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ABSTRACT 

In an e+/e- storage ring, intrabeam scattering will cause the equilibrium 

transverse and longitudinal particle distributions to be non-Gaussian. In 

this paper, we discuss a modification to the current theories of intrabeam 

scattering that more accurately describes the emittance growth of the core. 
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1. INTRODUCTION 

Future e+/e- storage rings, in order to be used as synchrotron radiation 

sources or damping rings for linear colliders, will need to store very dense particle 

bunches. One of the many effects that can lim it the particle density in a storage 

ring is the Coulomb scattering between particles within a bunch. In this paper, we 
; -- 

discuss the effect of the small-angle scattering, which is referred to as intrabeam  _- 
scattering or the multiple Touschek effect [1,2]. 

Intrabeam  scattering is the result of multiple small-angle Coulomb collisions 

between particles in the beam, leading to diffusion in the beam phase space. In 

e+/e- storage rings, where the synchrotron radiation provides a source of damp- 
. . ..-- 

ing, the scattering increases the beam emittance until the additional diffusion is 

countered by the radiation damping. Detailed theories of intrabeam  scattering 

have been developed in Refs. [2-51. In this paper, we discuss a modification to 

the current theories that, in some cases, predicts a significant reduction in the 

effect of the intrabeam  scattering. 

The current theories calculate the rms emittance growth. The rms value is 

a useful quantity for describing the width of a Gaussian distribution-but intra- 

beam scattering yields a non-Gaussian beam since the Coulomb scattering has a 
_ non-Gaussian distribution. Specifically, the beam distribution due to the scatter- 

ing will have a nearly Gaussian core, with long tails that can have a significant 

contribution to the rms width; the core is due to the multiple soft scattering, 

. .- while the tails arise from  the infrequent hard scatterings. 
-<y 1 

Thrsituation in a storage ring is analogous to the theory of scattering in a 

material [6] except that in an e+/e- ring it is necessary to include the betatron 
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motion and the damping due to the synchrotron radiation. To calculate the 

equilibrium beam distribution, the scattering can be analyzed as a filtered Poisson 

process similar to shot noise [8,9]. H owever, the full distribution function is 

unduly complicated, so instead we calculate the width of the Gaussian beam core; 

this is the value that is relevant for the luminosity in a collider or the brilliance 

in+a_ synchrotron radiation source. 

As mentioned, the core of the distribution is due to the multiple soft scatter- 

ing, while the tails are due to the infrequent hard scattering. Thus, we calculate 

a boundary, in terms of the momentum transfer in the collision, that separates 

the contributions to the beam core from those to the tails. All collisions with 

momentum. transfer Q greater than the boundary Q* are assumed to contribute to . . ..-- 
the tails and will be neglected when calculating the width of the core. 

- -. 

We approximate the boundary Q* as the point where the integrated rate of 

scattering, with momentum transfers greater than Q*, is equal to the damping 

rate, 

da > !?*> N r&f; 3 (1) 

where TSR is the synchrotron radiation damping time. This choice is justified in 

Refs. [7-91 and is intuitively appealing. The Gaussian core is generated by mul- 

tiple scattering, within the time scale set by the damping, so that the Central 

- Limit Theorem applies. In contrast, the tails are generated by infrequent scat- 

terings, within the damping time, and thus have a distribution similar to the 

Coulomb scattering distribution f (2) - xB3. 

-Qhis paper is an extension (and correction) of work that appeared in 

Ref. [17,12]. We start by giving a very brief introduction to the intrabeam scat- 

tering emittance growth process, and then we calculate the scattering rate. Next, 
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we apply these results to two examples, and further illustrate with a simulation 

of the beam distribution. 

2. INTRABEAM SCATTERING 

‘“-In a reference frame co-moving with an ultra-relativistic particle beam, the 

beam usually has an anisotropic momentum distribution. The longitudinal mo- 

mentum tends to be much smaller than the horizontal or vertical [13]. Coulomb 

scattering between particles in the beam will redistribute the beam momenta in 

an approach to “thermal” equilibrium. Since the longitudinal direction is “cooler” 

than-the transverse, one would expect the longitudinal momentum spread to in- 

crease-at the expense of the transverse momenta. Unfortunately, this is compli- 

cated by the energy dependence of the particle orbit, i.e., the dispersion function; 

the dispersion couples a change in the longitudinal momentum to the transverse 

planes. Thus, a scattering event that transfers transverse momentum to the lon- 

gitudinal plan-e has both a cooling and a heating effect on the transverse phase 

space. 

In high energy e+/e- rings, the heating is far more important than the cool- 

- ing effect [2]; the transverse cooling is roughly proportional to 1/2y2, while the 

heating is proportional to the dispersion invariant ‘FI, E ~~772 + 2~r,77~q~ + ,0z7&2, 

where G, A, yz are the storage ring lattice parameters and v2 is the dispersion 

’ .- [llJ, Thus, the intrabeam scattering causes both the longitudinal and transverse 
‘tc;. - 

equilibzum emit tances to grow until the growth is countered by the damping due 

to. the synchrotron radiation. 
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The emittance growth depends upon the second moment of the momentum 

exchange [2-51 
Pmax Pmax 

Ae, 0; J q,2 fi dq 
dq 

Ae, o( J %n:$dq 7 (2) 
Qmin qmin 

where qx is the longitudinal component of the exchange. Because the Coulomb 

qo8s-section is inversely proportional to q3, the emittance increase depends upon 

the Xoulomb log, ” which can be written in terms of the limits on the momentum 

exchange, the impact parameter, or the scattering angle, 

Qmax In - 
b max In - 

9 
Rs 

Qmin b min 
kln~, 

min 
(3) 

Our calculation will determine a new value for qmax, denoted q*, that approxi- 

mates the-boundary between the contributions to the core and the tails. This 

corrects the Coulomb log so that it only includes the contributions to the core 

emittance. 

3. SCATTERING RATES 

To solve for the value of q*, we calculate the integrated rate of the hard 

scattering as a function of the boundary q*, and set this equal to the damping 

rate, Eq. (1). T o calculate the scattering rate, we essentially follow Piwinski’s 

derivation in Refs. [2] and [5]; we calculate the scattering rate of two particles 

_ and then integrate over the beam distribution. In the center-of-mass reference 

frame of two scattering particles, the differential cross section can be written 

(4) 

* .- w$e q is the (normalized) momenta exchange: q = 2p sin(theta/2), rs is the -’ - - 
classical electron radius, p is the velocity of the particles in units of c, and we 

have assumed that the particles are nonrelativistic in the center-of-mass frame. 
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Further assuming an ultra-relativistic beam, the velocity of the two colliding 

particles in the center-of-mass frame is [2] 

p=; (xi - xp + <y; - yp + csl - s2)2 
r2 

) (5) 

where the bar denotes the center-of-mass reference frame, and x’, y’, and 6 are 

the angular deviations, pl/po, and relative energy deviation, (E - Eo)/&, of the 
-- 

two particles in the laboratory frame; the factors of 7 come from the relativistic 

transformation from the laboratory frame. 

Now the integrated scattering rate, in the laboratory reference frame, can be 

written 
Qmax 

- -. 4n 
v(Qmax, Cl*) = - 

Y2 J Pqc, 22) J $ dq d& dif2 , (6) 

where P(&, 52) d& d& is the phase space density factor, and qmax is the maxi- 

mum moment urn transfer . 

The phase space density factor P d& d& is 

P d& dZ2 = pzlpz2 /-+,I para pzl pt2 6(x1 - 32) J(yl -y2) &I -z2) d6 d& , (7) 

- where P=,~,~ are the distributions in the three planes and Z = (zp, x;3, yp, yb, z, 6). 

Here, we have assumed that the particles are in the same region of space when 

scattering. This is the approximation made in Refs. [2] and [5]; it is not completely 

* .- valid,--when discussing the small-angle scattering, but in our case, where we are 
-s&: . 

interescd in hard scatterings, it is a valid assumption since the hard scatterings 

occur at small impact parameters. 
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A s s u m i n g  a  G a u s s i a n  b e a m , th e  d is t r ibut ions in  th e  t ransverse  b e ta t ron a n d  

long i tud ina l  p h a s e  spaces  h a v e  th e  fo r m s  

P d w $ ) =  & - e x p  - [ 
(Yx$  +  2a,xpxb +  pxxb2)  

X  2 %  1  9  (8)  
a n d  

I - -  

P % (G)  2,d 2  =  e x p  [ --s - z  a 6  6 2  1  2 a 2  7  
t 6  

(9)  

w h e r e  ax ,y, P x ,y, a n d  yz,y a re  th e  s to rage  r ing  latt ice fu n c tio n s  a n d  E ,,~  is th e  rms  

e m i tta n c e . B e c a u s e  o f th e  d ispers ion ,  th e  ac tua l  t ransverse  coord ina tes  d e p e n d  

u p o n  b o th  th e  t ransverse  b e ta t ron coord ina tes  a n d  th e  e n e r g y  dev ia t ion:  x  =  

x p + S q x  a n d x ’= x b $ & & . 
. . ..-- 

A t-th is  p o i n t, w e  c a n  ca lcu la te  th e  in tegra ls .  T o  s impl i fy  th e  result ,  w e  u s e  

th e  in tegra l  i d e n tity 

- =  mdxexp{ -x j2 }  1  

a  2  J JE iY  ’ 
0  

(10 )  
to  r e m o v e  the- factor  o f l/p . Th is  y ie lds  

v(a  >  q* )  =  L  
Ncr i  * dx  

q : 4 +  E z ~ ~ 6 ~ 6 ~  J 3  
(x3  +  u x 2  +  2 )x  +  to )  

- l /2 
( 1 1 )  

0  

w h e r e  w e  h a v e  a s s u m e d  th a t q m a x  > >  q*  a n d  

u  =  y2  
( 

xx 1  P x  
Y 2  ex  d  I 

y+ q + - - >  Y 2  E y  ’ 
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T h e  in tegra l  in  E q . (11)  c a n  b e  exp ressed  in  te r m s  o f th e  el l ipt ic in tegra l  o f 

th e  first k ind  F($,x). I n  g  enera l ,  th e  i n teg rand  d o e s  n o t factor  s imply ,  a n d  th e  

p a r a m e ters  a re  c o m p l e x  exp ress ions  o f u , o , a n d  w . In  th e  case  o f fla t b e a m s , 

w h e r e  cx > >  ey  a n d  ex  N  a ~ q ~ /p ,, w e  c a n  a p p r o x i m a te  th e  el l ipt ic fu n c tio n  to  fin d  

1  cri N  
v (q  >  q * >  N  -  -  

q : 3 - p  6x  UyU,U, -  ( 1 3 )  

W e  n o w  n e e d  to  cons ide r  th e  var ia t ion o f th e  latt ice p a r a m e ters  wi th a z i m u th . 

Th is  wi l l  h a v e  two e ffects: 

l  first, th e  scat ter ing ra te  wi l l  vary  wi th pos i t ion,  a n d  

l  s e c o n d , th e  var ia t ion wi l l  i nc rease  th e  c o n tr ibut ion to  th e  ta i ls  fo r  a  g i ven  
.._.-- 

a v e r a g e  scat ter ing rate. 
- -. 

T h e  latter e ffect  is n o t very  s igni f icant  in  th e  long i tud ina l ,  b u t it c a n  b e  impor -  

ta n t in  th e  hor izonta l ,  b e c a u s e  l-t, c a n  vary  substant ia l ly .  In  lat t ices wi th l a rge  

var ia t ion in  X x , ca lcu la t ing  q*  f rom th e  a v e r a g e  ra te  wi l l  e r r  o n  th e  conserva t ive  

s ide,  i.e ., it wi l l  overes t imate  th e  g r o w th  o f th e  co re  e m i tta n c e . W e  c a n  imp rove  

th e  resul t  to  s o m e  d e g r e e  by  inc lud ing  on ly  reg ions  w h e r e  ‘H , #  0  w h e n  calcu lat -  

i ng  th e  a v e r a g e . Thus,  

V ,. (q  >  a*)  =  f $  v (a  >  a + )  , a n d  V C , (q  >  q*)  =  J $  y(q  >  q *) , 

w h e r e  C  is th e  r ing  c i rcumference.  

. . Final ly ,  w e  u s e  E q s . (1)  a n d  (14)  to  fin d  th e  b o u n d a r y  q*: 

1 1 2  

(14)  

(15)  
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Table 1. Examples of correction to IBS. 

NLC DR ATF DR 

YE0 

&BS/~O 

A~IBS/Q with correction 6;:: 
-* a... 

2.0 x 10V6 m-rad 3.4 x 10B6 m-rad 

37% 47% 

21% 30% 

where the integral over the ring is taken around the entire ring in the longitudinal 

case, or just over the nondispersive regions in the transverse case. Unfortunately, 

neither the formalism of Piwinski nor that of Bjorken and Mtingwa allows us to 

simply use this limit. Instead, both are expressed in terms of the maximum angle 

or the minimum impact parameter. Since these limits only appear logarithmically, 
. . ..-- 

the calculation is not very sensitive, and we can calculate the maximum scattering 
- -. 

angle using an rms value for p: 0;:: N q*/prms. 

4. EXAMPLES 

We have used these results to calculate the correction to the intrabeam emit- 

tance growth in the Next Linear Collider (NLC) damping ring design [14] and the 

ATF damping ring design at KEK [15]; the results are listed in Table 1. In both 

cases, the intrabeam scattering calculation was performed using the formalism 

_ of Bjorken and Mtingwa [3] and the correction was calculated separately from 

Eq. (15). The intrabeam emittance growth is reduced by almost a factor of two, 

which occurs because the maximum scattering angle that contributes to the core 

, _. is actually very small: 10B4 N 10e3. 
-.y 1 

Finally, we have simulated the beam distribution due to the intrabeam scatter- 

ing in the NLC damping ring. In the simulations, synchrotron radiation damping 
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0.4 
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-* --  

0.2 

0.1 

0  
0  2  4  

loo  

10- l  

lo-* 

l o3  

l O A  

7 -92  

0  4  8  

x  (q( )  7 2 0 2 A l  

F igures  l (a)  a n d  (b).  S  imu la t ion  o f th e  b e a m  dis t r ibut ion wi th intra-  

b e a m  scat ter ing (sol id) ,  a n d  th e  cor rec ted  (dashed )  a n d  uncor rec ted  

(dot ted)  G a u s s i a n  a p p r o x i m a tio n s . T h e  rms  o f th e  s imu la ted  d is t r ibu-  

tio n  e q u a l s  th a t o f th e  uncor rec ted  G a u s s i a n  a p p r o x i m a tio n , b u t th e  

cor rec ted  G a u s s i a n  a p p r o x i m a tio n  desc r ibes  th e  co re  o f th e  b e a m  wel l .  

- w a s  inc luded ,  b u t th e  exc i ta t ion d u e  to  th e  rad ia t ion  w a s  n o t. W e  s imu la ted  

1 0 ’ scat ter ing e v e n ts ( ten par t ic les fo r  te n  d a m p i n g  times) .  T o  k e e p  th e  s imu-  

la t ion tim e s  r e a s o n a b l e , th e  synchro t ron  rad ia t ion  d a m p i n g  ra te  w a s  art i f ic ial ly 

i nc reased  by  a  factor  o f 3 0 . Th is  s l ight ly e x a g g e r a tes  th e  ta i ls  so  th a t th e y  con -  
- 

t r ibute 5 2 %  o f th e  uncor rec ted  e m i tta n c e , wh i le  wi th th e  ac tua l  N L C  p a r a m e ters  

th e  ta i ls  s h o u l d  c o n tr ibute 4 4 %  o f th e  uncor rec ted  e m i tta n c e . 
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The results are illustrated in a linear-linear plot in Fig. l(a) and in a log- 

linear plot in Fig. l(b). In both figures, the solid line is the simulated result while 

the dashed line is the Gaussian distribution calculated by neglecting the single 

scattering events, and the dotted curve is the uncorrected Gaussian distribution. 

The rms width of the simulation and the uncorrected Gaussian approximation 

are-equal. One can see that the uncorrected result seriously over estimates the 

core-emittance, while the corrected distribution describes the core of the beam 

very well. For these parameters, the corrected rms emittance growth is a factor 

of 2.1 smaller than the uncorrected result. 

5. DISCUSSION 

The current theories of intrabeam scattering neglect the distinction between 

the single scattering regime and the multiple scattering regime; the hard single 

scatterings cause tails on the beam distribution that heavily bias the rms emit- 

tance calculation. We have approximated the location of the transition between 

the two regimes and have described the necessary modifications to the current 

theories. Finally, we used these results to calculate the intrabeam scattering in 

two damping ring designs for future linear colliders. In both examples, we found 

substantially smaller equilibrium emittance increases, roughly a factor of two, 

- when neglecting the tail contributions. 
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