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ABSTRACT 

The dominance of helicity-conserving amplitudes in gauge theory is shown 
imply universal ratios for the charge, magnetic, and quadrupole form factors 
spin-one bound states: Gc(Q2) : GM(Q2) : GQ(Q2) = (1 - $7) : 2 : -1. 

These ratios hold at large space-like or time-like momentum transfer in the case 
of composite systems such as the p or deuteron in &CD. They are also the ratios 
predicted’for the electromagnetic couplings of the W* for all Q2 in the standard 
model at tree level. In the case of the deuteron, the leading-twist perturbative QCD 
predictions are valid at Q2 = jq21 >> AQCDM~, but do not require the kinematical 
ratio 77 = Q2/4AIj to be large. These results provide new all-angle predictions for 
the leading power behavior of the tensor polarization Z’2s(Q2, 0) and the invariant 
ratio B(Q2)/A(Q2). W  e a so 1 use a generalization of the Drell-Hearn Gerasimov 
sum rule to show that the magnetic and quadrupole moment of any composite 
spin-one system take on the canonical values ,Y = e/M and Q = -e/M2 in the 
strong binding limit of zero bound-state radius or infinite excitation energy. This 
allows new empirical constraints on the possible internal structure of the 2’ and 
W* vector bosons. Simple gauge invariant and covariant models and null zone 
theory are used to illustrate these results. Complications that arise when the Breit 
frame is used for form factor analyses are also pointed out. 
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I. INTRODUCTION 

The low-energy theorem [l] for the forward Compton amplitude at threshold, 
and the helicity selection rules [2] of perturbative quantum chromodynamics (QCD) 
for exclusive scattering amplitudes at high-momentum transfer, indicate that many 
properties of a system bound by a gauge theory are universal and are the same as 
those of a corresponding elementary particle of the same spin and charge. In this 
paper, we shall explore this universality for the case of spin-one bound states in 
&CD, including both the p meson and the deuteron. In particular, we shall focus 
on the behavior of the electromagnetic form factors of composite spin-one systems at 
large momentum transfer, and on the fundamental constraints on the magnetic and 
quadrupole moments of hadronic and nuclear states imposed by Compton-scattering 
sum rules. 

In order to motivate the notion of universality, we first discuss the application of 
the Drell-Hearn-Gerasimov (DHG) sum rule [3-51 to the anomalous magnetic moment 
of a spin-one state. We then show how one can use Tung’s [6] extension of this analysis 
to obtain a new sum rule for the anomalous quadrupole moment of a general spin- 
one system. Together these sum rules show that in the limit of zero radius or large 
excitation energies, the magnetic moment ~1 and quadrupole moment Qr approach 
canonical values: 

PI d-, Ql=--& (1-l) 
where e is the total charge and M is the mass of the spin-one system. These are the 
same values obtained [7] for th e intermediate vector bosons W* in the tree approxi- 
mation to the standard model. It should be emphasized that the sum rule constraints 
on Qr and ~1 do not rely on perturbation theory, but only on the existence of unsub- 
tracted dispersion relations for the relevant helicity-flip Compton amplitudes. The 
deviation of the observed magnetic and quadrupole moments from the canonical val- 
ues thus define the “anomalous” moments of a general spin-one system: II,, s /.~r- & 
and &a - Qr + $, dynamical contributions which must be strictly due to internal 
structure. 

Various theoretical and experimental constraints have already been suggested for 
the magnetic and quadrupole moments of the W. The electromagnetic couplings 
of the intermediate vector boson are constrained by renormalizability and tree-level 
unitarity [8] to be those of the standard model. Experiments that have or will place 
bounds on nonstandard couplings include measurements of g - 2 for the muon 191, 
~115 + W-yX [lo], the decay p --) ey [ll], heavy-ion collisions [12] and e+e- annihila- 
tion processes [ 131. 

The definition of the three parity-conserving and time-reversal invariant electro- 
magnetic form factors of a spin-one object is well known [14]. We will discuss the 
implications of perturbative QCD and helicity selection rules for these form factors 
at high momentum transfer in terms of the ratio B/A of Rosenbluth form factors 
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[15] and the tensor polarization [16] T 2s. A general derivation of the form factors of 
the deuteron in a light-front formulation has also been given by Chung et al. [17]. 
Our emphasis in this paper will be on the predictions of perturbative QCD for the 
large momentum transfer behavior and understanding the scale for their validity. Our 
analysis will be carried out using the standard light-cone frame (LCF) (q* = Q’ f q3): 

Q = (!l+,a-,!L) = (0, Q2 M2 -a 
p+‘Q;) 7 P = (P+,P-,pi) = (P+, p+,O’), (l-2) 

where, as in the Drell-Yan [IS] f rame, the photon momentum is transverse to the 
direction of the incident spin-one system, with q: = Q” = -q2, and q+ = 0 for space- 
like photons. Elastic kinematics requires (p + q)2 = M2, 2p * q = Q2. Although this 
frame is often referred to as the infinite momentum frame, the light-cone kinematics 
are exact, and no limiting procedure has to be taken. In particular, the value of the 
frame-dependent momentum p+ is irrelevant. In the transverse frame analysis, the 
dominance of the helicity-zero to zero matrix element of the electromagnetic current 
is sufficient as an assumption to determine the relationship between all three form 
factors. Predictions for time-like photons, such as in e+e- -+ p+p- can be obtained 
from. crossing relations. 

We repeat the analysis using the Breit frame with ji and < parallel. Here we 
find that predictions for form factors require information about nonleading matrix 
elements; helicity-conserving matrix elements alone are not sufficient to determine the 
magnetic form factor. In addition, as recently emphasized by Sawicki [19], light-cone 
perturbation theory analyses in the Breit frame must take into account nondiagonal 
Z-graph contributions to the electromagnetic current. 

The standard Rosenbluth cross section [15] f or elastic electron scattering on a 
target of any spin in the lab frame, 

. 
da a2 cos2(8/2) E’ 
dR = 4E2sin4(6/2) E - [A(Q’) + NQ2) tan’(W)] , 

in terms of invariants, is: 

da 47rcu2 
dt= t2 K 1 - 

(l-3) 

(1.4) 

The dimensional counting rules [20] of perturbative QCD for exclusive two-body scat- 
tering processes at large s, with t/s fixed, predict 

da 
-l-W) 7 x N p-2 (1.5) 

where n is the total number of incident and outgoing fields. In the case of electron- 
deuteron elastic scattering, n = 14. This implies that A(-t) falls as t-l0 and that B 
falls at least as fast as [21] tA/M2 for the deuteron. Thus the ratio B/A could rise ..- 
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as fast as t/M2. However, a more complete analysis [22] finds that the ratio becomes 
a constant. We elaborate on this in a later section. 

A critical issue is the determination of the momentum-transfer scale at which 
perturbative QCD can make meaningful predictions for quantities such as B/A and 
the tensor polarization for spin-one targets 2’20. Because of kinematic factors, this 
scale is different from the scale at which A can be predicted. We discuss an appro- 
priate choice of scale and obtain predictions for B/A and Z”20. In the latter case, our 
predictions for the deuteron differs significantly from what is usually quoted [23] for 
the experimentally accessible region [24]. 

.- 
With regard to perturbative calculations at large momentum transfer, we would 

like to draw attention to the work of Farrar, Huleihel, and Zhang [25] on the helicity- 
zero to zero deuteron form factor. They find that hidden-color degrees of freedom in 
the deuteron wavefunction may be important in obtaining the correct perturbative 
QCD predictions for normalization of the deuteron form factors at experimentally 
accessible momentum transfers. In addition, as shown in Ref. [26], the evolution of 
the deuteron’s distribution amplitude leads to the dominance of hidden color state 
contributions in the asymptotic domain of very large momentum transfer. Our anal- 
ysis will be independent of the existence of the relative normalization of hidden-color 
states. 

To confirm the generality of the form factor analysis, we also consider a simple 
model in which the composite spin-one system is constructed in a Lorentz-invariant 
and gauge-invariant way from two spin-l/2 constituents in a zero-binding limit of 
one-boson exchange. The analysis of the electromagnetic interactions in this model 
gives a simple demonstration of the connection between radiation null zones [27] and 
the natural magnetic and quadrupole moments of spin-one systems. 

An outline for the remainder of the paper is as follows. In Section II we discuss 
the sum rules and anomalous moments of spin-one systems. Form factors and their 
ratios are analyzed in Section III. The zero-binding model is presented in Section 
IV; this. includes discussion of null zones in radiative processes. Finally, Section V 
contains a brief summary. 

II. SUM RULES 

The low momentum transfer properties of both elementary particles and compos- 
ite systems can be related by general principles to integrals over scattering amplitudes. 
The best-known of these relationships is the Drell-Hearn-Gerasimov (DHG) sum rule 
[3,4] for the anomalous magnetic moment of spin-l/2 systems. It can be obtained 
by using an unsubtracted dispersion relation and a low-energy theorem [l] for the 
helicity-flip Compton amplitude. The generalization to arbitrary spin has been made 
[4,5]; the form for the spin-one case is 

d 
1 =- 1 u; ff b&) - u&)I 7 J (2.1) 
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where pa = p1 - fi is by definition the anomalous magnetic moment for the spin- 
one system, bp (0~) is the total cross section for absorption of a photon with spin 
parallel (antiparallel) to the spin of the target, and w is the photon energy, with && 
the threshold energy. Although an experimental verification of the DHG sum rule 
for nucleons has been carried out [28], ‘t 1 would be interesting to verify this result for 
deuterons. 

- 

.- 

The extension of the DHG sum rule analysis to include the quadrupole moment 
of a spin-one system requires a low-energy theorem to second-order in the photon 
energy. At this order, the polarizability enters the forward Compton amplitude [29] 
in addition to the quadrupole moment. However, Tung [6] has shown that one can 
obtain the following sum rule for the non-forward Compton amplitude: 

2 

(zm fP(%t) - 1n-i fA(%t)) , 

(2.2) 
where M is the mass, Qa = Qr + -& defines the anomalous quadrupole moment, v 
is (s - U)/% and f~ (fA) is the helicity amplitude for parallel (antiparallel) photon 
and target spins. The standard Mandelstam variables s, t and u are used. The 
normalization of the helicity amplitudes given by Bardeen and Tung [30] is used to 
derive (2.2). With this normalization, the optical theorem takes the form 

Zm fP,A = 2voP,A . (2.3) 

In the forward direction, (2.2) reduces to (2.1), with use of w = v/M. A sum rule 
that relates Qa to total cross sections does not exist [6]. 

It is interesting to apply (2.2) t o composite spin-one systems which become point- 
like in some limit. In such a case the photoabsorption cross section and the integrals 
that appear in (2.1) and (2.2) vanish as the size R + 0 or the excitation energy 
z&, -+ po. Thus in this limit, Qa + 0 and pa --) 0. Therefore ~1 = & and Qr = -+ 
are the canonical moments of a spin-one system. Note that this analysis is non- 
perturbative. In the case of the standard model, the integrals in (2.1) and (2.2) 
are higher order N 0(02); thus again pw = 5 and Qw = --&, up to Schwinger- 
like radiative corrections of order o/r. Specific models for compositeness of leptons 
and intermediate vector bosons are discussed by Brodsky and Drell [31], Abbott and 
Farhi [32], and Claudson, Farhi, and Jaffe [33]. The DHG sum rule has also been 
used to place constraints on quark and lepton compositeness and excited states in the 
strong-coupling standard model [32] by Jaffe and Ryzak [34]. 

Note that any spin-one system is required to satisfy the extended DHG sum rule 
(2.2). This implies universal behavior for the properties of spin-one particles in the 
zero-radius limit. In the next section we explore a complimentary universality for the 
form factors of such particles at large momentum transfer in gauge theory. 
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III. SPIN-ONE FORM FACTORS 

A. General formulas 

For a spin-one particle, the matrix elements of the electromagnetic current Jp can 
be written in terms of three form factors, assuming parity and time-reversal invariance 
[14]. We define 

Gth = (p’h’j JP jph) , (34 

where ]ph) is an eigenstate of momentum p and helicity h. This matrix element can 
be written in the form [14] 

G;,,, = -{G1(Q2)e’*+i+‘ + p’“] + G2(Q2)[8%‘*.q - c’*%q] 

-G(Q2)v e’*++‘ + p”)/(2M2)} , (3.2) 

with Q2 = -q2, q = p’ - p, and e s ch and E’ I cht the initial and final polarization 
vectors. The Lorentz-invariant form factors G;(Q2) are related to the charge, magnetic 
and quadrupole form factors [14] 

Gc=GI+;&, GM=G2, GQ=Gr-G2+(1+~)G3, (3.3) 

where77 = & is a k inematic factor. At zero momentum transfer, these form factors 
are proportional to the usual static quantities of charge e, magnetic moment p1 and 
quadrupole moment Qr: 

eGc(0) = e, eG&O) = 2Mpl, eGQ(0) = M2Q1. (3-4 

The Rosenbluth cross section (1.3) for elastic electron scattering on a spin-one particle 
is determined by these form factors via the definitions 

The tensor polarization 

A= G; + $G:, + ;q2G:, , 

B = $1 + $GL. P-5) 

[16] Tzo can also be written in terms of these form factors as 

S 
T20(Q2,0) = - ” 

"G; + ;QGCGQ + ;QGL 2 [’ + (1 + a)tan2(5)] 

fi [A + B tan2( t)] 
. P-6) 

The relationship (3.2) between the covariant form factors and current matrix 
elements can be inverted [17,35] for any choice of Lorentz frame. In the standard 
LCF, defined by [lS] q+ = 0, qy = 0, qz = Q, all the form factors can be obtained 

.‘.__ . . from the plus component of three matrix elements: 
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1 
Gc = 2p+(217 + 1) 

GM= 
2 

2P+(277 + 1) 
1 

GQ = 2p+(217 + 1) 

16 CT0 277 - 3 -- 
ce 

TG& + $21, - l)G;- 
I 

GTO 
(277 - l)z + G&, - G;- 

I 

2’:0 -- $8 G+ -- v+lG+ 1 00 ‘I +-’ 

P-7) 

In contrast, in the Breit frame, where <A = 0, p’= -f{= -p”, an x component of a 
current matrix element is needed to extract GM: 

Gc= 

2 G”+o 
GM = 2MJm ,/%j 

Go= 
-1 G&, + G;- 

2MJm 277 ’ 

Predictions of the behavior of the matrix elements as functions of momentum transfer 
can then be used to extract the Q” dependence of form factors. 

B. Asymptotic forms 

Perturbative QCD predicts [36]. that the helicity-zero to zero matrix element G&, 
will be the dominant helicity amplitude at large Q2 for lepton scattering on a spin- 
one bound state. This follows since quark helicity is conserved in the hard-scattering 
quark-gluon amplitude, and the dominant wave function coefficient, or distribution 
amplitude, has L, = 0. However, it is important to distinguish two scales in the form- 
factor analysis. The primary scale for the validity of perturbative QCD predictions 
is set by the requirement that the momentum transfer through the hard-scattering 
amplitude and the propagators be large compared to the QCD scale AQCD. Since the 
current value of Am lies between 120 MeV and 200 MeV [37], we take AQCD to be of 
order 200 MeV. From estimates by Carlson and Gross [35] we conclude that the LCF 

helicity-flip amplitudes Gzo and G$- are suppressed by factors of 9 and (q)2, 
respectively. 

The second scale is a purely kinematic one. In order to control the kinematic 
factors in (3.7), and thereby retain dominance of G&,, one needs 

Q>>+fAqco. w-0 

This follows from the assumptions Gzo N *G& and Gz- N * ( > 2 G&,. For 

-, _. the dimensionless ratio 17 = &, this requirement translates to 77 >> %. Thus for 
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M > AQCD, the validity of perturbative QCD predictions does not depend on taking 
r) >> 1. 

The present data for the deuteron form factor [38] a, and also for the photodis- 
integration of the deuteron at large momentum transfer [39], appear to be consistent 
with perturbative QCD dimensional counting rules [20] and reduced amplitude scaling 
[21,40]. The scaling of the dominant form factor fi can be seen in Fig. 1, where the 
data is plotted in terms of the reduced form factor [21] fd(Q’) G A(Q2)/F$(Q2/4), 
with FN the dominant nucleon form factor. Perturbative QCD predicts asymptotic 
scaling for Q2fd(Q2) up t o calculable logarithms [26]. Thus, optimistically, one could 
expect that the dominance of G$, begins at Q2 N 1 GeV2. We emphasize that the 
kinematic quantity 7 can be small in the perturbative QCD regime: for example 
for the deuteron Q2 = 5 GeV2 corresponds to 17 N 0.35, whereas we only require 
?j > * 2! 0.05. 

Thus the domain for leading-power perturbative QCD predictions for the deuteron 
form factors is Q” >> ~M&!QcD N 0.8GeV’. In this domain, one obtains [22] from 
(3.7), 

B 477h + 1) v-h - i + (7 + 1) tan2 51 
-;I li 72 + 77 + 314 ’ 7’2~40) N -&’ 

~2+7]+~+4~(7)+l)tan2~’ 
(3.10) 

In the extreme limit q >> 1, these reduce to 

B 
-~4, Tzo- --l/2 

1 + tan2 s 2 

A 1+4tan2t’ 
(3.11) 

The asymptotic value of -fi usually quoted [23] f or T 20 only applies when 8 is zero, 
and when Q2 is much larger than 4M2, which is nearly 8 GeV’ for the deuteron. For 
77 << 1, which is relevant to experiment, we obtain 

B 245 -N %, A- 3 T20 = --3+l - 2tan 2 . ‘B) (3.12) 

The essential assumption made in all of these results is that the G& amplitude is 
dominant. 

The expressions derived for B/A and T20 are compared with experiment [38,41, 
241 in Figs. 2 and 3. Clearly, the presently available data do not come close to the 
prediction for B/A. However, for T 20 the trend of the data is not inconsistent with 
the prediction. Data at larger momentum transfer is clearly needed. It would also be 
useful to compare elastic electron and positron deuteron scattering to check the size 
of the two-photon exchange interference contribution to B(Q2) in the dip region. 

At lower Q2, where perturbative QCD is inapplicable, the behavior of the p and 
deuteron form factors can have completely different properties. For example, the 
deuteron quadrupole moment is measured to be [42] Qd = eGQ(0)/M2 = (25.84 f 
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0.13)&, whereas at large Q2, Go(Q2) is predicted to be negative. The change in sign 
has led Carlson [43] to infer the existence of a zero in GQ(Q’). 

In the Breit frame, the assumption of G& dominance is insufficient for determi- 
nation of GM. In fact, in any frame where the momenta are collinear, G& does not 
contribute to GM, and, therefore, not to B. Collinear momenta keep the spin quan- 
tization axis fixed; a magnetic interaction then requires a change in the spin state. 
We therefore retain the ratio 

Zf 27lG+, J- 
G”,O - (3.13) 

00 

which, using the scaling obtained by Carlson and Gross [35], can be estimated to be 
of order z N 
and T20 are 

s N 0.07. For general 7, the resulting perturbative estimates of B/A 

fl N 4(q + lb2 , T 
A- ?j + 222 

N -JZ q t $z2 t z2(q t 1) tan2 5 
2o - ?r t 2Z2 t 4z2(77 + 1) tan2 t * 

(3.14) 

For 17 >> 1, they become 

B 
‘li: II 4z2, 

28 
Tzo 11 -fi ’ + z2 tan 2 

1 -I- 4z2 tan2 c ’ 2 

and, for 17 < 1, they reduce to 

B 4z2 -N 
A- ‘I t 222 ’ T20 2 

45 n$!jz2$z2tan2!j 
q + 2z2 + 4z2 tan2 5 ’ 

(3.15) 

(3.16) 

In the asymptotic limit, agreement with the LCF analysis is obtained only if the ratio 
z is unity. In the regime currently accessible to experiment, the two analyses produce 
completely different results. It should be noted that the evaluation of matrix elements 
of the transverse current J” is treacherous in light-cone quantized theories, usually 
requiring Z-graph contributions [19] or surface terms [44]. 

The fewer assumptions required in the LCF analysis clearly make this method the 
preferred approach. To confirm that is the correct analysis, we compare the behavior 
of form factors for composites with the tree-level form factors of the W in the standard 
model. 

C. Tree-level properties of the IV+ 

At tree level, the form factors of the IV+ are given by 

Gc = 1 -$, GM==, GQ=--1. (3.17) 
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These follow directly from the photon-absorption vertex in the standard model. 
At Q2 = 0 this corresponds to [7] th e canonical magnetic moment of e/Mw and 
quadrupole moment of -e/M&. For comparison, the form factors of a composite 
spin-one object are, in the LCF, assuming helicity-zero to zero dominance, 

GC = (l- f”)2p+c;fft 1> 7 GM = 22p+($ I) 3 GQ = -2p+(Tt q - 

(3.18) 
-. 

.- 

Notice that the ratios of the three electromagnetic form factors Gc : GM : GQ = 
(1 - $v) : 2 : -1 are identical for elementary spin-one W’s and for composite spin-one 
hadrons in QCD when G&, is dominant. In particular, B/A and TX, for the IV+ are 
given by (3.10). Th us at large Q2, perturbative QCD predicts that the ratio of form 
factors for deuterons, pi, etc. become identical to those of the point-like spin-one 
fields of the standard model. We will see explicit realization of these results in the 
next section. 

In the Breit frame analysis, the ratios of form factors do not match those for an 
elementary W: We therefore conclude that the LCF analysis is the correct approach. 

IV. ZERO-BINDING MODEL 

As a test of the correctness of the LCF analysis we shall study the form factors of 
a spin-one system in very simple gauge-invariant, Lorentz-invariant model, in which 
the composite system corresponds to two lightly-bound spin-i constituents interacting 
via boson. exchange. Results will be extracted in the zero-binding limit only. The 
analysis is similar to that required for constructing the hard scattering amplitude 
TH in perturbative QCD analyses of mesonic form factors [36]. This model is thus 
directly applicable to the form factors of the p meson at large momentum transfer 
and, in the context of the reduced amplitude approach [40], is also applicable to the 
deuteron. 

The wave functions used are generalizations of the vertex functions employed by 
Bagger and Gunion [45]. Th e f unctions factor into a spin-dependent part 

XJh = c Nit, ’ -“(PI, 4qp2, S2)) 
6182 pF2 

(4.1) 

where J is the total spin and h the helicity, and a spin-independent part 4(x). In 
the zero-binding limit, the constituents are collinear, p; = m;p, and the distribution 
amplitude d(x) becomes 6(xi - mi/M). The spin wave functions then reduce to 

Xlh= $ h(d-4, x00= +1(-M), (4.2) 

with ch a polarization vector given by 
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ei ‘(0, 1, fi, 0)) co 
=FJz = ~wl>0,0, JiiF=3 (4.3) 

in any frame where pi = 0. The reduction can be done in a variety of ways, which 
differ by the choice of basis for the spinors. One can use the light-cone helicity basis of 
Brodsky and Lepage [36], a standard helicity basis [46], or the Weyl basis discussed 
by Hagiwara and Zeppenfeld [47]; except for different phases, they yield the same 
results. 

To obtain form factors, we compute the matrix elements for the transition from 
p, h to p’, h’ in a one-boson exchange approximation. The corresponding diagrams 
are presented in Fig. 4. For a spin-one boson, with mass A, the usual Feynman rules 
yield 

el Abh BP 
G;th cc + h’h 

22y2Q2 + x2 - (x2 - y2)2M2 z2Q2 + ml - @f2 y2Q2 + m: - y?M2 I 
+(1 4-b 2) 7 

(4.4) 
where the proportionality constant is determined by the boson-fermion coupling, 
among other things, and where the numerators inside the brackets are Dirac traces. 
These traces are 

and 

A;,/, = Tr{7d?mY"[$ - 52 ri + mll7'x~hl (4.5) 

Bh = Trb%d%h $- ji+ ml]y”xJh7v}. 

They can be reduced to 
W-3 

A;,h = -4M2{&*b’P + (z - x2)$‘] + q.d*($ + 52)~’ - qd*‘}. (4.7) 

and 

-. B;,h = -4M2{d*[pP + (2 - y2)p’p] - q. ~(2 + Y2)d*fi + q.e’*ep}. (44 

With the restriction to x; = y; = mi/M, the matrix element is found to be 

G;,,, 0; -1 M2 
xi&2 + X2 &2 “’ “C’(P” + p’P) + &.d*e’ - q.ee”@) + (1 t) 2). 

x2 52 1 
(4.9) 

Form factors can then be extracted by comparison with (3.2). We obtain 

el 
GIM 2 2 

M2 x1 e2 M2 x2 
-- + -- 

x2& + A2 Q2 $2 xfQ2 + X2 Q2 xl ’ 

G20c e-1 M21 + e2 M21 
x;Q” + X2 Q2 x2 x;Q2 + X2 Q’ xl ’ 

(4.10) 

G3=0. 
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The magnetic form factor GM is the same as G 2. The charge and quadrupole form 
factors are 

Gc a x;Q?+A2 [+&;]+x&;~2 [$$-;] (4.11) 

and 

GQ a - el M2 e2 M2 v- 
xi&2 + X2 Q2 xfQ2+X2&2’ 

When the constituent masses are equal, these results become [48] 

Gm 
el t e2 M2 

(Q/2)2+X2F 

GMa2 el t e2 M2 
(Q/2)2 t A2 &2 ' 

Gqa- 
el t e2 M2 

(Q/2)2 t A2 &2 ' 

(4.12) 

(4.13) 

For the Rosenbluth form factor fi, given in (3.5), these results are consistent with 
those of Brodsky and Lepage [36]. The ratios of these form factors are identical 
to-ratios of the tree-level form factors of the W*, given in (3.17). They are then 
also identical to ratios obtained in the LCF, when helicity-zero to zero dominance is 
assumed. 

The model (4.13) 1 p a so rovides a simple representation of the form factors of the 
W if it is a composite of two spin-l/2 fermions bound by a gauge interaction. In 
this case, X2 sets the scale of compositeness, and evidently X2 >> M$. In this model, 
which is constrained by gauge invariance and Lorentz invariance, we again obtain the 
usual ratios Gc : GM : GQ = (1 - $7) : 2 : -1, independent of the particulars of the 
theory. 

There is an additional way to construct spin-one systems with natural magnetic 
and quadrupole moments. If one considers a spin-one state that consists of two 
collinear spin-l/2 constituents with charges e; and masses mi, such that $ = a, 
and Dirac moments, then the composite will have ~11 = 6, Qr = -+. The proofmif 
this follows from the analysis of null zones [27] f or radiative processes involving these 
particles. When a = $, then the null-zone condition [27] for the simultaneous 
vanishing of all he%ty amplitudes, 

el e2 el e2 -=- -=- 

Pl - Q P29 P',?l Pb * Q ’ 
(4.14) 

is satisfied at both the composite and constituent levels. However, null zones only 
arise if the spin currents cancel among themselves, that is when the charged particles 
.have natural magnetic and quadrupole moments. Thus the moments defined by the 
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sum rules discussed in Section II also are the moments that preserve null zones. In 
particular, all helicity amplitudes for the subprocess uz + W+r vanish at cos 8 = 
ed/eW provided that the W+ and the quarks have natural moments. A discussion of 
bounds on the W anomalous moment that can be obtained from present pjj + WrX 
data has been recently given by Samuel et al. [lo]. 

In the crossed reaction e+e- + r* --) VP [49], where V is any massive vector 
particle with charge or charged constituents, one again predicts dominance of the 
(0,O) helicity amplitude, so that the cross section g is proportional to sin2 0. This 
agrees with the perturbative QCD prediction of Ref. [2] for e+e- + p+p- and the 
standard-model prediction for e+e- -+ W+W- by Alles et al. [50]. Notice, however, 
that e+e- + W+W- receives contributions from v exchange which do not appear 
in the above analysis. That the vector particle need not itself be charged implies 
that the sin2 0 behavior of the cross section should hold at large s = q2 for processes 
such as e+e- -+ K”*Eo*. In each case, the time-like form factor ratios should satisfy 
Gc : GM : GQ = (1 - $J) : 2 : -1, where now 7 = s/4M2. 

V.SUMMARY 

We have provided two new non-perturbative arguments for the selection of e/M 
and -e/M2 as the natural magnetic and quadrupole moments of a spin-one particle. 
These are the canonical values that emerge in the strong binding limit of zero bound- 
state-radius or infinite excitation energy of a composite spin-one system. The first 
argument, presented in Section II, is based on an extension [6] (2.2) of the DHG sum 
rule (2.1). Th e second uses the requirement that radiation null zones of composite 
particles must be the same as those of point-like particles; this is discussed near the 
end of Section IV. Arguments that have been given previously in the literature are 
perturbative in nature. They include the requirement of renormalizability and tree- 
level unitarity [8] which 1’ lmits terms allowed in the interaction Lagrangian, and a 
perturbative analysis of the DHG sum rule [7]. In the case of the of the 2’ and W* 
vector.bosons, any deviation from these canonical values beyond that predicted from 
radiative corrections in the Standard model would provide empirical constraints on 
the possible internal structure of the gauge particles [lo]. 

We have also established natural ratios for the electromagnetic form factors of 
spin-one systems in gauge theory: 

Gc(Q2) : GM(&~) : GQ(Q~) = (1 - $) : 2: -1, (5.1) 
where 17 = Iq2j/4M2. Th ese ratios hold at tree level for the W+ in the standard model, 
and at large momentum transfer for hadrons in perturbative &CD. These results are 
most easily derived in the light-cone frame assuming the dominance of the helicity- 
zero to zero amplitude. In the Breit frame one has the complication of evaluating 
non-leading transverse current matrix elements. 

.** 
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The ratios of the fundamental form factors (5.1) also determine the ratio B/A of 
Rosenbluth form factors [15] and T 20, the tensor polarization [16]. Both have been 
measured for the deuteron [38,41,24] out to momentum transfers where one might 
have thought perturbative QCD would apply. However, the expressions for these 
quantities contain kinematic factors that depend on 7 = Q2/4M2, which introduces 
M as a dimensional parameter in addition to the intrinsic QCD mass scale AQCD. We 
have argued that the perturbative QCD predictions for B/A and T20 become valid 
for momentum transfers large compared to $%&&, not AQCD. For the deuteron, 
this difference is significant and does postpone applicability of perturbative QCD. 

The predictions made for B/A and T20 are given in (3.10). Comparisons of (3.10) 
with the deuteron data are shown in Figs. 2 and 3. The often-quoted prediction of 
-fi for T20 applies only for momentum transfers so large that 7 is much larger than 
one. Such a large momentum transfer is not actually necessary for a prediction to be 
made. The general perturbative QCD prediction (3.10) should start to be valid at 
moderate momentum transfer Q2 >> ~M,&cD. 

As a result of the universality of electromagnetic form factors, one can conclude 
that any seemingly point-like spin-one particle could actually be composite. This 
possibility has received considerable attention with respect to the W [32, 331. In 
Section IV we explored a simple model for a composite spin-one particle and found 
that the expected form factor ratios can be obtained. 

It should also be emphasized that the analysis presented here also applies to any 
spin-one bound state in gauge theory, for both space-like and time-like electromagnetic 
processes. In particular, the helicity zero amplitude should dominate and the form 
factor ratios (5.1) should hold for crossed reactions at large s = q2 such as e+e- + 
p+p-. It is clearly very important to verify the perturbative QCD predictions for this 
type of exclusive annihilation process. 

Although we have considered only spin-one particles, one could imagine consid- 
ering any class of composite systems with any fixed total spin. In particular, the 
general analysis of the spin-l/2 case can be applied to the form factors of the helium- 
3 nucleus in order to determine the scale where the underlying quark-gluon structure 
of more general nuclei becomes important. 
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FIGURES 

FIG. 1. Scaling of the reduced deuteron form factor fd. The data are given in Ref. 

1381. 

- FIG. 2. Perturbative QCD predictions for B/A for the deuteron. Expressions in (3.10) 
and (3.12) of the text, which are valid in the regimes Q2 > 0.8 GeV’ and 16 GeV2 >> Q2 >> 
0.8 GeV2, respectively, are plotted for comparison with values computed from data given in 
Ref. [38,41]. We plot log(B/A) in order to show the full range of data. 

FIG. 3. Perturbative QCD predictions for T20. The expression in (3.10) of the text 
is plotted for various angles for comparison with data given in Ref. [24]. The prediction of 
the model suggested by Carlson in Ref. [43], which differs significantly, is also plotted. The 
horizontal line at -fi is only relevant for large 77 and 6 = 0. 

FIG. 4. Feynman diagrams for the current matrix element in the one-boson exchange 
approximation. The model becomes gauge invariant in the collinear approximation. 
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