(fi’i?)(f’Gk)+ ikG ) ( ii’ x “,I 

+ 1 dS’ [ii’(zd’)Gk - @??)G,] , 

Z(R) = da + /dS’ [i?(lf+‘)Gk - @ i’f’)G,] 

-J [ 
dS’ (ii+f)(eGk) + ik( ii’ X ,?)Gk] . (29) 

Here n’ is a unit vector normal to the surface pointed outside of the volume, Gk is 
the Green function of the wave equation 

(A + k2)G& k) = -a(2 - 2’) ; (30) 

.?&,ga are the fields excited by the beam, with the charge density p and current 
density-j within the volume in the‘consideration: 

l?* = 4r / dV’ [(dlGk)p + i(k/c) Gk;(@)] , 

Ha = dV’;x (?‘Gk) . (31) 

The Green function Gk (R) = exp{iCR)/(4xR) has the integral representation 

G&i?) = 
J 

{W[(2~)311 (exp{GI~ - ~)l)/(q2 + k2) j (33) 

or, in the cylindrical coordinates (r, 4, z) [18], 

G,(~,k) = (W) ~expGm(+ - 4’)) 1 &exp{ip(z - z’)) G&r, r’) , (33) 
m 

where 

f&Jr, r’) = J,,,(S2r) Hg)(Sb’) O(r’ - r) + J,,,(Rr’) H&S2r) 8(r - r’) . (34) 



I 

BROADBAND IMPEDANCE CALCULATIONS 9 

Here Ji, kg’ are the Bessel and the Hankel’s functions of the first kind, e(r) is 
the step function, and 

R = (k2 -py2, q-p) = R(p) ) n(4) = -Q*(k) . (35) 

Note that G,,,Jk) = G&,-,(-k’). 
To illustrate the perturbation method based on Kirchhoff’s equation, consider 

the impedance of a slot in a straight beam pipe. 
It is easy to see that the field that is given by Eq. (10) inside the pipe and is zero 

outside the pipe satisfies Kirchhoff’s equations (25). 
Consider now a straight pipe with a small slot in it. Similarly to what has been 

done in the electrostatic csse, we first calculate the field outside the pipe, due to 
the opening. In the first approximation, Eqs. (29) and (10) give the field outside of 
the pipe, r > a 

l?(Z) = -(2e/ca) $11 dS’ [&(d, @‘) exp{ikr’}] , 
h 

IqR’) = -(2e/ca) (2 x f) J dS’exp{iki} Gk(E, 2) , (36) 
h 

The integrals here are over the surface area of the opening. The perturbation of 
the field inside the beam pipe is then given by the last integrals in (29), which 
vanished in the straight pipe due to boundary conditions. Requiring the tangential 
component of the electric field and the normal component of the magnetic field 
at the opening to be continuous, we define them from Eqs. (36) and obtain, in 
particular, E, inside the pipe: 

E,(8) = (2e/ca) 1 dS’ ( [aGk(d, I?)/(%‘)] 
h 

X J h 
dS”(8/&“) Gt(l?‘, ti) exp{ikz”}),,=,,,=a . 

_ The longitudinal impedance is defined by Eqs. (2),(37): 

a(k) = - (2/c(z) J dr exp{-ilz} 1 dS’ ( [&k(i?, @/(&‘)I 

X 
/ 

dS” (a/&“) G,(ii’$“) exp(ikz”} . 
h > r’=c”=a 

The integral over dz can be calculated using (33): 

/ 
drexp{-ikz} Ga(i?, k) = 

(i/4) eq{-ikz’/P) xexP{im(d - 4’)) G,,k/@ . 
m 

(37) 

(33) 

(39) 
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For r’ > r, 

Gm,r/p(f, f’) = (Wd b,0 lMkr’l27) + cl 

+ [(l - L,~)/(~~l~l)l (r/r’)‘“’ - (40) 

where 6m,n = 1 for m = n and zero otherwise, and C = 0.5772 . . . . 
The longitudinal impedance is dominated by the contribution of the monopole 

m = 0 mode. For a slot with length L and width w = aA4, Eq. (38) gives 

dt’d4d4’ exp{-ikz’} 

x 
[ 
exp{ikt + ik [(z - P’)~ + A2]‘/2}/{[(r - ~‘1’ + A211i21] ;rsL12 , 

where A2 = 4a2 sin2[(4 - 4’)/2]. The integral over dr’ can be written in the form 

J L/2 
dr’ exp{ -ikr’} 

-L/.2 

L/2 
x 

[ 
exp{ikz + ik [(t - x/)2 + A21112) / [(z - 2’)’ + A2]1’2 1 z=-L,2 

L = 2i J [dx sin(kx)/(x2 + A2)li2] exp{ik(x2 + A2)li2) . 
0 

The integrand here is finite at x -, 0. Hence, for a narrow slot w < L, A can be 
omitted. This gives the imaginary part of the impedance 

ImZ,(k) = (~~/[(2z)~a~c]) 12kL (dx/x) sin(x) . 

If the slot is short kL < 1, then 

(41) 

Im&(k) = Z. { kLw2/[(27r)3 a”]} (42) 

reproduces the Kurennoy’s result [7]. 
The impedance increases with L for short slots kL Q: 1, and goes to a constant 

for kL w 1: 

ImZr(k) = {ZO~W~/[~(~K)~ a”]} . (43) 

This result may be wnfusing because the zero impedance may be expected for 
the infinitely long slot. It should be remembered, however, that result (43) implies 
that the slot is long but finite, so that the field outside the beam pipe is zero at 
infinity. 

Dependence of Z,(k) on the length of a slot is shown in Fig. 1. 
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FIGURE 1: Dependence of the longitudinal impedance of a slot on the slot length, 
the integral in Eq. (41) as a function of 2kL. 

The real part of the impedance describes energy losses, and is very small [8]. 
Calculation of the real part of the impedance requires the next iteration, because the 

_ energy loss is related to the radiation through the hole, which cannot be described 
by the field (36). Th ese calculations have to be corrected by the field of induced 
charges on the outer surface of the beam pipe, which can be obtained in the next 
approximation. 

Similarly, consider the longitudinal dipole impedance of a narrow w < a slot in a 
perfectly conductive pipe. Omitting intermediate calculations, we obtain from (5) 
the transverse impedance 

G(k) = {iw2/[(x)2kca4]} lkL (dx/x) sin(x) exp{ix) . 
Jo 

If EL *g: 1, the impedance does not depend on frequency [7j 

G(k) = i {2Z,W2L/[(2~)3U4]} . w 
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If the bunch is long u > L, the impedance for all frequencies within the bunch 
spectrum is described by this formula. The,wake potential (4) in this case is pro 
portional to 6(s), and describes a transverse kick. The wake function depends on s 
in the same way as the bunch charge density. 

5 LONGITUDINAL IMPEDANCE FOR A BEAM PIPE WITH ARBITRARY 
RADIUS VARIATION 

- If a volume is bounded by metallic walls, it is useful to perform the integration at 
these walls where the normal component of magnetic field and tangential wmpo 
nents of the electric field are zero. In what follows we consider impedances due to 
variation in the beam pipe radius with z. In this case, the last integralz in Eqs. (29) 
vanish due to the boundary conditions on the metallic walls. Kirchhoff’s equations 
take the form 

l?(Z) = & J [ dS’ (f?f)(d’Gk)+ikG ( kzxg)] , 

iql?) = &+dx 
J 

dS’(&! x 8) Gk . (45) 

Equation (45) can be solved by iteration. It is worth noting again that, as in the 
example from electrostatics, we iterate equations (45) where the exact boundary 
conditions are already imposed. If the equations were solved exactly, they would 
give the fields, satisfying the boundary conditions. However, the solution obtained 
with a finite number of iterations only approximately satisfies the boundary condi- 
tions. 

Equation (45) can be written in terms of surface charge density Q and surface 
current density I’: 

E’ = a!% + 4n / dS’ [o(z’)(d’G&+~q + i(k/c) Gkfj , 

d = fib + (4r/c) f x / dS’fG , (46) 

where u, I’are given by the fields at the boundary: 

47ra = -(&) ) (4n/c)i = -(ii x ii) . (47) 

The induced charge and current density p, j are related to Q, I’: p = 66(q), 
?= 116(q) where rl is the distance from the surface along the normal vector fi(r), 

q = [r - a(z)] wea , tana = a’(z) = [da(r)/dr] . 

Note that iif= 0. 
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The contin_uity equation ikcp = vi, which follows from Maxwell equations, re- 
lates u and I, giving 

I, = at(z 

and 

ikcu = [(cuso)/a] (O/h) (aL/cma) + (l/a) (a/84) I# . (48) 

Equations (46) and (47) can be solved by iteration. 
We give explicit expression for two azimuthal modes of the longitudinal imp+ 

dance: 

1. the monopole mode m - - 0, which dominates the longitudinal impedance, and 

2. the dipole mode m = 1, which is related to the transverse impedance by the 
Panofsky-Wenzel theorem. 

Only the induced part of the field E, is relevant for the impedance calculations. 
For a circular cylindrical beam pipe with the radius r = a(z), Eq. (46) gives 

E, - E,” = Z,, 
J 

[dS’/a(z’)] 

Here 

x {(i/k) [cos a(~‘) (a/&‘) (aL/ cos a) 

+ (ar+#/@‘)] (i%t/c%) + ika(z’) &I,} 

dS’ = [a(r’)dr’d&‘]/ cm o . 

Using the definition in Eq. (2) with Eq. (45) for E,, we obtain 

(49) 

S(k) = - (iZc/ek) /[dS’/a(z’)] 

x [Cosa(L’) (a/&‘) (al*/ COS 0) + (a&$94’)] [exp{-ikz) Gk]y=-, 

- GW4 @‘I441 / dr exp(-ikz) Gr: {ika(r’)L(z’) - (l/P) 

x [co6 [r(i) (8/&z’) (al,/ cos 0) + (tlIf/84’)]} . (50) 

The first term would not vanish only if x’ LV z + 00. However, at infinity the 
current is a surface current in a straight pipe 

I’= -2 (e/2sa) exp{ikr/P} , IzI + 00 . 

Hence, &&/& = 0 and the first term can be omitted. 
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The integration over dr can be performed using Eqs. (39) and (36); then inte- 
gration by parts over dz’ gives, for the m = 0 and m = 1 modes, 

Z,‘“‘(k) = (Z&r) In(am/a-m) 

- (2ik/ecy2) / dS’b (ka(z’)/2y) + c] I&‘) exp{-ikr’/P) 

+ (2/ec) / dS’[a’(z’)/a(z’)] I=(%‘) exp{-Uz’/@} , (51) 

Z,“‘(k) = -(Zorro/W [(l/&) - (1/&J -4 

+ [(2ikr)(eq2)] /[dS'/a(z')] exp(-ikf/P} c-(4 - 4’) L (52) 

+ (2r/ec) / [dS’/a2(z’)] exp{-ikz’/P} ~(4 - 4’) [a’& + (81+~/84~)] . 

5.1 Zero approximation 

In the zero approximation, the surface current is defined by Eq. (47) with the field 
(loll) of a bunch. For calculation of the longitudinal impedance the offset, ro can 
be put to zero. Then 1:’ = 0, the two other components of I(O) are independent 
of azimuth, and 

ZOEO) = -(2e/co(r)) exp{ikz/P} cosa . (53) 

The impedance (51) in the zeroth approximation is 

Z,‘“‘(k) = (Z0/2r) h(a,/a-, 

- (l/xc) / dS[a’(z)/a’(z)] cos ~$2) (54) 

- Wlecy2) / dS’ exp{-ikz’}F(ka(z)/2y) + C’j . 

The last term in Eq. (54) is interesting only because it gives the impedance of the 
straight pipe per unit length: 

(d/dr) Z?‘(k) = -[ikZo/(2v2)] @(kah) + crl . (55) 

Usually, for y W 1, it can be omitted. 
The first two terms in (54) give the zero order result for the impedance of an 

abrupt change of a radius, usually called a step [12]. 
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For the ‘“stepout,” i.e., the case of a particle entering a wider pipe, the impedance 
is 

Z,(‘)(k) = (Zo/n) ln[a(w)/a(-w)] . (56) 

It describes the change of the energy stored in the synchronous component of the 
field of a bunch due to difference of the beam pipe radii at x = fax For a “step 
in,” i.e., for a particle entering a narrower pipe, the two terms in (52) cancel giving 
zero impedance. Thii is in good agreement with the numerical calculations [13], 
which show that there is a small energy gain in this case. 

Note that (56) is actually valid for an arbitrary dependence a(z), including an 
abrupt change of the radius. 

Similarly, the dipole mode of the longitudinal impedance (52) in the zeroth ap 
proximation is given by the dipole component of the current I(‘) 

z&O) = -[4e/ca2(z)] exp{ikr/P} cos 4 COB a , I(O) = 0 . (57) 

The second term in Eq. (52) according to Eq. (5), gives the transverse impedance 
per unit length 

(d/dr) ZL = -(iZc/2ry2a2) . (53) 

The first and the last terms give for a stepin and a step-out, correspondingly 

ZI = -VoP*k) I(l/&) - W&J1 11 T (l/2)1 - (59) 
This impedance vanishes if the beam pipe has equal radii at infinity. Also, it does 
not contribute to the wake field of a symmetric (Gaussian) bunch. 

5.2 First approximation 

The nontrivial part of the longitudinal impedance is given by the last term in 
Eq- (51) 

Z;(k) = (Zo/2re) 1 dS[a’(r)/a(r)] I,(‘)(r) exp{-ikr/P} . (60) 

The current I!” of the first approximation is defined by Eq. (47) 

zap = -H+IUI 

where 

$1) &xii, h’ = Z. J dS’ I”‘(& 4’) G&t, k) . 

Substituting the zero-order current 

zoP) = -[2e/ca(z)] exp(ikz/p} [fa’(r) + i] coso , 

(61) 

(62) 
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we have h’ = -(ihl + iho) where 

ho = @e/c) / [dS’/a(i)] Gk exp{ikz’} cos o(z’) , (63) 

hl = (2e/c) / dS’ [a’(z’)/a(z’)] Gk exp{ikr’} cosa(z’) cus(4 - 4’) . 

It is convenient to write the component 

Zol~‘) = [(Dhl/&) - (Oho/&)] co6 a 

using Green function, Eq. (33). Th e second term (6ho/&) can be transformed, 
integrating ho by parts over dz’. After some algebra, we obtain 

Z;(k) = (&k/dr) / dpl dza’(z) / dr’a’(r’) exp{i(p - k)(r - 2’)) 

x {O[a(r’) - a(z)] Jl[Sla(z)] Hf)[Qa(z’)] + O[a(z) 

- a(z’)] J1[Qa(z’)] Hll)[fla(z)]} . 

Equation (64) also can be written in the form 

Z;(k) = - (ikZo/S*) 1 dra’(r) 1 dr’a’(r’) 1 dqb’ 

(64) 

X [Gr@, k)lr=a(z),rf =a(rl) cos(4 --4’) exp{-ik(r - 2’)) . (65) 

This expression is used below to study particular geometries a(z). 
The nontrivial part of the dipole longitudinal impedance is given by the two last 

terms in (52) 

Z,!‘)(k = (2r/ec) J[dS’/a2(z’)] exp{-ikz’/P} c-(4 - 4’) [a’@) + (a$‘/a4’)] , 
Pw 

with the surface current determined in the first approximation 

jw = -(l/Zo) n’x H ‘(1) . (67) 

Here g(l) is given by Eq. (61) with the zeroorder current of a beam with offset rc 

zrJr’o’(*) = -[(F WE 4 + t$sin 4) sin a(z) + i cos 4 msa(r)](2ero/cr2) exp{ikz/P} . 
(68) 

After some calculations we have 

h’ = -(iero/2c) / dp j[dz’/a(z’)] exp{ikz’ + ip(z - L’)) 

x (2 Gl, cos 4 + a’( 2) G2, [i’ cm 4 + 4 sin 411) . (69) 
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Equations (66)-(69) .give 

Z,(‘)(k) = (irro cos 414~) / dp /W/y(~)] /I~~‘/a(~‘~l 

x exp{i(k - p)(z’ - z)} { - a’(4 [(l/r) (a/at) Gp + (l/r) G2A 

+ a’(2 )[(G&) - (Gp/8r)] + S+‘(z) a’(t’) G2, )c=a(z) - (70) 

This expression can be simplified by integration by parts. The final result for a 
pipe with equal radii at infinity is 

Z,“‘(k) = [(km - 4)/2cl/ dp /kWa(~ll [d~‘l4~‘)1 

x a’(z)a’(z’) GZp(a(r), a(?)) exp(i(k - p)(z’ - z)} . (71) 

This result can be rewritten also as 

Z,(‘)(k) = -Z. [(ikrro cos 4)/b] / d4 cos 2(4 - 4’) / dzdz’ 

x exp{-ik(z - 2’)) {[a’(z) a’(t’)]/[a(z) a(z’)]) 

X [Gk(g, ~)I,=,(,), r~=a(zy - (72) 

‘Itansverse impedance then is given by Eq. (5). 
Equations (65) and (72) g ‘ve a close form of the. longitudinal and transverse 

impedances for a axially symmetric beam pipe, with an arbitrary variation of the 
pipe radius a(r). From these-equations it is also easy to obtain the longitudinal 
and transverse wake fields. 

In what follows, we apply these formulas to particular geometries. 

6 EXAMPLES OF LONGITUDINAL IMPEDANCE 

6.1 Impedance of a shallow cavity and a small collimator 

We start with consideration of the simple case of a cavity with attached tubes: 

r(z) = a , I4 > 912 , r(2) = b, 121 <g/2, b > a. (73) 

Let us consider a shallow cavity (6 - a) < a, g < a, k [s2 + (b - a)2]1/2 < 1. 
The longitudinal impedance in this case is inductive. K. Bane [9] approximates 
the results of simulations with the code TBCI for long bunches by the formula 
z,(O) = -ikL, where the inductance 

L = (Zo/Pz) [g(b - a)/a] . (74) 
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Neglecting exponents in Eq. (65), we obtain for this case 

Z;(k) = - [ikZo/(2(27r)2)] /” dr 1” dr’ 
0 

x / d4 - 4 { P/(R~)“~I - [l/(s2 + R~)~‘~I} , (75) 

where R2 = (r-f)2+4rr’sin2[4/2]. For ashallow cavity, asigniicant contribution 
is given by small angles 4 cv (a- a)/a < 1,4 z g/a < 1. Integrals can be evaluated 
giving the inductance 

L = {ZO@ - a)2/K242 41 f(A) , (76) 
where A = g/(b - a). For small A < 1 

f(A) = 4A arctan(l/A) + X2(2 ln A + 1) ) (77) 

exactly giving K. Bane’s result (74); see also the discussion after Eq. (83). 
Consider now a shallow collimator 

-r(z) = if 7 I4 > 912 ? r(2) = a, IzI<g/2, b>a, (78) 

where (b - a) < a, g < a, kb2 + (b - ~)~]l/~ < 1. Consideration of a shallow 
collimator is similar to that for a shallow cavity, with one significant difference. 
In deriving Eq. (65), we implied that the field inside the conductor is zero. The 
current 1(l) in Eq. (60) is the current induced at the surfaces .r = &g/2 by the 
field generated by the zero-order currents, Eq. (53). Clearly, for a collimator, 1(l) 
at z = -g/2 cannot be generated by the zero-order current on the opposite surface 
i= +g/2, because the field inside the collimator is zero. The cross talk between 
surfaces 2 = &g/2 is generated only by the fields at the opening, and can be 
taken into account in the next approximations, similar to what has been done in 
the calculation of the impedance of a hole in a straight beam pipe. Hence, the 
impedance of a collimator is 

Z:(k) = +kZo/(2r)I Jdr /N/d4 coe4 &(r,r’,z = z/,4- 4’) . (79) 

Calculations for a shallow collimator can be performed explicitly, giving 
zI(O) = -ikL with the inductance 

L = [Zo(b - a)2/4xa] {ln[27ra/(b - u)] + (312)) . (80) 

K. Bane [8] describes TBCI results for this case by the formula 

L = [ZO(~ - 42/(~a)1 , 

which is different from Eq. (80) by a factor 

(1/4r) {l@ral(b - 41+ (3/2)1 - 
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Figure 2 gives TBCI results for W,,, for an iris with an opening radius of 3.8 cm, 
in a beam pipe with a radius of 4.0 cm. The iris thickness g was changed in the 
range from 0.1 to 0.5 cm. The bunch length is 1 cm. The variation of Wmot with 
g is small. 

It should be noted that simulations with TBCI of a shallow cavity and a small 
collimator are not simple, because they 

6.2 Impedance of a pill-boz cavity with pipes and a step 

Consider a cavity in the high-frequency limit kg > 1, ka > 1. This case has been 
studied before [lo] and the answer is known. The real part of the impedance is 

ReZl = (Zo/2xa) (g/rk)li2 . 031) 

It is more convenient in thii case to use Eq. (84). Integration in Eq. (84) over z 
can be replaced by integration over dr = a’(r)dr at the boundaries z = &g/2. This 
g&S 

Z,‘“‘(k) = (kZo/Ps) [ dp 1” dr /” dr’sin2 [(g/2) (k - p)] (82) 
J Jo Jo 

x [ e(r - r’) ,71(Qr’) Hf)(Rr) + f?(r’ - r) .7,(S2r) H,(1)(Rr’)] . 

Integrals over r, r’ can be calculated explicitly 

Z,(‘)(k) = (kzok) /iw2) sin2 [(g/2) (k -PI 

x 1 [Jo(S26) - J&-h)] H$“(fib) (83) 

- [Hi’)(M) - Hr’(L?a)] Jo(%) + (2i/7r) ln(b/a)} . 

The impedance for a shallow cavity is inductive Zy) = -ikL = -ikL/c. The 
inductance L (in cm), calculated from Eq. (83), is depicted in Fig. 3 as a function 
of g/(6 - a). The integration has been performed for a cavity with radii b = 4.2 cm, 
b - a = 0.2 cm. The inductance calculated from Eq. (74) is shown by the dashes. 
The agreement of the results found above for small g/(b - a) also takes place for a 
wider range of gaps, up to g 2 a. 

The real part of the impedance is given by the interval -k < p < k: 

Re Z,(o,(k) = (kZol24 ~;W(k2 - p2)1 sin2 

x KdW - P)I IJo - JoWVI~ - (84) 
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FIGURE 2: The TBCI results for the wake potential of a shallow collimator. Pa- 
rameters 17 = 1 cm, b = 4 cm, b - a = 0.2 cm. Perturbation theory gives the 
impedance constant in g. 
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FIGURE 3: The inductance of a shallow cavity as a function of X = (b - a)/a. The ._. .* 
dashed line is calculated with Eq. (74), b ase on TBCI results. Parameters of the d 
cavity are a = 4 cm, b - a = 0.2. 
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To estimate the integral Eq. (84) in the high-frequency limit ka W 1 for b W a N g 
we can neglect Jo(Rb). The main contribution at high frequencies ka W 1, kb W 1 
is given by the range of p for which g(k - p) 1 1, fla w 1. Using an asymptotic 
expression for the Bessel function, we obtain [ll] the Dome-Lawson result (81). 

For very large gaps g the impedance does not depend on g but depends on both 
radii. The impedance can be obtained from Eq. (84) in the limit g -) 00, replacing 
sin2[. . .] by its average value l/2. For the pipes of equal radii at large z, 

FteZ,(o)(k) = We/W /[dpl(L2 - p2)] [Jo(W - Jo( . (85) 

The main contribution for ka w 1,kb > 1, b ) a is given by the interval 
(l/a) W Q W (l/b): 

Re Z,(o,(k) = (Zs/4r) ln ka . (86) 

For small b , kb < 1; La should be replaced by b/a, giving an impedance similar to 
the impedance of a step 

Rae Z,(“)(k) = (Zs/47r)ln(b/a) . (87) 

Transition from the regime of a cavity to the regime of a step occurs [14] at 
g z k(b - a)2. 

The result of a numerical integration of Eq. (84) is shown in Fig. 4a. The 
real part of the impedance is a linear function of the Dome-Lawson parameter 
(1/2xa) (g/rk)‘i2. Results in the “cavity regime” g W k(b - a)2 are independen- 
dent of b. Figure 4b shows that there is a smooth transition from the regime of a 
cavity to the regime of a step. Transition frequency depends on (b - a)/a. 

The impedance of a collimator can be derived similarly to the impedance of a 
cavity, but with the correction discussed in the zeroth order approximation, 

Z,(‘)(k) = (kZoP) /O-WQ2) 

x 1 Jo(fla)[H~‘)(Cla) - If( 

- Hi’)(Rb) [J&la) - &(Rb)] + (2i/7r) h(b/a)) . 038) 

The real part of the impedance is given by the interval -k < p < k 

ReZ,(‘)( k) = WolW [; tdpl(k2 - p2)] [Jo@) - Jo(Qb)]2 - (89) 

The impedance calculated from this formula is shown in Fig. 5. 
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FIGURE 4: (a) The real part of the longitudinal impedance of a cavity, Eq. (84), 
as a function of the Dome-Lawson parameter. Results are essentially independent 
of the b; g/a = 3.0, b/ a is in the range 2.0-6.0. (b) The same as in (a), but for large 
gaps. The transition from the regime of a cavity to the regime of a step is shown. 
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FIGURE 5: The frequency dependence of the impedance of a collimator. The 
impedance is constant for small ka and rolls off at large frequencies. The roll-off 
starts at frequencies dependent on the ratio of the radii. 

6.3 Impedance of a periodic array of cavities 

Consider an array of M identical cells made by irises in a straight pipe. The radius 
of the pipe is b, the radius of the opening in the washers is a, the thickness of the 
iris is 1, and the length of a period is d. 

The real part of the impedance can be obtained from Eq. (65): 

ReZ,(‘)(k) = (kZoW24 1” W(k2 -p2)] [Jo(Qb) - Jo(W12 W,d . (90) 

This is different from the result (84) for a single cell by a form factor F( k, p), 
describing interference of the waves generated by a bunch in different cells, 

W,d = (1/47r) 5 (-1)‘~j em{@ - P)(zi - zj)} . 
ij=l 

(91) 
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Here ri are the coordinates of the irises: 

Qn+1 = nd, n = O,l, . . . ,M-1, 2293 = nd-1, n = 1,2, . . . M. 

The sum (76) can be calculated. Usually I< d, and 

F(k,p) = (l/nM) sin2 [(g/2) (k -P)] sb2{[@ - p)Wl W - (92) 
For small M z 1, the impedance per cell is the same as that for a single cell and, 
at high frequencies, provided ka2/d >> 1, is given by Eq. (81). 

For M W 1, the impedance per cell from Eq. (90) is the convolution of two sharp 
functions. The first function in the integrand (90) is the same as for a single cavity 
and has a sharp maximum for Ik -pi 5 (l/ka2). The second form factor (92) has a 
maximum for IL -pi < (l/Md). The frequency behavior of the impedance depends 
on the parameter kaT/Md. For a structure with fixed total length Md, there are 
always very large ka where the first function dominates and impedance per cell is 
the same as for a single cell. However, there is an intermediate range of frequencies 
where M > ka2/d, where the second function is dominant. For such frequencies 
impedance rolls off as k 4 2 instead of k-‘f 2. More discussion on this can be found 
in the original paper [15]. The same result has been obtained by R. Gluckstern [16]. 

6.4 Impedance of a taper 

The radius of a taper varies linearly from a to b > a at distance L, 

r(z) = a , 2 < 0 ; r(2) = .a+ci’r, O<z<L; r(z) = a + bL , z > L . (93) 

The longitudinal impedance is 

Z,‘“‘(k) = (ZO/~) W/a) + {[kZo(a’)2/8~) S(k) , (94) 

where 

JJ L 
S(k) = dp d& =PG(P- k)(z - ~7) IGl,p(~,~‘)lI+=a(r),r’=o(z’) . W-4 

0 

The cuts in the plane p are defined so that R = i(p2 - k2)‘12 for p > k and p < -k, 
and the contour of integration is below the cuts. Because there are no singularities 
in the lower plane of p, the integration over p gives zero if L < z’. Hence, 

S(k) = J dplL dz 1” dr’ exp{i(p - k)(z - 2’)) .7r [S2a(r’)] I-I{‘) [Qa(z)] . (96) 

We will study this expression at high frequencies, which give the main contribu- 
tion to the energy loss. 
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First, consider a taper with large angle Q, tancr = a’, a’ 2 1. Equation (96) 
in this case can be simplified using asymptotic expressions for the Bessel functions 
and retaining the slowest oscillating exponential function: 

S(k) = J dq 1” dz 1’ dz’ (2/{nQ[a(z)a(z’)]]1/2) exp(-i(z - z’)t,h(z, z’, q)} , 

(97) 
where q = k -p, and rl, = q - a’[q(2k - q)]‘i2. The integral over q can be calculated 
by a saddle-point method, expanding ~6 around qo = ka’2/2, provided kala’l W 1. 
That gives 

tc, = -W2/2) + [(q - d2/4qol , S2 z Ika’l , (98) 
and 

S(k) = 2(2/ixk) lL[dz/a(‘)l i’[dz’/(z - z’)1/2] exp(i(kaf2/2) (z - z’)} . (99) 

Significant values of 12 - 2’1 N 1/(ka’2) are small provided ka’2L W 1. This reduces 
the integral to 

S(k) = @/lk4)~LW41)l = (8/kan) ln(b/a) . ww 

The impedance obtained from Eqs. (94) and (100) is the same as the impedance of 
a step with the radii a, b 

z,‘“!(k) F (ZO/~X) W/a) . (101) 

The result is valid if 

kala’l W 1 , and kla’(b - a)1 w 1 . (102) 

If kala’l W 1, but b - a are so small that k)a’(b - a)1 < 1, the integral (99) gives 

S(k) = 2(2/ink)‘/2 lL(dz/a + a’t) [ [dr’/(t - z’)“~] 

= (8/3ra) (2n/ik)li2 [(b - a)/a’13i2 . (103) 

From this consideration, it follows that it is sufficient to study a shallow taper with 
10’1 < 1. 

In this case it is more convenient to write the impedance in the form (65) and 
S(k) in the form 

S(k) = /(d4/ira’2) 1 dtdr’ exp(-ik(z - z’)} [exp{iklr’- ?I) / I?- t’[ cos(4) . 

(104) 
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The .difference 

IF-q = U/14) [b - r’)2( 1 + a’2) + Srr’a”( 1 - co6 ‘$)I 1’2 

can be expanded for small la’1 < 1 

IF-q = [ (1 + a”)/la’l]‘/2 Ir - r’l 

+ {[rr’la’l(l- ca34)]/[Ir- r’l(l+ d2)lial) , 

provided 

(r- r’)’ W r2an . 

Then 

(105) 

S(k) = (l/in) Jb(drdr’/(r - r’l) a J {@/[IdI (I+ at2)1’2]} exp{+ + i*) , 
W”3) 

where 

!I’ = -(k/a’) (r - r’) + {[k(l + ar2)li2]/ /a’1> Ir - r’j 

+ {[krr’la’l(l-cosq5)]/[~r-r’~(l+a’2)’12]} . 

The integral over 4 gives the Bessel function. For Ia’1 << 1, the phase 9 is large 
and the exponent oscillates rapidly if r- r’ < 0 for a’ > 0, and r-r’ < 0 for a’ < 0. 
.Consider, for example, a’ > 0. Then r > r’ are significant, for which 

\E = (kla’l/2) (r - r’) + { [krr’la’l(l - cosq%)] / [Ir - r’l(1 + a”)“‘]} . 

The first term here is negligibly small provided 

x E kala’l < 1 . (107) 

With the new variables y = r/a and z = (r - r’)/a, Eq. (106) takes the form 

SW = (a/+/l) Jt dzdyll4) A(~~~/14 expW(y2/14)~ - w-9 

Here the limits of the integration are 

1 < y < p G (b/a) , y-p<z<y-1. 

One of the integrals can be calculated, introducing the new variables r = y2/x, 
< = y, and changing the order of integration. The limits of integration over r, t are, 
for p < 2, 

[p2/(P - 111 < 7 c m , (r/2) - [(r2/4) - 7p2 < 6 < p , 
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and for p > 2 there are two integrals with the limits 

4<7-d,P2/(P--111, (T/2) - [(G/4) - rJl’2 < < < (T/2) + [(?/4) - rJl’2 ) 

and 

b2/(P-W=~, (T/2) - [(?/4) - r]lf2 < < < p . 

Then the function S(k) is given by the integral 

S(k) = (a/i+‘I) (@(p - 2) f’)(dT/r) [(r2/4) - r]‘f2J~(X~) exp{iAr} 

+ Jm (dt/r) {p - (r/2) + [(r2/4) - #f2} J@) =PW)) y (109) 
Q@) 

where p = b/a and Q(p) = [p2/(p - l)]. 
The integral (109) can further be estimated in two extreme cases. If AQ(p) < 1, 

impedance (94),(109) increases linearly with la’]: 

-Z;‘)(k) = -i(ZoX/Sr) J m(dx/x) ,71(x) exp{ix} + o(A2) . (110) 
0 

This result is confirmed by the numeric integration of Eq. (109); see Fig. 6a,b. 
For very small p - 1 = (b - a)/a < 1, there is another regime where 

A<l, but [Ap2/(p - I)] w 1 . 

The impedance in this csse is 

Z,‘“‘(k) = [Zc(1+ i)/(47r)2J(X/7#‘2 

X J O” (dx/x3f2) {p - (x/2) + [(x2/4) - x]lf2 ) (111) 
Q(P) 

and proportional to the (a ) ’ If2 This behavior previously has been found numeri- . 
cally [17]. 

Equation (111) is compared with the numerical integration of the Eq. (109) for 
small (p - 1) < 1, see Fig. 7a,b. The transition from small p - 1 to p - 1 N 1 is 
depicted in Fig. 8. 

7 EXAMPLES OF TRANSVERSE IMPEDANCE 

The transverse impedance is given by Eqs. (5) and (71): 

Zdk) = (Z0/8r) J dp J drdz’ exp{i(k - p)(z’ - z)} 

x [a’(r)a’(z’)/a(z)a(z’)l [G2,plc=o(l),r~=o(z~) . (112) 
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(b) parts of the longitudinal impedance (b) parts of the longitudinal impedance 
of a taper, with large p = b/a. of a taper, for small (p - 1) << 1 
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FIGURE 8: The same as in Fig. 6(a), for the transition from (p - 1) < 1 to 
(p - 1) 21 1. 
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or 

ZJk) = -i(ZrJ29r) J dgV ax2($ - 4’) J dzdz’ exp{-ik(t - 2’)) 

x [a’(Z)/a(z) [a’(4/42’)1 I&(& @ lr=a(z~s’=r(z~) - (113) 

We consider here several examples. 

7.1 Impedance of a cavity with attached tubes 

We consider first Eq. (71), for a cavity with attached tubes: 

42) = a , I4 > 42 , 44 = b , I4 < g/2 , b>a. 

For a shallow cavity of low frequency k(b - a) ($: 1, the impedance is proportional 
to to the gap length g, 

&(k) = -2igz;a) , (114 
if g < 2(b - a)4. For large gaps g > 2(b - a), dependence on the gap length is 
logarithmic 

ZL(k) kg pl, 

and is independent of g for kg / 2 > 1. 
In the high frequency limit kg > I, ka > 1, it is more convenient to use Eq. (72), 

where the integrals over dr = a’(r)dz can be calculated using expressions 

{[J2(Wl/4 = -(l/Q) (WY W1UWll~~ y 
and 

H$‘)(z) 51(z) -&(z) H, (1) (2) = -(2i/AZ) . 

That gives 

Z-LO) = @ ‘o/W / (dplQ2) sin2 KgP)O - P)I W /4 U/b2) - W2)3 

- W % W l/b3 (WdWl/b~ - ~IJl(n.)l/.)) 

+ W&Wll4 (W~‘)WW~ - W~‘)Wl/4 ) . (115) 

The real part of the impedance again isgiven by the interval -k < p < k: 
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ReZl(k) = - x2)] sin2 [(kg/2) (1 - x)] 

x {Jr[kb(l- x2)lf2]/b} - {Jr[ka(l- x2)1f2]/a})2 . (116) 

The behavior of the impedance (116) depends on the ratio g/a. For g < ka2, kg W 1 
the impedance (116) increases as k3 for ka g: 1, reaches maximum at ka 21 1, and 
rolls-off as (l/ka) 3f2 for large ka. For g > La 2, the impedance (116) increases as 
k3 for La +I 1, reaches maximum at La N 1, and rolls-off as (l/ka) for large La. 

The results of numerical integration of Eq. (116) are shown in Fig. 9a,b. 

7.2 Z’hnsverse impedance of a taper 

For a taper, the impedance is given by Eqs. (5) and (72): 

Zdk) = -[;~0/2(2~)~] Jd4’ cos(4 - 4’) /.” (dr/r) (dr’/r’) 

x exp{-ik(z - 2’)) [(exp{iklr’- +‘I)) /(I?- ?I)] , (117) 
where z - z’ = (r - r/)/a’. 

Expanding IF- ?I as in Eq. (105) we can calculate the integral over the an- 
gle $. This gives the Bessel function J2. For a shallow taper la’1 C 1, the main 
contribution is given by 

rla’l K Ir’ - rl << r N r’ . 

With a proper choice of variables, it is possible to carry out one more integration 
in the same way as it was done for the longitudinal impedance of a taper. The 
impedance is given by the remaining integral 

ZA(k) = - (iZola’l/4*a){B(p - 2) 

X J Q’p’(d+l Ja(Ar) exp{W [(l/t-) - (l/C+)] 
4 

+ J 1, W/4 JdW expWW/~-1 - (VP)~) , (118) 

where p = b/a, Q(p) = [p’/(p - l)], and 

& = (T/2) f [(?/4) - T11f2 . (119) 
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FIGURE 9: The real part of the transverse impedance of a cavity, (a) for g/a = 4.0, 
and (b) for small g/a = 0.2. These results are independent of b/a, which is in the 
range 4.0-13.0 for both (a) and (b). The curve for (b) is broader and rolls-off slower 
than for (a). 
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The result, Eq. (118), is valid if 

Ia’1 < X E kala’l Q: 1 . (120) 

8 CONCLUSION 

The perturbation method described above allows derivation of the general expres- 
sions for the longitudinal [Eqs. (65), (72)] and transverse [Eq. (113)], impedances 
for axially symmetric structures with arbitrary variation of the radius along the 
structure. 

It is shown that the formulas reproduce in a systematic way, numerous previously 
known rsults, and obtain new results. 

The longitudinal impedance is found for 
Parameter Equation 

(a) Hole (41) 
(b) Slot 
Cc) ShP g; 
(d) Shallow cavity 
(e) Shallow Collimator g 
(f) Cavity with pipes (84) 
k) Taper (99), (95) and Figs 6-8 

Transverse impedance is considered for 
Parameter Equation 

(4 Hole. 
(b) Step gi; 
(c) Shallow cavity 
(d) Taper [::g 

This method allows us to obtain all these results in a unified way as extreme cases 
of the same formula, and to demonstrate the transition from one case to another; for 
example, from the regime of a cavity to the regime of a step, Fig. 4, or from a single 
cavity to a periodic array, Eq. (92). It seems that the method always works where 
the narrow band impedance is not dominant-in other words, at high frequencies- 
and also for low frequencies, but for shallow diswntinuities. Several new results are 
obtained, including the longitudinal and transverse impedances of a taper. The 
method can be generalized to more complicated geometries; for example, for a hole 
in a beam pipe with finite thickness of the wall or for a structure without axial 
symmetry. 
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