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Some time ago Weinberg [l] argued that in the leading order in l/N, 
where N is the number of colors, the axial vector coupling of the constituent 
quark is equal to one and its anomalous magnetic moment is zero. This 
justifies the usual treatments of the constituent quark and bag models, where 
the quark is treated as a bare Dirac particle, provided the corrections in l/N 
are shown to be small, especially for the magnetic moments. More recently 
Weinberg [2] ( see also ref. [3]) h as g iven an estimate of the corrections of order 
l/N to the axial vector coupling of the constituent quark. His calculation 
was done using the chiral quark model Lagrangian [4] in the chiral limit and 
the limit of large number of colors. The essential input was the analogue of 
the famous Adler-Weisberger sum rule for pion-quark scattering. First order 
corrections in l/N to the leading result were shown to come from tree-level 
pion-quark scattering and quark-antiquark pair production diagrams. The 
latter contribution turned out to be logarithmically divergent but relatively 
small even for the values of a cutoff as large as 5 GeV. 

It is our aim in this paper to elaborate on this last result, already quoted 
in [2]. Following the same pattern of reasoning we also analyze the magnetic 
moment of the constituent quark using the same chiral Lagrangian and the 
analogue of the Drell-Hearn-Gerasimov sum rule for photon-quark scattering. 
Our results seem to indicate that the chiral quark model with coefficients 
obtained by sum rules works well. 

‘The lowest order terms. in the chiral Lagrangian density in which the 
relevant degrees of freedom are the constituent u- and d-quarks, treated as 
massive particles subject to color force only at large separations, and pions 
treated as pseudo-Goldstone bosons, have the following form’: 

c 1 . = - 
2(1 + Q2 

a,+?- Pii- l r-n273 
2(1+ j$, = 

2i 1 

‘Here we neglect isospin breaking due either to a quark maas difference in the QCD 
Lagrangian or to electromagnetic interactions. Accordingly, we do not include purely 
electromagnetic contributions to the sum rules. 
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where ii denotes the pion field, 11, is the quark field, m, (e 135 MeV) is the 
pion mass, m stands for the mass of the constituent quark (X 360 MeV), F, 
is the pion decay constant (X 190 MeV), gA is the axial vector coupling in 
the leading order in l/N, hence is set to one, and t’= 5 where a’ are the 
usual Pauli matrices in isospin space. 

In order to estimate corrections to gA to first order in l/N we use the 
Adler-Weisberger [5] sum rule for pion-quark scattering in the form used by 
Weinberg [2] in the chiral limit (m, = 0): 

-0+(41 
where a+ and CT, stand for the total cross-sections for scattering of ?r+ and 
?r- respectively on a constituent u-quark at rest. The incoming energy of the 
pion is denoted by w. In the large N limit F, goes as a. Taking this fact 
into account it is easy to conclude that the only relevant processes making 
contributions of order l/N2 in the total cross-sections, or equivalently of 
order l/N in gA are tree-level pion-quark elastic scattering (Figure (1)) and 
the quark-antiquark pair production (Figure (2)) [2]. (In the latter case the 
extra l/a in the amplitude, coming from the coupling to the produced 
pairs, is canceled in the expression for the total rate, by the sum over the 
colors of the produced pair). Using the Lagrangian density given by (1) 
one finds that the only relevant contribution for pion-quark scattering comes 
from 7rT-u + nod (contributions coming from ?T+U + ?T+U and ?T-u -+ ?T-u 
cancel). The corresponding differential cross section is [2] : 

m2 
= 

u2( 1 - cos e)2 

n-u+rOd 27r2F,4 [l + u(1 - COS~)]~ (3) 

where 6 is the angle between pi’= and p; (see Figure (1)) and u = E. 
The situation is a bit more involved for quark-antiquark pair production. 

Three processes contribute: X-U + ddd; x+u + uud and ?T-u 4 duii. The 
last process can be broken into two non-interfering parts (to leading order 
in l/N). The first comes from diagrams of Figure (2) where the produced 
pair with momenta pl and pz consists of a d-quark and a G-quark. The 
contribution from these diagrams to the sum rule (2) is exactly canceled by 
the corresponding contribution from the process ?r+u + uud The second 
part of the process X-U + duti comes from diagrams of Figure (2) where the 
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produced pair is uti. The corresponding contribution to g: is exactly equal 
to that of X-U + ddd: Because of the complication coming from the three 
particle phase space we only quote the expression for the amplitude squared 
for ~F-U --) ddd: 

1 M I2 = 2’ m6KP - P’) * PJ” 
mPl+ Pz)'(P~P~)(P'*P4 

+ 29m4(Pl + P212 
J-3P'-PJ2 * (4) 

Doing the three particle phase space integrals and making use of the Adler- 
Weisberger sum rule (2) we find a logarithmically divergent contribution to 
9:. The final expression for gi up to first order in l/N is: 

m2 g; = I--- 
2n2F2 A 

(5) 

The second term in (5) comes from pion-quark elastic scattering and the last 
term comes from quark-antiquark pair production. Z denotes a numerical 
integral evaluated from 4m to a cutoff A. 

In the following table we summarize the dependence of Z on different 
values of the cutoff A: 

2800 0.135 
5000 0.634 L 10000 1.76 
20000 3.42 

_. 

As pointed out by Weinberg [2], the validity of the described estimate of 
the axial vector coupling of the constituent quark is based on the assumption 
that the integral over w in (2) is dominated by energies less than or of the 
order of a typical N-independent QCD energy scale, such as the mass of the 
p-meson (mp x 770 MeV). This condition is satisfied for the tree-level pion- 
quark scattering. On the other hand the contribution for the pair production 
process is logarithmically divergent and it obviously does not meet the above 
condition2; In particular the threshold for the pair production process is at 



4m w 1400 MeV which is not small compared to the above scale. Thus, 
although this process is formally of the same order in l/N as the tree-level 
pion-quark elastic scattering, one could think that its inclusion would be 
problematic even if it did not diverge. In any case its contribution turns out 
to be small for any reasonable cutoff. 

We have also checked how the second term in (5) changes if the mass of 
the pion is taken into account. Numerical calculation shows that the change 
in the final result is only three percent even if the mass of the pion is taken 
to be half of the constituent quark mass. Also, because the energy threshold 
is large the pion mass can be neglected in calculating 2. 

Following the same logic we calculate the corrections of order l/N to 
the magnetic moment of the constituent quark. Here we have to take into 
account the lowest order terms in the chiral Lagrangian density describing 
the electromagnetic interaction of quarks and pions. They are given by the 
following expression: 

AL = - (1 ;gj2 (eA”(ii x i$?), + ;ApAp(x’? - ~32)) 

+ieA,&((zu ; “) + (z,, - Z&S) + $--+(ri2h - t’. h) 
n z 

where A,, denotes the photon field, -e stands for the charge of the electron 
and z,e and zde stand for the charges of the up and down quark respectively. 
Again we Set gA = 1 in the leading order in l/N. . 

In order to estimate the anomalous magnetic moment of the constituent 
quark, we use the analogue of the Drell-Hearn-Gerasimov sum rule [6] for 

2Because we work only to leading order in l/N certain interference terms have been 
neglected in (5). An example is the diagrams of Figure (2) for x-u + ddd multiplied 
by those with the identical d-quarks interchanged. To check the numerical validity of the 
l/N approximation, and to check that the neglect of these terms was not the cause of the 
divergence of the sum rule integral, we have calculated them for x-u + ddd. They change 
the values of Z given in the previous table by only about ten percent and do not improve 
the convergence of the integral. 
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photon-quark interaction, given by the following formula: 

J OQ ‘[UP(W) - CA(w)] 27r%Yz~ t w 

where bp and oA represent the cross-sections for parallel and antiparallel 
photon and quark spins and w denotes the incoming energy of the photon in 
the frame where the target quark is at rest. Also, ze denotes the charge of 
the target, cx = 2, t is the threshold for the relevant process and K stands 
for the anomalous magnetic moment of the constituent quark. 

Counting the powers of N is done as before. Only two types of pro- 
cesses make contributions of order l/N to the cross-sections op and bA and 
correspondingly of the same order to IC 2. These are: pion-photoproduction 
(Figure (3)) and quark-antiquark pair photoproduction (Figure (4)). The 
relevant calculations have to be performed while keeping the pion mass finite 
and then letting it to zero. Taking this fact into account,we obtain the fol- 
lowing expression for the cross-sections coming from pion-photoproduction 
diagrams (with Au = CQJ - aA>: 

Au = -%I(* + *d)[*($ - m -w) + I,($ - 3m - w)]iln% 

t2z12 
+ a In A+ -m2+m% 2 

+- 
mw A--rnZ+rnE mw B[ 1 m+2w 

zd(.zm + rd(2m - 2)) 

+(z + zd)2 + Zd(Z + fd) - 2; 
(m + w)(m2 + mw - $),, 

m(m + 2~)~ (8) 

..where z = l(z = 0) for the case where the charged(neutra3) pion is in the 
final state (the up quark charge has been eliminated by z, = z + zd). Also 

A* = m(m +w) - q f B with B = [(mw - $)‘- mzm2]*/2. The pion mass 
is important only in the second term which contributes to the sum rule as 
?E.f$.J~$ln~ as m, goes to zero. This term, which is lost if one naively 
set:m, to zero before calculating Au, gives a large contribution to K;~ but is 
exactly canceled by the other terms 3. Numerical evaluation of the integral in 
(7) gives K’ = 0 for both the charged and neutral pion, independent of the 
value of zd. 

3We thank S. Drell for suggesting this to us. 
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Again, the contribution coming from quark-antiquark pair photoproduc- 
tion is slightly more complicated, but in this case the sum rule integral is 
finite. The corresponding expressions for the magnetic moments of the con- 
stituent u and d quarks are: 

4x2 = 11 (zu, Zd) 

Ici = LN 
zd2 

Z2(&, Zd) 

(9) 

(10) 

where 11, 22 stand for numerical integrals whose values 4 are less than 0.001. 
Because the energy threshold is large the pion mass can be neglected in cal- 
culating 2, and 22. Of course the same objections as before can be raised 
to contributions from the pair production processes which obviously do not 
come from low energies but again, their contributions turn out to be numer- 
ically negligible’. 

Thus the l/N corrections to ICY are essentially zero. Just by dimensional 
analysis we expect contributions to K’ of 0(1/N’) to be of the following 
form: 

‘h,d2 - (11) 

In order to discuss the meaning of the equations (5),(g) and (10) we argue 
..that for consistency of our calculation the N = 3 limit should be taken after 

the axial vector coupling and the magnetic moments are obtained for the 
nucleons in the framework of the large N constituent quark modeP.(In the 
large N limit of the naive quark model[7] the proton is built from Ic+l up and 
k down quarks and analogously the neutron consists of k up and k + 1 down 

41n fact as the number of sampling points in our Monte Carlo routine is increased the 
values of the above numerical integrals seem to converge to zero. 

5The same comment would also apply to diagrams with possible four-quark vertices[8] 
which we have not considered. 

61f this limit is taken first the values for the magnetic moments of the nucleons are 
identical to the ones that follow.The value of the axial vector coupling, on the other hand, 
decreases a bit. 
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quarks, where N = 2k+l). We also note that an extension of the usual power 
counting argument [8] indicates that the dominant contribution to both pion- 
nucleon and photon-nucleon interactions is the impulse approximation, in 
which the pion or photon interacts independently with each quark in the 
nucleon. All other processes are of higher order in the chiral expansion. On 
the other hand, all these processes are of the same order, N, in the l/N 
expansion. 

In the case of the axial vector coupling of the nucleon, we find in the 
nonrelativistic limit: 

(gA)nudeon = FgA 

= ;(N+2+N(ga-1))+0(1/N). (12) 

Taking A = 3500 MeV for definiteness, which corresponds to the momenta 
of the incoming particles taken as mp in the center of mass, gA = 0.87 and 
(gA)nuclcon = 1.54, which should be compared to the experimental value 1.25. 

Analogously, we find the following expressions for the magnetic moments 
of the proton and neutron: 

+P@ + 5) - m(N - 1)) pP = ‘6 

‘h(N + 5) - pu(N - 1)) PN = 6 (14) 

where p,,d = (1 + &,d)?$ are the magnetic moments of the constituent up 
_. and down quarks. Using the usual quark charges in (13) and (14) we obtain: 

PP = +-(N + 3 + +K. + &f)) + 0(1/a) 

PN = -&cN + 1 + ;(2n, + Kd)) + 0(1/a). 

(15) 

Since K, and Kd are consistent with being zero the values for the magnetic 
moments are pp = 2.6& and j6N = -1.7$, where mN is the nucleon 
mass. These values should be compared with the experimental results, pp = 
2.79& and PN = -l.ql+ Alternatively one could use the values of the 
quark charges obtained from the quark model under the requirement that 
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the nucleons have their usual charges for any N. Explicitly, z, = !$ and 
zd = $$ which in the large N limit goes to Z, = fr and %d = -i. Then the 
corresponding values would be pp = 2.2& and PN = -pp. 

The value obtained for the axial vector coupling agrees within 20% with 
the experimental value. Perhaps the agreement could be improved by taking 
into account relativistic corrections [9]. C oncerning the anomalous magnetic 
moment, we have shown explicitly that the potentially dangerous 0(1/a) 
corrections are negligible. We consider these results to be evidence that the 
constituent quark model can be understood in the large N limit in terms 
of chiral symmetry (in the form of the chiral quark model) and reasonable 
assumptions on the high-energy behavior of amplitudes (embodied in sum 
rules). 

We thank S.Weinberg for helpful conversations and encouragement and 
S.Brodsky, S.Drell, M.P es k in and J.Polchinski for discussions. We acknowl- 
edge participation of C.Ord&ez in the initial phase of this collaboration. 
This work is supported in part by the Robert A. Welch Foundation, NSF 
Grant PHY 9009850, U.S. Department of Energy Grant DEFG05-85ER40200 
and U.S. Department of Energy Grant DE-AC03-76SF0015. 
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Figure Captions 

Figure (1) : Feynman diagrams for pion-quark scattering that contribute 
to the Adler-Weisberger sum rule. 

Figure (2) : Quark-antiquark pair production diagrams that contribute to 
the Adler-Weisberger sum rule to the same order in l/N as 
those of Figure (1). 

Figure (3) : Feynman diagrams for pion photoproduction that contribute to 
the Drell-Hearn-Gerasimov sum rule. 

Figure (4) : Q uar -an I k t’q uark pair photoproduction diagrams that 
contribute to the Drell-Hearn-Gerasimov sum rule to the 
same order in 1 /N as those of Figure (3). 
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