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ABSTRACT

In an e*/e™ storage ring, intrabeam scattering will cause the equilibrium
transverse and longitudinal particle distributions to be non-Gaussian. In
this paper, we discuss a modification to the current theories of intrabeam

scattering that more accurately describes the emittance growth of the core.
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1. INTRODUCTION

Future et /e~ storage rings, in order to be used as synchrotron radiation
‘sources or damping rings for linear colliders, will need to store very dense particle
bunches. One of the many effects that can limit the particle density in a storage
ring is the Coulomb scattering between particles within a bunch. In this paper, we

discuss the effect of the small-angle scattering, which is referred to as intrabeam

scattering or the multiple Touschek effect [1,2].

Intrabeam scattering is the result of multiple small-angle Coulomb collisions
between particles in the beam, leading to diffusion in the beam phase space. In
et/e” storage rings, where the synchrotron radiation provides a source of damp-
1ng,the scattering increases the beam emittance until the additional diffusion is
cour;texledr by the radiation damping. Detailed theories of intrabeam scattering
have been developed in Refs. [2-5]). In this paper, we discuss a modification to
the current theories that, in some cases, predicts a significant reduction in the

effect of the intrabeam scattering.

The curreﬁt theories calculate the rms emittance growth. The rms value is
a useful quantity for describing the width of a Gaussian distribution—but intra-
beam scattering yields a non-Gaussian beam since the Coulomb scattering has a
non-Gaussian distribution. Specifically, the beam distribution due to the scatter-
ing will have a nearly Gaussian core, with long tails that can have .a significant
contribution to the rms width; the core is due to the multiple soft scattering,

_ while the tails arise from the infrequent hard scatterings.

LA
The situation in a storage ring is analogous to the theory of scattering in a

material [6] except that in an eT / e~ ring it is necessary to include the betatron



motion and the damping due to the synchrotron radiation. To calculate the
equilibrium beam distribution, the scattering can be analyzed as a filtered Poisson
process similar to shot noise [8,9]. However, the full distribution function is
unduly complicated, so instead we calculate the width of the Gaussian beam core;
this is the value that is relevant for the luminosity in a collider or the brilliance

in_a synchrotron radiation source.

As mentioned, the core of the distribution is due to the multiple soft scatter-
ing, while the tails are due to the infrequent hard scattering. Thus, we calculate
a boundary, in terms of the momentum transfer in the collision, that separates
the contributions to the beam core from those to the tails. All collisions with
. momentum transfer ¢ greater than the boundary ¢, are assumed to contribute to

the feﬁls and will be neglected when calculating the width of the core.

We approximate the boundary ¢, as the point where the integrated rate of
scattering, with momentum transfers greater than g,, is equal to the damping

rate,
v(g>q) ~ 154 (1)

~ where 7sg is the synchrotron radiation damping time. This choice is justified in
Refs. [7-9] and is intuitively appealing. The Gaussian core is generated by mul-
tiple scattering, within the time scale set by the damping, so that the Central
Limit Theorem applies. In contrast, the tails are generated by infrequent scat-
terings, within the damping time, and thus have a distribution similar to the

Coulomb scattering distribution f(z) ~ 3.

Jhis paper is an extension (and correction) of work that appeared in
Ref. [ﬁ,12]. We start by giving a very brief introduction to the intrabeam scat-

tering emittance growth process, and then we calculate the scattering rate. Next,



we apply these results to two examples, and further illustrate with a simulation

of the beam distribution.

2. INTRABEAM SCATTERING

“™In a reference frame co-moving with an ultra-relativistic particle beam, the
beam usually has an anisotropic momentum distribution. The longitudinal mo-
mentum tends to be much smaller than the horizontal or vertical {13]. Coulomb
scattering between particles in the beam will redistribute the beam momenta in
an approach to “thermal” equilibrium. Since the longitudinal direction is “cooler”
" than-the transverse, one would expect the longitudinal momentum spread to in-
crea,sg' at the expense of the transverse momenta. Unfortunately, this is compli-
cated by the energy dependence of the particle orbit, i.e., the dispersion function;
the dispersion couples a change in the longitudinal momentum to the transverse
planes. Thus, a scattering event that transfers transverse momentum to the lon-
gitudinal plane has both a cooling and a heating effect on the transverse phase

space.

In high energy e*/e™ rings, the heating is far more important than the cool-
ing effect [2]; the transverse cooling is roughly proportional to 1/2v2, while the
heating is proportional to the dispersion invariant H; = .12 + 2a,n,n} + ﬂzﬂ'zz,
where az, Bz, 75 are the storage ring lattice parameters and 5, is the dispersion
[1 1J‘;:_7_1‘hus, the intrabeam scattering causes both the longitudinal and transverse
equiiib?ium emittances to grow until the growth is countered by the damping due

to the synchrotron radiation.



The emittance growth depends upon the second moment of the momentum

exchange [2-5]

dmax d dmax d
o a
Ae, x / qf d_q dq Aeg f quf d_q dq , (2)
9min Imin

where ¢, is the longitudinal component of the exchange. Because the Coulomb
cross-section is inversely proportional to ¢3, the emittance increase depends upon
the “Coulomb log, ” which can be written in terms of the limits on the momentum
exchange, the impact parameter, or the scattering angle,

Imax ~ In

In
dmin bmin Omin

bmax ~ ].n omax . (3)

Our calculation will determine a new value for gpax, denoted g., that approxi-
" mates the boundary between the contributions to the core and the tails. This
corrects the Coulomb log so that it only includes the contributions to the core

emittance.

3. SCATTERING RATES

To solve for the value of ¢., we calculate the integrated rate of the hard
- scattering as é function of the boundary ¢., and set this equal to the damping
rate, Eq. (1). To calculate the scattering rate, we essentially follow Piwinski’s
derivation in Refs. [2] and [5]; we calculate the scattering rate of two particles
. and then integrate over the beam distribution. In the center-of-mass reference

frame of two scattering particles, the differential cross section can be written

2
_ r
da=27qug—-§-qdq ) (4)

where ¢ is the (normalized) momenta exchange: ¢ = 283sin(theta/2), ro is the
classical electron radius, B3 is the velocity of the particles in units of ¢, and we

have assumed that the particles are nonrelativistic in the center-of-mass frame.



Further assuming an ultra-relativistic beam, the velocity of the two colliding

particles in the center-of-mass frame is [2]

81 — 62)2

A= \/<ma—wa>2+<y;—ya>2+( =

2|2

) (5)

where the bar denotes the center-of-mass reference frame, and z', ', and § are
tflgqangular deviations, p /po, and relative energy deviation, (E — Eg)/Ejp, of the
two particles in the laboratory frame; the factors of ¥ come from the relativistic

transformation from the laboratory frame.

Now the integrated scattering rate, in the laboratory reference frame, can be

" written

gmax
47r n - - da’ -+ -
V(qmax, ) = ? /,BCP(.'El,wz) / d_q dgdZ,dz; (6)
I

where P(Z1,&2) dZ1 dZ; is the phase space density factor, and gmax is the maxi-

mum momentum transfer.

The phase space density factor P d#; dZ3 is

P dF) dEy = ps1 pz2 Pyl Py2 P21 P22 6(x1—2) 6(y1 —y2) (21 —22) dF1 dF2 , (7)

- where pz 4, . are the distributions in the three planes and & = (zg, :cfa_, Y8, y};, z,6).
Here, we have assumed that the particles are in the same region of space when
scattering. This is the approximation made in Refs. [2] and [5]; it is not completely
- val_i’_id:_yvhen discussing the small-angle scattering, but in our case, where we are

interested in hard scatterings, it is a valid assumption since the hard scatterings

occur at small impact parameters.



Assuming a Gaussian beam, the distributions in the transverse betatron and

longitudinal phase spaces have the forms

2 ! 12
, 1 (’72:37[9 + 205::1?/3935 + ﬁzxﬂ )
px(x,@’ w,@) = 27r€z exp|— 261; ) (8)
and
- 1 22 82
. 7 5) = _ 0t
_ px(2,9) 270,05 exp[ 202 202] ’ 9)

where az,y, Bz,y, and v,y are the storage ring lattice functions and € y is the rms
emittance. Because of the dispersion, the actual transverse coordinates depend
upon both the transverse betatron coordinates and the energy deviation: z =

‘@ + &, and g’ =zl + 6ny.

Af,'this point, we can calculate the integrals. To simplify the result, we use
the integral identity
o0 —
1 [dzexp{—zB?}

VB e "
0
to remove the factor of 1/3. This yields
1  Ned [d
crg T g 2 -1/2
_ 1 oz 11
0> 9)= 2 ey, azas(,/\/:? (" F e’ +va tw) ()
where we have assumed that gmax > ¢« and
H 1 B B
— 2= - z v
H 2
v=72(‘°ﬂ”+f’”ﬂ” Je 4 By +5’§—) (12)
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The integral in Eq. (11) can be expressed in terms of the elliptic integral of
the first kind F(¢,z). In general, the integrand does not factor simply, and the
parameters are complex expressions of u, v, and w. In the case of flat beams,
where €; 3> €, and €; ~ 0212 /B;, we can approximate the elliptic function to find

1 cr% N
qz 373 Oy OyOz 0y

v(g>gu) ~ (13)

PO

We now need to consider the variation of the lattice parameters with azimuth.

This will have two effects:
o first, the scattering rate will vary with position, and

e second, the variation will increase the contribution to the tails for a given

average scattering rate.

Thé llaJtter effect is not very significant in the longitudinal, but it can be impor-
tant in the horizontal, because H, can vary substantially. In lattices with large
variation in H,, calculating ¢, from the average rate will err on the conservative
side, i.e., it will overestimate the growth of the core emittance. We can improve
- the result to sr;)me degree by including only regions where H, # 0 when calculat-

ing the average. Thus,

d d
Tm@>a) = § Gra>e), md me>e) = [ Zue>a)

Har£0
(14)

where C' is the ring circumference.

Finally, we use Eqgs. (1) and (14) to find the boundary g,:
S et [ Fd v
- TSRIVCTy as [ ar 3 2 ~1/2

&= 47v2 g€y 0,05 /C /\/5 (2% + ua® + vz + w) » (15)

0



Table 1. Examples of correction to IBS.

NLC DR ATF DR
Y€o 2.0 x 107¢ m-rad 3.4 x 1078 m-rad
Aerps/eo 37% 47%
Aerps/eo with correction 6% 21% 30%

where the integral over the ring is taken around the entire ring in the longitudinal
case, or just over the nondispersive regions in the transverse case. Unfortunately,
neither the formalism of Piwinski nor that of Bjorken and Mtingwa allows us to
simply use this limit. Instead, both are expressed in terms of the maximum angle
or the minimum impact parameter. Since these limits only appear logarithmically,
the calculatlon is not very sensitive, and we can calculate the maximum scattering

angle using an rms value for 3: 057 ~ g, /Brms.

4. EXAMPLES

We have used these results to calculate the correction to the intrabeam emit-
- tance growth in the Next Linear Collider (NLC) damping ring design [14] and the
ATF damping ring design at KEK [15]; the results are listed in Table 1. In both
cases, the intrabeam scattering calculation was performed using the formalism
. of Bjorken and Mtingwa [3] and the correction was calculated separately from
Eq. (15). The intrabeam emittance growth is reduced by almost a factor of two,
which occurs because the maximum scattering angle that contributes to the core

s actually very small: 10~* ~ 10~3,

LA
Finally, we have simulated the beam distribution due to the intrabeam scatter-

ing in the NLC damping ring. In the simulations, synchrotron radiation damping
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Figures 1(a) and (b). Simulation of the beam distribution with intra-
beam scattering (solid), and the corrected (dashed) and uncorrected
(dotted) Gaussian approximations. The rms of the simulated distribu-
tion equals that of the uncorrected Gaussian approximation, but the

corrected Gaussian approximation describes the core of the beam well.

was included, but the excitation due to the radiation was not. We simulated
10° scattering events (ten particles for ten damping times). To keep the simu-
lation times reasonable, the synchrotron radiation damping rate was artificially
inq‘rga,sed by a factor of 30. This slightly exaggerates the tails so that they con-
tribute 52% of the uncorrected emittance, while with the actual NLC parameters

the tails should contribute 44% of the uncorrected emittance.
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The results are illustrated in a linear-linear plot in Fig. 1(a) and in a log-
linear plot in Fig. 1(b). In both figures, the solid line is the simulated result while
the dashed line is the Gaussian distribution calculated by neglecting the single
scattering events, and the dotted curve is the uncorrected Gaussian distribution.
The rms width of the simulation and the uncorrected Gaussian approximation
are-equal. One can see that the uncorrected result seriously over estimates the
core emittance, while the corrected distribution describes the core of the beam
very well. For these parameters, the corrected rms emittance growth is a factor

of 2.1 smaller than the uncorrected result.
5. DISCUSSION

_T_He‘ current theories of intrabeam scattering neglect the distinction between
the single scattering regime and the multiple scattering regime; the hard single
scatterings cause tails on the beam distribution that heavily bias the rms emit-
tance calculation. We have approximated the location of the transition between
the two regimes and have described the necessary modifications to the current
~theories. Finally, we used these results to calculate the intrabeam scattering in
two damping ring designs for future linear colliders. In both examples, we found
substantially smaller equilibrium emittance increases, roughly a factor of two,

when neglecting the tail contributions.
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