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Abstract 

In the design of future electron/positron colliders in the TeV region with high 

luminosities, the transverse wakefields generated by one bunch in a train of ac- 

celerated bunches may deflect one or more of the subsequent bunches. In this 

paper we analyze the mode structure and the transverse wakefields in a tapered 

cavity, including the effect of coupling between adjacent cells. The parameters of 

the equivalent circuit chain used in the analysis are obtained from computer runs 

for periodic structures corresponding to different cells of the cavity. Following the 

guidelines suggested by an analysis of Maxwell’s equations for one or two deflect- 

ing bands we obtain numerical solutions for the wakefields for different patterns of 

detuning. We find that Gaussian detuning of the geometric cell parameters within 

a8 cavity dramatically decreases the wakefields obtained with linear detuning. Sev- 

eral examples of mode structure, mode frequency distribution, kick factors, and 

wakefields are presented, confirming this conclusion. 

1. Introduction 

1 .l INTRODUCTION 

Experience with the Stanford Linear Collider (SLC) has encouraged considera- 

tion of future electron/positron colliders in the TeV region as a vehicle for exploring 

the structure of matter at extremely high energies and luminosities. Design efforts 

are currently under way at many laboratories. (ll Many of these designs involve the 

a.cceleration of trains of bunches. Among the technical problems with such an idea 

is that one bunch beam in the train is capable of exciting transverse wakefields 

of the accelerator ca.vities which, in turn, will deflect following beam bunches and 

result in emittance growth. Two methods for curing this problem are to damp the 

transverse modes of the cavity(‘) or to detune them.c31 In this paper we will study 

the detuning of the modes. 

The wakefield of an accelerator cavity is given by a sum over its normal modes. 

Detuning can cause the terms in this sum to add in such a. way that the wakefield 
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, is greatly reduced over some finite range. Detuning can therefore be especially 

effective in a design, such as that of the Next Linear Collider (NLC),t4) in which 

there are only a few bunches in a relatively short train. The proposed, detuned 

NLC cavity is a disk-loaded, accelerator structure composed of approximately of 

200 cells, operating at X-band, at 11.42 GHz. The most troublesome transverse 

modes of the cavity are those belonging to the first dipole passband, with frequen- 

cies near 15 GHz, and, in this paper, these are the modes upon which we will focus. 

Detuning of these modes is accomplished by varying the cell dimensions gradually 

from one end of the cavity to the other. A special feature of the detuned NLC 

cavity is that the cell-to-cell coupling of the modes changes sign somewhere in the 

middle of the structure. 

In the NLC the proposed mode of operation is to accelerate bunches in trains 

of 10, with a bunch spacing (within each train) of 42 cm. Simulations have found, 

for the parameters of the NLC, that the transverse wakefield at the positions of the 

nine trailing bunches ‘needs to be kept at or below 1 MV/nC/m2 in order to avoid 

emittance growth.t5) Earlier, approximate calculations of the wakefields, which 

did not include the cell-to-cell coupling of the modes, have shown that by choosing 

the cell frequencies according to the proper Gaussian distribution, the above level 

of cancellation can be achieved.( 3j6) A specific goal of this report is to see if this 

conclusion still holds when the cell-to-cell coupling is included in the calculation. 

Our approach to the problem is to first find the modes of the detuned NLC 

cavity, and then to find the wakefield. Our cavity has about 200 cell, each with 

slightly different dimensions. It appears that finding the modes of such a structure 

directly, by solving Maxwell’s equations, is beyond the capabilities of present day 

computers. Therefore, in this paper, we will model the detuned cavity by a chain of 

coupled resonant circuits, with each loop of the chain representing one cavity cell. 

We obtain the modes of the circuit by solving a matrix eigenvalue problem. The 

solution of this problem gives us the frequencies, kick factors, and quality factors 

of the normal modes of the cavity which, in turn, give us the wakefield. The 

advantage of first finding the normal modes of the circuit rather than performing a 
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direct time domain integration of the currents in the circuit is that in this way one 

calculation gives us the wakefield for all distances. In the second part of this report 

we repeat the process using a double band of infinite circuits to model the cavity, a 

model that we derive from the properties of Maxwell’s equations at an iris, which 

duplicates the dispersion curves of the lowest two bands more accurately. 

Equivalent circuits have been used often to model rf cavities. Early examples 

describing their use for finding the normal modes of a multi-cell cavity are papers 

by T. Smitht7) and by D. Nagle, et.al.(‘) J. Reestg) used this approach to calculate 

detuning in the PEP five-cell rf ca.vities. All three papers used largely analytical 

techniques, using perturbation theory for finding the effects of detuning. As in the 

work of J. Rees, our single circuit chain couples through mutual inductors. More 

recently M. Drevlak(r’) a.pplied equivalent circuits that couple through inductors 

or ca.pa.citors to the SLAC 1inea.r accelerator cavity to numerically find the modes 

and the wakefields. His circuit models are applicable to structures for which the 

coupling does not change sign within the cavity. K. Bane and N. Holtkamp(r’) 

using a more complicated circuit, solve a non-linear eigenvalue problem, to find 

modes of the NLC detuned cavity. A preliminary version of the present work 

was presented by R.. Miller at Protvino in September 1991.(12) Finally Yamamoto, 

et.al.,(13) apply direct time domain integration of the circuits to find the wakefield 

of the JLC detuned cavity (which is very similar to the NLC cavity), confirming 

the results presented here. 

1.2 DISPERSION CURVES 

The cavities under consideration for the NLC are disk-loaded structures with 

fundamental frequency 11.424 GHz operating in the 2n/3 mode. The cell geometry, 

as we will approximate it in this report, is sketched in Fig. 1. (The real geometry 

will have rounded irises and likely pumping slots.) The four parameters are iris 

radius a, waveguide radius b, iris thickness t (nominally set to 1.46 mm), and period 

L (fixed at 8.75 mm). The parameters a and b vary from cell to cell in such a way 
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Fig. 1. The cell geometry that we consider in this paper. 

so as to detune the dipole mode frequency while keeping the fundamental mode 

frequency fixed. 

In order to understand the mode spectrum of the deflecting modes in such a 

structure, we use the computer program TRANSVRS.(14) This program calculates 

the frequencies and kick factors for an infinitely periodic structure composed of 

the type of cells shown in Fig. 1. In Fig. 2 we display the lowest two dispersion 

bands, as calculated by TRANSVRS, for a periodic structure whose parameters 

are chosen to match three typical cells in our detuned structure. In this figure we 

plot the frequency v against the phase advance per cell 4. The curves labeled C, 

D, and E represent respectively the parameters of a cell near the front, middle, 

and end of the detuned structure. The cell dimensions of these structures are given 

in Table 1. The dotted line in Fig. 2 displays the speed of light line. We note that 

the speed of light line crosses the lower dipole band of the three structures near pi 

phase advance. 

From the figure we note that the lower band, which appears to be the more 

important in deflecting the beam, has the usual cosine-like shape, except for the 

fact that it goes from forward to backward wave as one goes from the first cell to 

the last. At first we shall take as our model a single coupled circuit chain, with a 

coupling consta,nt which varies from positive to negative, a.nd a resonant frequency 
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Fig. 2. The first two dipole bands of a periodic structure with the dimen- 

sions of cells C, D, and E. The dots give the speed of light line. 

Table 1. Seven combinations of iris radius a and cavity radius b in a 

periodic, disk-loaded structure for which the fundamental frequency is 

11.429 GHz. In all cases the period L = 8.75 mm and the iris thickness 

t = 1.46 mm. Also given are some properties of the first dipole band: the 

synchronous frequency us, the kick factor I(,, and the resonator frequency 

urn and relative coupling factor 77 (to be discussed in Chapter 2). 

Labe1 / (rtrn) 1 (m”m) 1 (2~) 1 (MV$/m’) 1 (6;~) 1 ’ 

A 6.500 ll.SO 13.95 17.1 12.60 +.202 

B 5.875 11.44 14.34 23.0 13.35 +.142 

C 1 5.250 1 11.12 1 14.80 1 31.0 1 14.21 1 +.OSl 

D 1 4.625 1 10.83 1 15.34 ( 41.6 ) 15.21 1 +.OlS 

E 4.000 10.58 15.97 54.4 16.33 -.046 

F 3.375 10.39 16.65 68.5 17.01 -.044 

G 2.750 10.24 17.29 80.1 17.49 -.023 
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which increases as one goes from the first cell to the last. This model is only 

approximate, however. In Fig. 3 we plot again the dispersion curves of Fig. 2, but 

now as yB2 against cos 4. We shall see in Chapter 2 that a single coupled circuit 

model corresponding to magnetic coupling between cells gives a linear variation 

of y-2 us cosqb, which does not agree with the behavior of the upper curves in 

Fig. 3 (corresponding to the lower curves in Fig. 2). In Chapter 3, we shall derive 

a double chain of coupled circuits to more exactly duplicate the curves in Figs. 2 

and 3, but the mode spectrum for the tapered cavity will be seen as not changing 

a great deal from that obtained with the single chain. 

1.2 

1.0 

0.6 

0.4 
-1 -0.5 0 0.5 1 

co9 9 

Fig. 3. The dispersion curves of Fig. 2 but plotted as Y-~ us cos 4. The 

dots give the speed of light curve. 

1.3 THE TRANSVERSE WAKEFIELD OF A DETUNED STRUCTURE 

We begin by briefly discussing some important properties of the wakefield IV(s) 

of a structure. (For a more thorough discussion of wakefields see, for example, 

Ref. 15.) Consider a point particle with charge qe moving parallel to the axis of a 

closed, cylindrically symmet,ric structure at offset xe (which is near the axis) and 
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with velocity c. A test particle which moves at offset x (near or on the axis) and 

at velocity c, but at a distance s behind the leading charge, will gain in the x 

direction the voltage xceqel/l/‘(s) per meter of travel. The dipole wakefield of the 

structure W(s) is given by 

w(s) = 2 C lcn sin F e-rvns/(cQn) s > 0, 
n 

(1.1) 

with Kn the kick factor, Yn the frequency, and Qn the quality factor of the nth dipole 

mode of the structure. The units of the wakefield will be given as MV/nC/m2. 

Note that once we know the frequencies, the kick factors, and the quality factors of 

the modes of a cavity we know the wakefield for all s. In this paper we will normally 

assume that the Q’s of the modes are sufficiently high so that (for our purposes) 

the damping terms in Eq. (1.1) can be set to 1. (For completeness, however, we 

will discuss briefly the damping of the modes in Sets. 2.4 and 2.5.1.) Note that the 

dipole modes also interact longitudinally with the beam. The longitudinal dipole 

voltage is given by -x,xq,I~I/,(s) and the longitudinal dipole wakefield by Wz(s) = 

2 En K, cos(27rvns/c), with the dipole mode loss factors given by K, = 27rvnKn/c. 

Eq. (1.1) gives also the wakefield of a periodic structure as long as we interpret 

I(, and vn as the kick factor a.nd the frequency of the synchronous modes of the 

structure. (To differentiate this case we use the symbols KS, and vsn.) For a 

periodic structure with NLC type parameters we find from TRANSVRS that the 

kick fa.ctor of the first dipole band is an order of magnitude larger than for any 

of the higher bands. After a distance s large compared to the wavelength of this 

mode the higher modes will have gotten out of phase with each other and the wake 

will be well approximated by the first mode alone. Since in this paper we are only 

interested in the bunch-to-bunch wake forces, and since the bunches are separated 

by many wavelengths, we are in this la.rge s regime; therefore throughout this paper 

we will include only the effects of the first (or at most the first two) dipole bands 

of the structure. 
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A detuned cavity consists of many cells with the cell geometry varying gradually 

as we move along the structure. For such a structure the wakefield can be divided 

into two qualitatively distinct regions: into a short range region for which the wake 

can be described by the average properties of the kick factor and the spectrum of 

the modes, and a long range region for which the wake depends on the spacing 

of the individual modes. Over the first region, i.e. for s not too large, we can 

approximate the sum of Eq. (1.1) by the integral 

W(s) x 2 J 
27rV.s 

du 11’2 sin - , 
C (1.2) 

-CO 

with K the kick factor and dn/dv the distribution of frequencies, both of which 

are continuous functions of V. Suppose that Ir’ dn/du is a narrow function centered 

about V, as will be the case for our detuned structure. Then Eq. (1.2) can be 

conveniently written as 

dx K(x + v)$(x + fi)e2xizs’c 1 , (1.3) 
with Sm signifying the imaginary part of the argument. We see that the wake 

consists of a ra.pidly varying part, oscillating at frequency V, and a slowly varying 

part (the envelope) that is given by the Fourier transform of the function K dn/dv 

after it has been centered about zero. If the frequency distribution is uniform with 

full frequency spread AV then the wakefield is approximately given by 

27rii.s sin (rsAv/c) 
W(s) M 2I? sin - . 

C @AZ+) ’ (1.4) 

with I? the average value of I<. If the frequency distribution is Gaussian, with rms 

width cr,,, then 

27rvs 
W(s) M 2Ksin -e -2(7roys/c)~ 

C 

In this case the envelope drops also as a Gaussian. It seems reasonable to expect 

that the proper Gaussian frequency distribution is near ideal in the sense of giving 

9 



I 
. 

a rapid drop in the wakefield for a given total frequency spread, and this is the 

motivation for choosing Gaussian detuning. Finally we should emphasize that over 

the second, longer range region of the wakefield, the above, continuous analysis is 

no longer valid. More precisely, for s N c/6v, with 6~ the typical spacing of the 

modes, the wakefield envelope will no longer be determined by I( dn/du. In this 

regime even for a Gaussian distribution the contribution of the individual modes 

will no longer cancel well. 

1.4 THE UNCOUPLED CALCULATION OFTHE WAKEFIELD 

In this section we review briefly the method that to date has been used to ob- 

tain the wakefield of a detuned version of the NLC accelerator structure.(3) It is a 

calculation which does not properly include the effects of coupling between neigh- 

boring cells. For lack of a better label we call it the uncoupled solution.* We then 

apply this method to. the NLC parameters and present the results. Throughout 

the rest of this paper these results will be compared with those of more accurate 

calculations that do not ignore the cell-to-cell coupling. 

A linear accelerator cavity of the type we consider consists of many cells that 

are connected, and couple, through irises to their neighbors. The wakefield of such 

a structure can be divided roughly into two regions in the following way: one, a 

short range (small s) region over which the cell-to-cell coupling does not affect 

the wakefield, and another, larger s region over which the coupling does affect the 

result. The uncoupled calculation is meant to apply only to the first of these two 

regions. According to this calculation the wakefield of an N-cell detuned structure 

is approximated by 

* This solution should not be confused with what one would obtain from the resonator 
models, described in the following chapters, by setting all couplings to zero. 
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In Eq. (1.6) I-(s(r) and uiy’ represent the kick factor and frequency of the syn- 

chronous component of the first dipole mode for a periodic structure with the 

dimensions of cell nz. (The parameters KS1 and us1 for several possible NLC cell 

geometries are given in Table 1. In this table, as elsewhere in this paper, the 

subscript 1 may be dropped when it is understood from the context.) How can 

we justify Eq. (1.6)? If the structure is composed of many cells, if the tapering 

is gradual, and if 2nu,a/c is not very large (in our case it is on the order of l), 

then we can expect that the wakefield locally can be described by the synchronous 

frequency and the associated kick factor of a periodic structure with the local cell 

geometry. And, consequently, we expect that Eq. (1.6) correctly gives the wake- 

field for sufficiently small s. [However, we should not be tempted to infer from 

Eq. (1.6) that the normal mode frequencies of the structure can be approximated 

by the uim).] Wh a are the limits of validity of this method? For what values of t 

s will we need to find the coupled modes of the structure in order to obtain the 

correct wakefield? We can get a rough idea of the answer to this question from the 

dispersion curve for a typical cell geometry. A conservative estimate of the limit 

of validity is that it is roughly given by s N 3cL/vg, with L the cell length and vg 

the highest group velocity of the modes for the typical cell geometry. 

As a numerical example of the uncoupled calculation let us take parameters 

appropriate for the NLC. Let us consider a structure with N = 200 cells and 

take as central frequency V, = 15.25 GHz. If we take a Gaussian distribution 

in frequencies, with uv,/ijs = 2.5%, then according to Eq. (1.5) we expect the 

wakefield envelope to be at 0.4% of its peak at s = 42 cm. The full spread of 

frequencies is 5a,,; from TRANSVRS we find that this corresponds to a first cell 

radius of 5.9 mm and a last cell radius of 3.8 mm. Performing the sum Eq. (1.6) 

(and including the variation of h,, 7(m) as obtained from TRANSVRS) we obtain 

the wakefield shown in Fig. 4. To better see the level of cancellation we plot the 

envelope of the wake I@ on a semi-log scale in Fig. 5. The dashed curve on this 

plot displays the Gaussian envelope of Eq. (1.5)[with cr,, set to crvs] for comparison. 
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Fig. 4. The wakefield of the NLC structure assuming no coupling. The 

frequency distribution is Gaussian with uVs/~, = 2.5 %. 
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Fig. 5. The envelope of the wakefield shown in Fig. 4. The dashed curve 

displays the Gaussian envelope of Eq. (1.5) for comparison. Coupling be- 

tween cells has been ignored here. 

12 



I : 

We see from the plots that the wakefield envelope begins at a peak value of 

80 MV/nC/m2. It does indeed drop as a Gaussian before the arrival of the second 

bunch, at s = 42 cm. At longer distances it no longer drops as a Gaussian; 

however it still remains quite small up to the position of the last (the 10th) bunch 

at s = 378 cm. The saturation effect is due to the truncated tails in the Gaussian 

frequency distribution, and the relative amplitude at saturation is approximately 

given by l/N-2/N. Up to what value of s can we expect to believe the result? 

From Fig. 2 we see that the largest group velocity for geometry C (representing 

a cell near the beginning of the cavity) is u,/c N 0.1. A conservative estimate 

then is that the uncoupled calculation is valid at least until s N 3cL/vg = 0.25 m. 

In the next two chapters we will see that this estimate is too conservative, and 

that in fact the uncoupled results agree well with the more accurate calculations 

throughout our entire region of interest, i.e. the region up to s = 4 m. 

From beam dynamics simulations c5) it appears that in order for the emittance 

growth due to the multibunch instability to be within acceptable limits we need 

the wakefield at the positions of bunches 2 through 10 to be on the order of 1% 

of the peak value, i.e. near 1 h4V/nC/m2, or less. Accordingly, we will consider 

as acceptable a wakefield with amplitude I@(s) 5 1 hIV/nC/m2 over the range 

s = 0.4 m to s = 3.8 m. This criterion is more stringent than necessary (the wake 

only needs to be small at the actual positions of the trailing bunches). However, 

from the results of the uncoupled calculation it appears that this criterion can be 

met by the detuned version of the NLC structure. A major goal of this paper is to 

see how the cell-to-cell coupling affects this result. 
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2. Single Chin of Coupled Circuits 

2.1 THE DIFFERENCE EQUATIONS 

Let us begin by modelling our detuned structure by the single circuit chain 

shown in Fig. 6. We take loop m of the chain to represent cell m of the cavity. 

Let us assume the currents in the chain vary in time as e2*i”t, with u the resonant 

frequency of the chain and t the time. But instead of the currents In(t) we will 

solve for the Fourier transform of the currents im(u). The currents in loop m of 

the circuit chain satisfy the difference equation 

U2 

( > 
l-s im+ 

A4m,m+l . M  m,m-1 . 

2Lm 
2m+1 + 2Lm zrn-l = 0 , (24 

where the resonant frequency of the mth circuit loop is given by 

(27rum)2 = & . (2.2) 
m  m  

For N circuits Eq. (2.1) represents a system of N coupled equations. In order to 

symmetrize the problem let us change variable to 

fm S imUm JLm=im/JCm . 

Then Eq. (2.1) becomes 

where the equivalent coupling coefficient is 

(2.3) 

(2.4) 
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We will allow K mfi to be a positive or negative quantity depending on whether 

locally the cell-to-c:11 coupling is positive or negative. Sometimes, instead of n,&i 

we may find it more convenient to use the relative coupling coefficient, defined by 

when discussing coupling. (In Table 1 we give the resonator frequencies urn and 

relative coupling coefficients VJ appropriate for the representative cell geometries 

A-G.) Eq. (2.4) p re resents a linear, symmetric eigenvalue (uB2) eigenfunction 

(fm) problem whose solutions can be obtained from readily available computer 

programs, once the variation of vi2 and K m&tf is selected and once the boundary 

conditions at the end cells a.re specified. 

Cm-l Gil C m+l 

3-92 7115A2 

Fig. 6. A single chain circuit model of the accelerator structure. 

In order to solve the problem we need to specify the boundary conditions. 

Typically the cavity has N full cells with the end cells connected to side tubes. For 

the first dipole band the frequencies are below the cut-off of these side tubes and 

power will not flow down them. For such a configuration, with the circuits indexed 

by m = 1,2,.. . , N, we take as bounda.ry conditions 

fo = fl , fN+l = .fN 7 “i = Izl ’ KhT++ = KN , (2.7) 

15 



I 
. 

with ~1, KN, the coupling factors of cell 1 and cell N respectively.’ Another possible 

configuration are N - 2 full cells (m = 2,3,. . . , N - 1) with closed half cells at the 

ends (m = 1, N). In this case the appropriate boundary conditions might be 

fo = f2, fN+l =fN-1, ‘c; = K;, nN+; = KN-3 . P-8) 

There may be some question about our choice of boundary conditions. However, 

as we shall see later, the results for the NLC structure depend only weakly on the 

specific choice of boundary conditions. 

If we substitute constant V~ = V and IC,*L = n into Eq. (2.4) then we obtain 
2 

the periodic solutions: 

fm = f cosn2~ ) (2.9) 

and 

1 
~$KCOSqs . y2 = jj2 (2.10) 

Clearly the variation of um2 is linear with cos 4 for this single circuit chain. When 

K is positive the wave is a forward wave, when it is negative it is a backward wave. 

Note that v gives the frequency of the n/2 mode. The boundary conditions for a 

cavity with N full cells [Eqs. (2.7)] restrict the phase advance to the values 

& = (P - lb 
N ’ 

p= 1,2 ,..., N . (2.11) 

Note that. for these boundary conditions the pi mode is not a solution. With the 

boundary conditions given by Eq. (2.8) th e solutions are the same but with the 

phase a.dva,nce restricted to 

(pp = (P - lb (nr-1> , P=U...N . (2.12) 
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2.2 DIFFERENTIAL EQUATION FOR A SINGLE CIRCUIT CHAIN 

Let us return to Eq. (2.4), th e d ff i erence equation for the eigenfunctions of our 

coupled circuit model. Let us change variable from fm to 

F, E (-l)“fm (2.13) 

since the modes travelling with pha.se velocity near c are near the pi mode of the 

structure (see Fig. 2). We ca.n therefore treat Fm as a slowly varying function of 

m. In this case we write Eq. (2.4) as 

1 1 Km+f + f%+ Km++ + Km-i 
---- 
u& Y2 2 4 (Fm+l + Fm-1 - 2Fm) 

K m++ - Km-$ 

>( 

F m+l - Fm-1 

2 2 
= o 

(2.14) 

Introducing the continuous variables 

1 
z(m) = - - 

Km++ + Km-f 

4 2 > 

ti 
K(m) = 

m+$ + 77m-.$ 

2 9 K’(m) = Km+; -Km-f , 

(2.15) 

(2.16) 

we proceed to the limit of small rate of change and obtain the differential equation 

K(m) d2F 

2dm"+ F-g+[X-s(m)lF=O . (2.17) 

The parameter X 3 vw2. 

Let us now assume a linear variation of z(m) and K(m) in the form 

z(m)=Xo+y(m--0) , K(m)=a(m-mo) , (2.18) 

where mo is the cell number where the coupling constant vanishes and X0 gives the 

frequency of this cell. (W e see from Table 1 that, over the geometry range repre- 
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sented by cells A-E, this linear approximation is valid.) Substituting Eqs. (2.18) 

into Eq. (2.17) we obtain 

d”F 1 dF 2 
dm2 + 

--- 
m-modm a -7 

(x-xo) F-0 
m-mmg) 1 - ’ 

We now change independent variable from cell number m to 

U= 
\i 

:(m-mo) 

and find 

where the eigenvalue x is now redefined as 

u = (X-X,) G . 
J- 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

Equation (2.21) corresponds to the SchrSdinger equation for a hydrogen atom, 

except for the absence of a factor 2 in the F’(u) t erm. Its solutions are therefore 

related to the Laguerre polynomials for angular momentum one half. But the 

analysis of Eq. (2.21) is sufficiently simple so that we can directly obtain the series 

solutions in the form 

F(u, a) = ewu 
O” (-l)n(2u)n I-(T) c n=O (Id)” Iyy - n.) * 

(2.23) 

If the series in Eq. (2.23) d oes not truncate, the behavior of F(u,a) for u > u 

will diverge exponentially, making it impossible for F(u, 0) to satisfy the boundary 
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condition at the end of the cavity. Thus the modes are discrete with the index p, 

and are 

FP(u) = e-“ 
p ( -l)n(2U)“p! 

c n=. bq2(P - 4 ’ 
(2.24) 

where 

a=2p+l,p=0,1,2 )... . (2.25) 

The solution in Eq. (2.24) applies for u > 0 and has a significant value only until 

the (approximate) turning point at u = 0 = 2p + 1, beyond which FP(u) decreases 

exponentially, as can be seen from Eq. (2.21). Thus the mode represented in 

Eq. (2.24) is localized to the region between u = 0 and u = 2p + 1. Similarly, for 

cr < 0, the modes are localized between u = 0 and u = -(2p + 1) and the same 

functions as in Eq. (2.24) are obtained with u ---f --u and 

a=-(2p+1),p=0,1,2 )... . (2.26) 

Since X varies linearly, the modes are equally spaced in frequency, a consequence 

of our assumption that z(m) and K(m) are linear functions of m. We see that the 

ratio of the spacing of the normal mode frequencies SV to the spacing of the cell 

frequencies 6vm is given by 

6u fi -=-- 
SUl7l a+y * 

(2.27) 

The preceding analysis is limited in at least two respects. First, the actual 

modes are discrete functions of the variable m and the continuous function in 

Eq. (2.24) is only an approximation, particularly if (~Y/cY)~/ in Eq. (2.20) is not 

small. Second, the location at which F(u) becomes exponential, u > Q or -u < -c, 

must lie well within the cavity. If this is not the case, the modes are oscillatory 

near one of the walls and the eigenvalues, which depart from Eqs. (2.25) and (2.26), 

are not easily obtained analytically. 
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We can also construct an approximate result for the more general case, using a 

WKB like solution of Eq. (2.17) neglecting the first derivative term. In this case, 

we have 
d”F 
dm”+2 

CA - drn))F g 0 
44 

, (2.28) 

with F being oscillatory between mo, where K vanishes, and ml, where x(ml) = X. 

The eigenvalue condition is therefore 

ml 
s ( dm 2[A;;d) 1’2 g pn 
mo 

With linear variation of z(m) and K(m), we have 

where 

Thus 

x - x0 
ml - mo = - 

Y * 

x--x0 u 

p=Jzcyr=2’ 

. (2.29) 

mo) = PT (2.30) 

(2.31) 

(2.32) 

in a.greement with Eq. ( 2.25) except for the 1 which most likely comes from the 

pha.se shifts at m = nzo and ml, and from the neglect of the first derivative 

term. An advantage of using Eq. (2.29) for the eigenvalues is that it can lead to 

approximate results for various non-linear forms for z(m) and ~(172). 

The calculation of the kick factor for the genera.1 case will be described in 

detail in the next section. For easier comparison with the numerical results to be 

presented later let us here define a normalized kick factor I(:, as 

I’: = 
ICti Fmeimr112 N Is,” duFp(u)e’Ui/2 

Cz; F; = JFduF;(u) 
(2.33) 
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where 1c, = (2~/a)‘/~2C, is th e 1 d’ff erence of the phase shift per cell from 7r. Re- 

markably, the integrals in the numerator and denominator in Eq. (2.33) can be 

evaluated exactly for the modes in Eq. (2.24) and are independent of p. In fact, 

we find 

(2.34) 

Finally, we point out that in terms of the normalized kick factor the normal kick 

factor (to be presented in the next section) is given by ICp x l$Esp, with Ksp 

equal to the kick factor for the geometry of the cell on which the mode is centered. 

2.3 THE KICK FACTORS 

Equation (2.4) together with the appropriate boundary conditions can be used 

with tapered parameters Vm and K mfi 
2 

to find the eigenmodes of a detuned struc- 

ture. In order to find the kick factors of the cavity we first need to make some more 

correspondences between the circuit model and the cavity. Let us take the voltage 

drop across the capacitor in loop m of the circuit to represent the longitudinal volt- 

age the beam loses (to the dipole modes) in cell m of the cavity. Let us further take 

the value of this capacitor to be Cm = (2K$m)z,sL)-1, with Kim) = 27r~~~)K~~)/c 

the loss factor of the dipole mode for the periodic structure with the dimension of 

cell m (which is obtained using TRANSVRS); xe is the driving charge offset, x is 

the test charge offset, and L is the cell length. Now let us assume the cavity is 

empty at time t = 0. Let us assume also that the driving charge enters the cavity 

a,t time t = $L/c and reaches the center of cell m at t = mL/c. To represent 

this in the circuit model we take as our 2N initial conditions (assuming we have 

N loops) that at time t = 0 both the current and the voltage in every loop are 

zero. In addition, in each loop m we include as driving term the current source 

-s& - mL/ > c in p arallel with the capacitor. Then, since we already know the 

Fourier transform of the eigenfunctions of the system, we represent t’he Fourier 

transform of the solution of the new, driven equations by a sum over these eigen- 

functions (for a discussion of this method see, for example, Ref. 16). Performing 
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the inverse Fourier transform we obtain the time evolution of the currents in the 

circuit. Then finally, it is a simple matter to obtain the kick factors. 

Before beginning, let us briefly discuss one conceptual problem with using our 

circuit to model the time development of the fields in a multi-cell cavity.* In a 

real cavity causality holds and an excitation in cell 1 cannot arrive in cell m until 

the time (m - l)L/c later. For our circuit model, however, there is no time delay: 

some current reaches every loop of the circuit immediately after the excitation in 

loop 1. However, this is not a serious problem if the relative cell-to-cell coupling q 

is small (as is the case for the NLC structure). In such a case the initial growth 

of the current in loop m is a factor (Mm,m+l/Lm)m-l = qrnel smaller than the 

initial growth in loop 1. For our problem of sequentially excited loops this implies 

that any precursor vo1tage-G.e. voltage getting ahead of the excitation front-will 

be small. 

Taking the Fourier transform of the driving terms discussed above has the 

effect of adding 

h,, = qe 
u2&7ie 

-P*im,uL/c (2.35) 

to the right hand side of our matrix equation, Eq. (2.4). In vector notation the 

eigenvalue equation that we solved, Eq. (2.4), is written as 

A@) = X,f(P) , (2.36) 

with 1c1 the ma.trix of the system, f(J)) the pth eigenfunction, and A, = “p2 the 

pt” eigenvalue. In this notation the m th element of a vector gives the value of the 

parameter in cell m. We want to solve 

Mg-Xg=h , (2.37) 

* This problem was pointed out by Matt Sands. 
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with X = u- 2, for the vector g. To do this we expand g and h in terms of the 

eigenfunctions. Then Eq. (2.37) leads to 

g = c f(p) f(p) - h i 1 p A, -x lf(d12 ’ (2.38) 

with a . b representing the dot product of vectors a and b and ju12 E a. a. In 

obtaining Eq. (2.38) we have used the orthogonality of the eigenfunctions, which 

holds because our matrix is real and symmetric. In addition we have assumed the 

system is non-degenera,te. 

Going back to the time domain we find that in loop m of the circuit 

co 

G,(t) = 
J 

du grn ( u)eZxivt 
-CO 

e27riu(t-nL/c) . 

(2.39) 

The integral in the above equation contains two poles, at v = fu,. We add a 

small positive imaginary part to these pole positions. If (t - nL/c) > 0 we close 

the integration loop in the upper half plane, else in the lower half plane. The result 

is 

f!i%p f!?) 
Gm(t) = -2rqe c - c @(t - ?2L/c)-777 sin2rup(t - nL/c) 

p If(P n 
, (2.40) 

n 

with o(t) = 0 for t < 0, o(t) = 1 for t-> 0. From our definition of fm [see Eq. (2.4)] 

we see that the current in the inductor in loop m is given by 1, = GGm(t). To 

get the current in the capacitor we need to add the driving current to this. The 

voltage drop across the capacitor is given by 

t 

l/Zm(t) = & 
J 

Im(t’) dt’ + 
m. 

FO(t - nzL/c) 
m 

0 (2.41) 

23 



I 
. 

The voltage drop across the capacitor represents the energy loss of a test parti- 

cle to the dipole modes of the cavity. But in this paper we are concerned primarily 

with the transverse kick that the test particle experiences from the dipole mode. 

By using the Panofsky-Wenzel theorem(17) we can obtain the transverse kick from 

the longitudinal one, 4.e. the transverse kick Vm(t) = (c/x) St dt’ Vrm(t’). Thus we 

find that the transverse kick in cell m is given by 

Vm(t) = 2qeXeL 
c f$/pp 

+lf(P)12 
C O(t-nL/c)fPP)j/Wsin2avp(t-nL/c) . 

P n 
(2.42) 

Eq. (2.42) pl im ies that the amplitudes and phases of the modes after the driving 

particle has left the cavity are given by 

Vm(t) = C Vi’) sin(27rupt - Sp) t > NL/c , (2.43) 
P 

with 

2 2 Lf!z@-KF v$) = Qe e 
up(fq2 

tan 6p = 
En f~pp)j/IC,jn)u$n) sin(ncpp) 

c,, f&p) Jm cos(ncpp) ’ 

and ‘pp = 27ru,L/c. 

, (2.44) 

(2.45) 

Let us return to the voltage equation that is valid for all time, Eq. (2.42). This 

equation can also be used to obta.in the total voltage a test particle, following a 

distance s behind the driving charge, experiences in cell m of the cavity, vm(.s). 

This quantity is given by 

Vm(S) = Vm ““,” 
( > 

. (2.46) 
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Summing up the contributions of ‘all the cavity cells we obtain the total kick felt 

by the test charge 

V(S) = C Vm(S) . (2.47) 
m 

This equation can be combined with Eq. (2.42), (2.46), to give the general form of 

the induced voltage. 

Now, let us assume that the couplings q are small so that we can ignore the 

effects of any precursor voltages, and that therefore we can approximate p(s) = 0 

for s < 0. This relation combined with Eqs. (2.42), (2.46), (2.47), leads to 

p(s) M 2q,x, NL c KP sin F s > 0, 
P 

with the kick factor for mode p given by 

(2.4s) 

(2.49) 

Eq. (2.48), which represents the induced voltage of the cavity, is of the form tha.t 

we expect. With weak cell-to-cell coupling the results of this equation should agree 

well with the more exact calculation of the induced voltage, and in the simulations 

of the NLC cavity, to be presented in Sec. 2.5, we will see that this is indeed the 

case. In a similar vein, when the coupling is weak we also expect the kick profile 

‘&(s) to be given by a simplified equation valid for all s > 0: 

Pm(s) M C VA,) sin %(mL + s) - OP 1 s > 0. (2.50) 
P 

Eqs. (2.49) gives us the kick factors of the cavity modes. How do the parameters 

in the equation correspond, in terms of the properties of the circuit model, to what 

we expect in a cavity ? ‘Recall that for any dipole mode of a cavity p the loss 
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factor Ic, = 2wupKpf c is given by the ratio of the square of the maximum voltage 

gained by a test particle (with respect to time of entry into the cavity) to the 

product 4x,xNL times the energy stored in the mode.(‘5) From the meaning of the 

parameters of Eq. (2.49) in terms of the circuit parameters we see that Eq. (2.49) 

gives approximately, though not exactly, the proper ratio of the maximum voltage 

squared and the energy stored in the modes of the circuit chain. 

2.4 LOSSES 

If we run the computer program URMEL(18) we find that for a periodic, copper 

cavity with cell geometry anywhere in the range A-E the Q factor, near pi phase 

advance, is nearly constant and given by 6500 (TRANSVRS does not compute the 

Q’s). This size of Q implies that the wakefield does not damp to l/e until 40 m 

behind the driving bunch. So the wall losses are not very important for the specific 

goal of this paper, that of having small wakefields between 0.4 m and 3.8 m behind 

the driving bunch. However, for completeness, we will describe briefly how we can 

include losses in our circuit model. Once we have the Q’s of the normal modes, in 

addition to the frequencies and the kick factors, then we have the complete long 

range picture of the wakefields. 

To add damping to our circuit model we add to each circuit loop m a resistor 

Rm in series with the capacitor. The effect on our homogeneous difference equa- 

tion, Eq. (2.4), is the addition of the term -ifm/(Qmumu) on the left hand side, 

with the quality factor Qm = 2rumLmIRm. Now our eigenvalue problem has be- 

come complex, non-hermitian, and non-linear. In theory we can solve this problem 

by stepping in frequency to find the zeros of the determinant of the matrix; these 

positions give the eigenvalues, and then we can ba.ck substitute to find the eigen- 

functions (as is done, for. example, in the program TRANSVRS). However, here 

we will develop the loss calculation using a perturbation a.pproach. This approa.ch 

should be sufficient for detuned structures with smoothly varying parameters so 

long l/&m is always small compared to 1. (If for any m, l/&m is not small we 

would doubt that there would be any validity to our equivalent circuit model.) 
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Our perturbation technique (see, for example, Ref. 16) is also applied to finding 

the losses of a multi-cell cavity by J. Rees in Ref. 9. 

Let us begin by writing our original eigenvalue problem in vector notation: 

j/ff(P) = A*f(*) . (2.51) 

Our perturbed eigenvalue equation is 

(Al + M’)g(P) = (A, + A;),(*) = j\*g(*) , (2.52) 

with hf + M’ the new ma.trix, and (for mode index p) g(P) the new eigenfunction, 

and A, + A; = A, the new eigenvalue. The new eigenfrequencies, which in our case 

are complex, are given by I’; = l/X,. We expand the new eigenfunctions in terms 

of the original eigenfunctions as 

g(p) = f(P) + c cqpf(Q) . (2.53) 
q#* 

Substituting Eq. (2.53) into Eq. (2.52), and using Eq. (2.51), we obtain 

c CqpXqf(q) + M’f(P) = A, c Cqpf(q) + X;f(*) (2.54) 
q#P !l#P 

In Eq. (2.54) we have assumed the perturbations are small, and have kept only 

first order terms. Taking the dot product of f(p) with Eq. (2.54) we obtain the 

perturbation to the eigenvalues: 

f(P) . Apf(P) 

% = If(P)/2 - (2.55) 

Taking the dot product of f(‘J’) with Eq. (2.54) we obta.in the coefficients that give 

us the perturbation to the eigenfunctions: 

f(q) . Af’f(P) 

cqp = (A, - X,)lf(q” * (2.56) 
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It is not easy to quantify when this perturbation technique is valid. Normally, 

the criterion for the perturbation to be considered small, and this technique to be 

valid, is that for all q # p the ratio cqp/l f (*)I be small compared to 1. 

For our equivalent circuit M ’ is a diagonal matrix; in Eqs. (2.55), (2.56), its 

elements are given by 

ML, = - 2 
Q mvrnfip ’ 

(2.57) 

Note that if for all m, Qm = Q and um = 5 we need not perform the perturbation 

calculation. In this case the solution matrix is the same as for the unperturbed 

case, and the perturbed eigenfunctions are the same as the unperturbed ones. Only 

the eigenvalues change; they are given by 

The real and imaginary parts of the eigenfrequencies are then 

(2.58) 

ZRe(fip) = up /l-(&$7)’ , %m(ii,)=& . (2.59) 

For l/Q small the real part of the eigenfrequency is the same as the unperturbed 

eigenfrequency. And under this assumption the second relation of Eq. (2.59) implies 

that the mode quality factors are given by Qp = Qii/up. 

For our detuned cavity we take Qm = Q to be constant and allow um to vary 

slightly. Then Eq. (2.56) suggests that the largest value of cqp/lf(*)I is N l/Q. 

2.5 SIMULATION RESULTS 

A computer program was written to solve the coupled difference equations 

Eq. (2.4) with the boundary conditions Eqs. (2.7). In order to easily obtain the 

constants in the equations, i.e. Vm and K,Q 2 (or equivalently rjmf+), for any com- 

bination of cell geometries a table was first generated using the computer program 
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TRANSVRS. For the 7 representative cavity geometries A-G (see Table 1) the 

synchronous frequency vs, the kick factor KS, the zero mode frequency vo and the 

pi mode frequency vA were obtained. The resonator frequencies and the relative 

coupling factors for these cavities are then taken to be 

u 
J 

2LJ34 u: - u; 
m= 

uz + u; 
and q= 

u; + u; * 
(2.60) 

Once this table has been generated then for any intermediate values of us (we 

often find it convenient to designate cell geometry by us) we obtain a, I<,, urn, 

and q by means of cubic spline interpolation. The parameter ~~~~ = i(vm + 

~mfl)/(~m~mfl)- In Fig. 7 we display the coupled frequencies obtained by our 

program for cavities with 6 identical cells, for the cavity geometries A-G (the 

plotting symbols), and compare them to the TRANSVRS results (the curves). 

Although, as discussed previously, the single circuit solutions do not agree well with 

the dispersion curves over the whole range of phase advance, due to our definition 

of urn and 77 [see Eq. (2.60)] they d o a g ree well near the ends of the curves. In 

particular, in the important vicinity of the synchronous point the agreement is 

quite good. 

As our first tapered example, in order to verify some of the results of Section 2.2, 

we consider a 200 cell, NLC type structure but with a linear variation of u, as we 

move from the beginning to the end of the structure. We take the full-width of 

the frequency distribution to be Au,/v~ = 9 % and Vs = 15.25 GHz. In Fig. S 

we display the resulting coupled mode frequencies u (given in order of increasing 

frequency) and the normalized kick factors I<’ for this example. The dashes in 

Fig. Sa connect the uncoupled solutions. We see from Fig. 8 that for most of the 

modes-for modes N 60 -to 170-the frequency distribution is uniform and the 

normalized kick factors are approximately constant; outside this range of modes 

the kick factors rapidly drop to zero. We also see that the separation of frequencies 

is larger than that assumed by the uncoupled calculation; over the linear range we 

-find that Su/6 u, = 1.65. Also, the total frequency spread is much larger; for the 
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Fig. 7. The single circuit chain solutions with 6 identical cells (the 

plotting symbols). For comparison the dispersion curves obtained from 

TRANSVRS are also shown. The dots give the speed of light line. 

coupled calculation the lowest frequency 13.2 GHz equals the lowest frequency 

of the dispersion curve that corresponds to the first cell geometry (roughly half- 

way between cell B and cell C of Table 1) while the highest frequency 16.6 GHz 

equals the highest frequency of the dispersion curve that corresponds to the last 

cell geometry (near cell E). H owever, the range of important frequencies-those 

frequencies for which the kick factor is significant-is approximately the same as 

the range of synchronous frequencies, 14.5 GHz to 16 GHz. 

A uniform mode distribution and constant kick factors were both predicted in 

Section 2.2, where we replaced the difference equations by a differential equation. 

We find this agreement with the form of the results (for modes 60-170) in spite 

of the fact that dm, th e p arameter which needs to be small for the analytical 

approximation to be valid, is 1.4, and is not small. In more detail we see that 

the value of Su/Gu m obtained from the simulation is 0.9, which is only in rough 

agreement with the analytical value of 0.7 obtained from Eq. (2.27). In addition, 

we see that the value of the kick factors in the linear regime, 1.65, agrees well 

30 



b ) 

mode number 

Fig. S. The coupled mode frequencies v (a) and the normalized kick factor 

K’ (b) of a 200 cell structure with linear frequency variation and with full 

spread Avs/fis = 9 %. Th e as res in a connect the uncoupled solutions. d 1 [ ( )] 

with the analytical result, l.SO ( we have taken as typical value of 1c) 0.35). In 

Fig. 9 we display the mode patterns [the values of fm (‘)j/m] for every 10th 

mode scaled arbitrarily. Each frame is a bar graph, with abscissa giving the cell 

number, ranging from cell m = 0 to 200. The plots, for modes 60-170, confirm the 

expectation implied in Eq. (2.29) that the modes are localized, and that the limits 

of their extent are approximately given by the cell for which the cell frequency 

equals the mode frequency and the cell for which the coupling goes to zero. (Note 

that the localization of the modes in the NLC structure was also found in Ref. 11.) 

In addition, we clearly see that the modes that depart from the uniform frequency 
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distribution and the constant kick factor (modes l-60 and 170-200) are exactly 

those modes which reach the end walls of the structure. 

Fig. 10 is our standard plot applied to this example. In the standard plot 

panel (a) h s ows the mode spectrum and panel (b) the kick factor w frequency, 

including now the variation of the kick factor for a single cell with cell geometry. 

Panel (c) gives the product of the loss factor times the mode density, which in 

the smooth approximation is the Fourier transform of the wakefield [see Eq. (1.2)]. 

And panel (d) shows the wakefield envelope. In panels (a)-(c) 200 dots give the 

solutions of the eigenvalue problem, and the dashed curve represents, for compari- 

son, the uncoupled results. In Fig. 1Oa we clearly see that the range over which the 

frequency distribution is linear is the same as the synchronous frequency range. In 

panel (b) we note that the (unnormalized) kick factor has a tilted top, reflecting 

the fact that the higher frequency cells, those more toward the end of the structure, 

interact more strongly with the beam. In panel (c) we see that the coupled result 

for KAn/Au is very’similar to the uncoupled result; one difference is that this 

function now has small tails. And in panel (d) we note the sin Ps//~s behavior of 

the wakefield, which is due to the sharp edges of KAn/Av. The wakefield drops 

too slowly and is unacceptable for NLC needs. At the spacing of the second bunch, 

at s = 42 cm, the wakefield amplitude is 1s MV/nC/m2; the requirement is that 

it be 5 1 MV/nC/m2. 

The situa.tion is clearly improved if we use a Gaussian distribution of cell 

parameters. In particular we choose an rms width crvd/V9 = 2.5 % (keeping the 

central frequency at V = 15:25 GHz). Th is is the same structure for which, in 

Section 1.3, we presented a wakefield for the uncoupled calculation (see Fig. 5). 

The coupled results are shown in Fig. 11. In panel (d), as an aid to the eye, 

we again display the smooth approximation, Eq. (1.5) with 0, set to gv., by the 

dashed curve. In Fig. lla we see that the peak of the frequency distribution is 

1.7 times that for the uncoupled calculation. In frame (b) we note that for a 

structure detuned according to a Gaussian distribution the kick factors vary as a 

smooth function of frequency, and they again become small outside the synchronous 
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Fig. 9. Some mode pa.tterns. The plots give j~)~IC!m)~$m) scaled arbi- 

t,rarily. The abscissas give the cell number, ranging from m = 0 to m = 200. 

The distribution in u, is uniform with full-width Av,/c, = 9 %. 
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Fig. 10. The normal mode frequency distribution An/Av (a), the kick 

factors I< (b), the product K An/Au (c) and the wakefield envelope I&’ (d) 

for the single circuit chain model of the detuned structure. The distribution 

of vS is uniform with a full-width Au,/V, = 9 %. The dashes [in (a)-(c)] 

connect the uncoupled solutions. 

frequency range. In frame (c) we see again that KAn/Au is almost the same for 

the coupled as for the uncoupled calculation, and that the primary difference is 

in smoother tails. And in frame (d) we note that wakefield is almost the same 

as the one for the uncoupled calculation. The somewhat lower amplitude level in 

the interval s = 0.7 m and s = 6 m can be attributed to the smoother tails of 

KAn/Au. To test for the effects of the precursor volta.ge in the circuit (discussed 

34 



13 14 15 16 17 -- 13 14 15 16 17 

.4 

- “E .3 

3 
< .2 

5: 
7 
w .l 

.O 

v/GHz u/GHz 

1oom 

13 14 15 16 17 --0 1 2 3 4 5 6 
v/GHz s/m 

Fig. 11. The normal mode frequency distribution (a), the kick factors (b), 

the product K An/Au ( c and the wakefield envelope I@ (d) for the sin- ) 

gle circuit chain model of the detuned structure. The distribution of us 

is Gaussian with crvs/fis = 2.5 %. The dashes [in (a)-(c)] connect the 

uncoupled solutions. 

in Sec. 2.3) we have repeated the wakefield calculation, but now using the more 

involved combination of Eqs. (2.42), (2.46), (2.47). We find that the difference in 

the results is negligible. Finally, in Fig. 12 we plot some mode patterns for this 

example. For modes p we display V$)/(gezeL) defined by Eq. (2.44). The range 

of the ordinates of the plots is f0.35 MV/nC/m2. These plots, in addition to 
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Fig. 12. Some mode patterns for the single ba.nd model. For modes p we 

disp1a.y Y$)/(q,z,L) with a range 410.35 h4V/nC/m2. The abscissas give 

- m from 0 to 200. The distribution in us is Gaussian with c”,/v~ = 2.5 %. 
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showing the mode patterns, give the amplitudes at which the modes are excited 

by the driving charge. 

To see the effect of the boundary conditions on the wakefield we have repeated 

our calculation for a Gaussian detuned cavity but now taking as boundary condi- 

tions Eq. (2.8), th e b oundary conditions corresponding to half-cells on the ends. 

We see that to 1% of the peak the wakefields have not changed. We therefore 

conclude that our results are not sensitive to the boundary conditions. This is 

consistent with our earlier observation that, for the NLC structure with its pecu- 

liar dispersion characteristics, those modes that touch the end walls have their loss 

factors greatly depressed. 

100 

.I 

0 1 2 3 4 5 6 

Fig. 13. The wakefield envelope for a Gaussian detuned structure with half- 

cells at the ends, corresponding to the boundary conditions of Eq. (2.S). 

The results for the wakefield using a Gaussian distribution of cell parameters 

are encouraging. However, the use of a single circuit chain is not readily justi- 

fied , particularly since it corresponds to dispersion curves which are not in good 

agreement with those obtained from TRANSVRS. In the next chapter we therefore 
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try to put the equivalent circuit on a more physical basis. This leads to a double 

circuit chain which fits the dispersion curves extremely well. At the same time, the 

wakefield predictions are not changed substantially, but now we can have greater 

confidence in the results. 

2.5.1 Losses 

Before proc.eeding to the next chapter let us give one example of a calculation 

including losses. It has been suggested that if we combine detuning of the structure 

with a relatively strong de-queueing of only a few cells we might be able to reduce 

the wake at even longer distances than just detuning alone would. To test this 

principle we detune our cavity as a Gaussian as before; in addition we now de- 

queue five cells to Qm = 1000, while setting the rest of them to Qm = 6500. 

The first detuned cell is number 20, and the spacing between detuned cells is 40 

cells. The resulting normal mode Q’s, obtained using Eq. (2.55), are displayed in 

Fig. 14. We see that there is a great scatter in the Q’s, and we expect that this 

will make the wakefield worse rather than better at long distances. Note that for 

this example the maximum of the cPp/lf(“)l, th e arameter that needs to be small p 

for the perturbation calculation to be valid, was found to be around 0.1. Roughly 

this size occurred in 5 instances; for most elements it was 5 0.025. We, therefore, 

expect the results of this perturbation calculation to be valid. 

3. Double Chain of Coupled Circuits 

3.1 THE DIFFERENCE EQUATIONS 

In an effort to put the difference equations corresponding to the equivalent 

circuit on a more physical basis we expand the fields in each cell into an infinite set 

of orthonormal modes and relate the coefficients in adjacent cells to one a,nother by 

treating the iris coupling using the static approximation of Bethe. The details 

are presented in the Appendix. In the present a.pplication we assume that the only 
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Fig. 14. The normal mode Q’s for our de-queueing example. The modes 

are detuned according to a Gaussian distribution, with ay,/fis = 2.5 %. 

cell modes of importance are the TMrro and the TErrr modes with coefficients fm 
and &,, in each cell, and obtain the difference equations [Eqs. (A.lS), (A.l!J)] 

(x,,-x)fm-~f,,l-~f~-l = _ 
(3.1) 

A 

(i,-A)~m+~j_+,+~i_-l = 

(3.2) 

The definitions of the parameters xn, gm, IZ~*;, &+, are given in Eqs. (A.20), 

(A.21), in terms of properties of the TMrlo and the TElrr modes and of the 

susceptibilities of the iris holes. However, as described below, instead of using 

these relations to find the parameters we will obtain them by fitting the dispersion 

curves obtained by TRANSVRS. Note that if our cavity contains N cells then 

Eqs. (3.1), (3.2), p re resent a symmetric eigenvalue problem with 2N eigenvalues 

and 2N eigenfunctions. An equivalent circuit representation of Eqs. (3.1), (3.2), 

w_ith the cell frequencies given by u,,, = I/& and i& = l/c, is sketched in 
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_ Fig. 15. Note that with the cross-coupling terms set to zero Eqs. (3.1), (3.2), are 

of the same form as the single circuit chain equation Eq. (2.4). However, unlike 

in the earlier equation the coupling coefficients in Eqs. (3.1), (3.2), represent only 

positive quantities; the signs in front of the coupling terms reflect the fact that with 

magnetic coupling a TM mode is a backward wave and a TE mode is a forward 

wave. 

VW1 LJ %l-l/2 
. . . 

1 7 
1 
A 

3-92 7115A3 

Fig. 15. An equivalent circuit representation of Eqs. (3.1), (3.2). 

Just as in the single circuit chain model several choices of boundary condition 

are possible. If we assume that the cavity consists of N full cells (m = 1,2, . . . , N), 

with metallic end walls, the boundary conditions correspond to 

fo =f1, j-j= -j1, ‘is = Kl, k; =it1 , 

L1 A (3.3) 
fiv+1 = fN , fA’+l = -fN , xN+; = KN , kN+; = kN . 

If we assume N - 2 full cells (m = 2,3, . . . , N - 1) with two half cells (m = 1, N) 

with metallic end walls, the boundary conditions correspond to 

f(-J = f2) J-J =o, “3 = “3, 2; =ip , 
(3.4) L. fN+l = f&.1, j& =o, “N+i =“&$ , kN+; = 2N-i * 
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The dispersion curves for the periodic structure corresponding to our two chain 

model are easily obtained by setting 

f,,, = f cosmq5 and f,,, = f^sinmd (3.5) 

in Eqs. (3.1), (3.2), and treating all other parameters as independent of m. We 

then obtain 

(X-A- Kcosf$)f = -4Zsin4j , (3.6) 

(2 - X + k cos $)j: = -4Zsin 4 f . (3.7) 

Combining these equations we obtain the dispersion relation: 

cos qs = Kfk - (x - A)(? - A) 
(x - X)k - (i - X)K * 

When plotted as cos 4 against X, Eq. (3.8) is a hyperbola with asymptotes 

A= 
xi? - SK 

k-E 
G X0 and cos $5 = x - 

srz - XK 
(k-K)2 - 

(3.8) 

(3.9) 

If our model is realistic, the two dispersion curves in Fig. 3 marked C, D, or 

E should therefore be part of the branches of a hyperbola with one horizontal 

asymptote, and they are. The frequencies of the zero and pi modes of the two 

bands for C, D, or E are given by 

~(~7~) = x - 6 , 2 + 2 
0 and Xpy2) = x + K , ii-2 (3.10) 

and the four parameters x, 2, K, k can be obtained directly from At”), X$$“) [with 

some ambiguity as to which band corresponds to (1) or (2)]. We have obtained 

the zero and pi mode frequencies for the geometries A-G using TRANSVRS and 

then by the above procedure have found the four needed parameters as functions 

of iris radius a. The results are shown in Fig. 16. Substituting these parameters 
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into our difference equations we obtain, for periodic structures with the geometries 

A-G, the dispersion curves shown in Fig. 17. The a.greement with the TRANSVRS 

dispersion curves is far better than that from the single band fit and is excellent, 

except for some small departure in the upper band where the iris radius is largest, 

most likely due to the neglected frequency dependence of the coupling and/or the 

neglect of still higher cell modes. It should be noted that neither K: nor iz change 

sign when going from C to D to E. However the opposite sign of K and i;: on the 

left side of Eqs. (3.6) and (3.7) apparently plays the role of a sign change in the 

coupling when the mode changes its !i!‘iV~~o/TE~~~ mix as one proceeds down the 

tapered structure. 

1.25 I I I I I 

1.00 - 

N 
s- 0.75 '- 
F2 
In 
2 0.50 - 

0.25 - 

0.00 4 
3 4 5 6 

a/mm 

Fig. 16. The two-band parameters x, i, K, k as functions of iris radius a 

for periodic geometries A-G. 

For example, let us construct 1 + cos 4 from Eq. (3.8) since we are most inter- 

ested in the modes near d = 7r for our structure. We find 

1 + cos 4 = (A - C))(G) - 4 
(k - K)(X(J - A) 

(3.11) 
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Fig. 17. The double circuit chain solutions for a structure with 6 identical 

cells (the plotting symbols). Results are given for cell geometries A-G. The 

crosses represent modes belonging to the lSt band, the diamonds those 

of the 2nd band. F or comparison, the dispersion curves obtained from 

TRANSVRS are also shown. The dots give the speed of light line. 

l$cosq5= (4;r)2 (3.12) 

and the factor 1 + cos q5 plays the role of 

1 d2f --- 
2f dnz? 
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in Eq. (2.28). Equations (3.6), (3.7) tl lerefore correspond approximately to the 

single band equation 

d2f + 2(X - Xi2))(X - X2)) f ~ o 
dnz2 (ii - K)(XO - A) 

. (3.13) 

If x$l) (2) and X0 are close to one another, and distant from X, , as is the case near 

where the lower band goes from forward to backward wave, the eigenvalues X, will 

be near X0 and XL’), and we can approximate X - Xi2) by Xi’) - AL2’. Thus we have 

d2f + 2($) - X(,2)) (A - Ap) 
dnt2 (it - K)(X()-A) f r” ’ 

(3.14) 

in which the vanishing of the denominator in the second term corresponds to the 

vanishing of K(m) in the single chain model, Eq. (2.28), at some cell within the 

cavity. 

3.2 THE KICK FACTORS 

The derivations of the time development of the fields, the wakefields, and the 

kick factors for the double-band circuit model proceed in a fashion similar to the 

corresponding derivations for the single-band circuit model given in Sec. 2.3, and 

the form of the results is also similar. As before, we again fit to the kick factor for 

a periodic structure K,, obtained using the computer program TRANSVRS. The 

kick factor for the double-band model is given by 

(3.15) 

with e(m) a fitting parameter and again ‘pp = 27ru,L/c the phase shift per cell. 

Note that only the fm’s -appear in the numerator of the above expression, since 

only the TMlro component of the fields (and not the TElll component) will kick 

the beam. We obtain the fitting parameter by running our circuit program for a 

multi-loop, periodic circuit. Then c is given by 1 + I~(p)~2/lf(p)~2, where p is the 

mode nearest the synchronous point. 
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In an infinitely periodic structure the beam will, on average, only interact with 

a mode that has a phase velocity synchronous with the beam. For a mode with a 

non-synchronous phase velocity the beam will lose energy in some cells, gain energy 

in others, but on average have no interaction. However, even for a non-synchronous 

mode we can calculate an interaction factor I?, which gives the maximum kick a 

particle can receive in one cell of a periodic structure, using TRANSVRS. This 

parameter is a measure of the field properties for a non-synchronous phase advance; 

at the synchronous phase it equals KS. The factor i?s for the lowest dipole band 

for cell geometries C-E, as obtained by TRANSVRS, is plotted as function of 

phase adva.nce in Fig. 18. (Note that the period of this function is 2n, and we 

plot only one-half the period.) We note that near pi phase advance, near the 

synchronous phase, I<, is large and near zero phase advance this parameter becomes 

small. This behavior signifies that the mode is largely TM-like near pi phase 

advance and TE-like near zero. (Although not shown, the next band behaves in a 

complementary way: .it is TM-like near zero phase advance and TE-like near pi, 

near the synchronous phase.) 

By solving a periodic circuit with our two-band program we can see how well 

our expansion of the fields in terms of the TM110 and the 

mates the hybrid fields in a real, periodic cavity. For our 

single cell kick factor for mode p is given by 

T El 11 modes approxi- 

two- band program the 

If(pydi& 
IL = )f(P)l2 + If(P)12 * 

(3.16) 

The results of the program, for periodic structures with geometries C-E, are given 

by the dots in Fig. 18. We see tha.t the results of the model behave only roughly 

in the correct way. One clear difference is that the slope of I;‘, for the model is 

zero at 4 = r, whereas this is not the case for the real cavity. The discrepancy 

in the dependence of Ii, on C#J shows a limitation of our model; however, this 

discrepancy is not terribly important for our purposes, since the contribution of 

the non-synchronous modes to the total kick factor of an N-cell structure will be 
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Fig. 18. The single cell kick factor I?, for a periodic structure with dimen- 

sions C, D, and E, as function of phase advance per cell. The solid curves 

give results obtained by TRANSVRS, the dots give those obtained by the 

two band circuit calculation. 

down on the order of l/N as compared to that of the synchronous modes. Finally 

note that the single band model gives even worse agreement; it results in only 

horizontal lines for I?s as function of 4. 

3.3 SrhfuLmIoN RESULTS 

We have written a computer program that solves Eqs. (3.1), (3.2), to find the 

eigenmodes of the double-band circuit model of the tapered structure. Like for 

the single band program we first find the constants in the equations xm, ?,, K,, 
A K~, for the cell geometries A-G using TRANSVRS, and then find them for any 

intermediate cell geometry by cubic spline interpolation. After having solved for 

the eigenmodes of a tapered structure we obtain the kick factors using Eq. (3.15). 

And, if desired, the Q’s of the modes ca.n be found in a fashion similar to that 

described in Section 2.4 for the single band model. 
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The results for our Gaussian detuned, NLC cavity, using the two band model 

are shown in Figs. 19-22. In Fig. 19 we show the mode spectrum, kick factor, kick 

factor times mode density, and wake function up to 17 GHz. We focus on the 

modes belonging to the first band since the contribution of the second band modes 

to the wakefield itself is negligible and can be ignored. In Fig. 19a we see that 

the peak of the frequency distribution is only 1.4 times the uncoupled calculation, 

rather than the 1.7 factor obtained from the single band model. Some of the 2nd 

band modes can be seen as the beginnings of a second peak at higher frequencies. 

In panel (b) we note that the kick factors of these 2nd band modes are very small 

(they can barely be seen). As to the results of the first band modes we note from 

panels (a)-(d) that, although there are some differences, these results are rather 

similar to the results of the single-band model (compare Fig. 11). In particular, 

the wakefields are quite close to the wakefields obtained with the simpler model. 

In Fig. 20 we show some mode patterns for modes of the first band; for modes p 

we display V$!“/(q exeL) which is given by the two-band correspondent of Eq. (2.44). 

The extent of the modes is similar as for the single band model but there are some 

differences in the details of the mode shapes (compare Fig. 12). In Fig. 21 we plot 

the kick profile T”/m experienced by a test particle a quarter wavelength (s = 2 mm) 

behind the driving charge. This is the position of maximum total kick (at s = 0 

the result is zero since the driving bunch does not kick itself transversely). Note 

that the kick continually increases as the test particle traverses the cavity, due to 

the ever decreasing size of the irises. The area under this curve SO MV/nC/m2 

gives the wakefield at s = 2 mm. And finally in Fig. 22 we display the kick profiles 

seen by the nine bunches, each separated by 42 cm, that follow the driving bunch 

in the NLC bunch train. We see that for all the trailing bunches the kick patterns 

describe sinusoidal oscillations that extend almost over the entire cavity length. 
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Fig. 19. Part of the normal mode frequency distribution (a.), the kick 

factors (b), the product K An/Av (c), and the wakefield envelope I/i/’ (d) for 

the double circuit chain model of the detuned structure. The distribution 

of vS is Ga.ussian with o~,/V~ = 2;5 %. The dashes [in (a)-(c)] connect the 

uncoupled solutions. 

4. Conclusions 

In this paper we have studied the normal modes (in the first dipole passband) 

of a detuned, X-band accelerator structure, a structure that has been proposed 

for the Next Linear Collider. A unique fea.ture of our cavity is that the equivalent 

cell-to-cell coupling changes sign somewhere within the structure. We present two 
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Fig. 21. The transverse kick profile vm seen by a test particle following 

behind the driving charge at s = 5 mm. 

equivalent circuit models that can be applied to finding the modes in this cavity. 

We find the eigenfunctions of these circuit models using a matrix method, and 

from the results we obtain the frequencies, the kick factors, and the quality factors 

of the cavity modes. These, in turn, give us the wakefields for all positions. 

The first circuit model that we introduce consists of a single chain of resonators 

and the second one of a double chain of resonators. The second model includes 

the effects of the second passband modes on the properties of the first. It is a 

model that we derive from the properties of hlaxwell’s equations at an iris, and it 

assumes that the fields in the cavity can be approximated by a simple combination 

of a TMrlo and a TErrr mode. We find that the change of sign of the coupling in 

our detuned cavity can be explained as a change in the make-up of this combination 

as the cell geometry cha,nges. 

The elements of the circuits are found by fitting to the dispersion curves and 

the synchronous kick factor obtained from TRANSVRS, a computer pr0gra.m that 

solves Maxwell’s equations in a periodic structure. We find that both circuit mod- 
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Fig. 22. The transverse kick profile vm due to bunch number IQ = 1 

experienced by the following bunches. The bunch separation is 42 cm. 

The ordinate range is ho.75 MV/nC/m2. The abscissas give m from 0 to 

200. 

els, but particularly the two-band model, when applied to a periodic cavity, give 

dispersion curves that agree well with those obtained by TRANSVRS. However, 

the dependence of the single cell kick factor on phase advance is completely wrong 

for the single band model, and only in rough agreement for the double band model, 

when compared with TRANSVRS results. This indicates that the make-up of the 

fields is not as simple as our two models assume. However, the effect of this dis- 

crepancy on the kick factors of a many-cell cavity should be small, since a beam -- 
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interacts strongly only with waves with a phase velocity that is very close to c, 

and these are the waves for which the fit parameter of the model is adjusted. The 

above two observations lead us to believe that for the detuned structure: (i) the 

normal mode frequencies are accurate and (ii) the normal mode kick factors are 

also accurate, except in the tails of the distribution. Consequently, we believe that 

the wakefield is also accurate. As evidence of this we note that the wakefields 

obtained using the two models, over the interval of interest to us, agree to good 

accuracy. 

It has been proposed to operate the NLC with 10 bunches in a train. Earlier 

calculations for the NLC that did not consider the cell-to-cell coupling in the cavity 

found that by detuning the cells according to the proper Gaussian distribution the 

amplitude of the wakefield at the positions of the trailing bunches was sufficiently 

small to a.void the multi-bunch instability. The results of the calculations using 

either of our two models agree with the earlier results and with the conclusion. 

Other observations: (i) The frequency distribution of the modes is broader than 

that assumed by the earlier calculation. Effects of this on the wakefield will only 

become evident at longer distances, c N c/6v with SV the typical spacing of modes. 

(ii) The difference equations for a single chain can be approximated by a differential 

equation which has an exact solution that predicts that the modes are localized 

between the cell in which the coupling changes sign and the cell whose resonant 

frequency is that of the mode in question. (iii) This conclusion is also borne out by 

the numerical solutions to the difference equation which show that most modes are 

localized and do not reach the ends of the cavity. In fact the modes which do reach 

the ends interact only weakly with the beam. Therefore the boundary conditions 

do not have much of an effect on the wakefield. (iv) Combining detuning of the 

cavity with de-queueing .a small number of cells will probably result in a worse 

long-range wakefield than if de-queuing were not used at all. 

The results of this paper indicate that detuning the cavity by varying the 

iris radii of the cells sufficiently cancels the wakefield for NLC requirements. But 
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here we have only investigated the effects of the first (or at most the first two) 

dipole bands. When we study the effects of the higher band modes we find that 

their contribution-even for the detuned cavity-is not, in fact, sufficiently small. 

The cure for this, we find, is to vary the iris thicknesses, as well as the iris radii, 

according to a Gaussian distribution as one moves along the structure. This topic 

will be the subject of a future paper. 
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APPENDIX 
Circuit Chains from Maxwell’s Equations 

We here derive the equations which connect the amplitude of the cell modes 

between adjacent cavities. The coupling arises from the penetration of the fields 

through the iris holes whose radius we assume is small compared to the wavelength, 

thereby permitting us to use a static approximation for the penetration. Moreover 

the coupling will be essentially magnetic since E, vanishes at the center of the hole 

for all transverse modes. 

The orthonormal modes are derived for a cell without iris holes. They are 

denoted by et, he which satisfy 

V x et = kfhe , V x hp = klep , (A4 

with 

J 
ee - ep dv = J he - hpr dv = Sip , (A4 

and where n x ee = 0 and n - he = 0 on the boundary. The actual fields a.re 

expanded in terms of these modes, with coeffkients which play the role of volta.ges 

and currents. Specifically, we write 

E(x) = c Veee(x) , H(x) = C Iehe(x) , (A4 
e e 

with 

Vp = J E(X) * ee(x)dv , Ie = J H(X) * he(x)dv . (A-4) 
Note that Eq. (A.3) cannot be used directly to evaluate the transverse electric 

or longitudinal magnetic fields within the iris since these vanish in the individual 

terms. However it can be used to find the longitudinal electric and transverse 

magnetic fields within the iris which will form the starting point for electrostatic 

and magnetostatic calculations in the vicinity of the hole. 
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We now write Maxwell’s Equations as 

VxE=-jbZoH , ZoVxH=jkE . (A-5) 

Multiplying the first of Eqs. (A.5) by he and integrating over the cell volume, we 

find 

J dvhe.V x E= -jkZg J H * hedv = -jkZoIe . (A-6) 

Using V . A x B = BaVxA-A.VxB,wefind 

keVe + J dSn*Exhe=-jlcZoIe . (A-7) 

Multiplying the second of Eqs. (A.5) by ee and integrating over the cell volume 

similarly leads to 

where j’dS n . (et x H) vanishes since n x ee = 0 over the entire cell boundary. 

Combining Eqs. (A.7) and (A.S), we find for a pa.rticular cell 

(k”-k$)Q=ke J dSn*Exhe , (A-9) 
where the surface integral is now evaluated over the interior surface of the two iris 

holes in the cell. 

As previously mentioned, the electric field at the center of the iris vanishes, 

and the coupling integral in Eq. (A.9) only has a magnetic contribution in lowest 

order of the hole radius. Specifically, for the iris configuration shown in Fig. 23 we 

have 

(k2 - k$) Vp = -jbkeZo [h.el(0)J Jdxdy zH, + hey(0)JJdsdy yap] , 

(A.lO) 

where he(O) is the constant tangential field on the dashed surfa.ces and where the 

surface integra.ls are over the dashed surfaces. 
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For a thick wall the integrals in Eq. (A.lO) can be written in terms of the 

“inside” and “outside” susceptibilities of the iris hole, and the tangential magnetic 

fields in the central cell and two adjacent cells. f2’) Specifically, the double integrals 

can be written as 

JJ dzdy (ix,jy) H, = 
$outH+ $inH- ’ 2 -2, (A.ll) 

where we have written only the contribution for the iris hole on the right in Fig. 23. 

Here Gout,in are the “outside” and “inside” susceptibilities for the iris hole on the 

right, H- is the tangential field on the right side of the central cell (with no iris 

hole) and H+ is the tangential field on the left side of the right adjacent cell. 

Before proceeding further, we will assume that only two cell modes are impor- 

tant and denote them by e, h, b,, V, for the TMrro mode and 6, h, I,, Qm for 

the T&r1 mode. We shall aLso add a subscript m for cell m. Thus, Eq. (A.lO) can 

be written as 

(k2 - /CL) vm = -+Zo [t,b;;’ II”, . H,+, + $,“ul+ h, . H;-, 

- $;+f h; . H; - ,L-i 11, . H”] 
(A.12) 

, 
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where +, - now denote the right, left inner wall of the cell. We now write, using 

Eqs. (A.3) and (A.8), 

and obtain 

km 

V 
m+l + tiLthmhm-l 

2km km-1 
Vm-1 

(A.15) 

We have here included the known symmetry of the Ti’Urrs and TErrr modes, i.e. 

h;t, = 11, G 11, , 1;; = -ii, E ii, , (A.17) 

and define h, = Ih,l, km = lhrnl. Eqs. (A.15) and (A.16) correspond to a 

double circuit chain of resonators. The limitation on these equations comes from 

the neglect of higher cell modes and from the lowest order static calculation of 

the coupling constants $,“,, and $2. Note that the system again represents a 

symmetric eigenvalue problem but now of dimension 2N, where N is the number 

of cavity cells. 
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If we assume the cell variation occurs gradually along the structure then 

Eqs. (A.15), (A.16) can be written as 

(Xm-X)fm-~fm+l-~fm-l = _ 
JGGfm+l+J~jm~l 2’ 

(A.18) 

where we have set fm = V,, fin = 

(A.19) 

Pm, x = v-2, 

1Cl~,thmhrn*l 
, Km&$ = , 

vrnvrnztl 
(A.20) 

* $&~m~rn*l 
7 Km*; = ,. * 

VmVmfl 
(A.21) 

Note that we have taken, for cell m, t,b$ = T/J*; I $z. As is discussed in the main 

body of this paper, rather than using Eqs. (A.20), (A.21), to obtain the parameters 
A . 

Xrn, Xrn, Ki,-j-+7 ICm*fr7 we will obtain them by fitting to the dispersion curves 

of periodic structures. Once these parameters are obtained, and the boundary 

conditions are set, we ca.n solve for the eigenvalues and eigenfunctions of the system. 
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