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- ABSTRACT

We discuss the space-time structure of deep inelastic scattering in the target
rest frame. At small zp;, the process is dominated by quark pair production, and
the “Ioffe time” between the production of the pair and its interaction in the target
is long. We compute the leading logarithmic corrections to the parton model pre-
dictions for the virtual photo-absorption cross section, and analyze the transverse
siz_é of the pair and the Ioffe time as a function of the dynamical variables of the
pair constituents. Both the transverse size and the loffe time depend significantly
on the polarization (longitudinal or transverse) of the virtual photon. Hence one
may expect that nuclear scattering corrections, including shadowing, may also be

polarization dependent.
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1. Introduction

Despite 20 years of progress in testing quantum chromodynamics, a fundamen-
tal understanding of the physical mechanisms that connect the underlying quark
and gluon scattering subprocesses of QCD to the observed final state hadrons re-
mains elusive. It is now recognized that experiments using nuclear targets and
beams provide a unique tool for probing hadronization, since the nuclear medium
iéself can physically modify the hadronization process. For example, in deep inelas-
tic lepto-production £p — £H X, the presence of a nucleus in the final state will lead
to transverse momentum smearing and induced elastic and inelastic energy loss of
the produced hadrons, as well as influence the color fields and color screening of
the outgoing quark-jet system. The postulate that the process of hadron creation
has an intrinsic formation time 7y implies that at high energies v > My R /7g the
quark and gluon precursors, rather than the final state hadrons, scatter in the nu-
cleus. Furthermore, since the nucleus is transparent to small color-singlet states, it
can act as a color filter, differentiating production mechanisms for processes such as
large momentum quasi-elastic scattering and heavy quarkonium production. The

nucleus is thus an essential instrument for resolving the space-time structure of

fundamental QCD processes at fermi-size scales.

The simplest experiment for analyzing and controlling the effects of a nuclear
medium on QCD processes is deep inelastic lepton scattering (DIS) on a nuclear
target. It is traditional to analyze the space-time structure of DIS from the stand-
point of the target’s infinite momentum frame (or, equivalently, at fixed light-cone

iiie), since in that frame the current is essentially trivial and the physics of the

_DIS structure functions can be identified with the quark distributions of the target;
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e.g.,
Fa(z,Q%) =) eq2Gypp(2, Q%) (1.1)
9,9
(see Fig. 1). ‘However, the simplicity of this description becomes lost when one
considers nuclear target effects, since the physics of the nucleus is essentially un-
_ known in the P; — oo frame. The wealth of knowledge one has from nuclear
physics on nucleon wavefunctions, meson exchange currents, etc. strictly pertains

to the nuclear rest frame; the relativistic boost of a nuclear wavefunction requires

a fundamental understanding of the internal nuclear dynamics [1] .

Thus, in order to utilize the nucleus as a probe of QCD processes, rather
than study the structure of the nucleus itself, it is mandatory that the space-time
structure of DIS be analyzed in the target rest frame. Unfortunately, much of the
sin;blicity of the parton model description of Bjorken-scaling becomes lost in the
target rest frame, since in general one must consider time-ordered processes where
the virtual photon creates pairs (as in Fig. 2a) or scatters on vacuum fluctuations
(as in Fig. 2b), as well as scattering on the quark constituents already present in
the target wavefunction (Fig. 2c). In the limit of large photon energy v = ¢-p/My,
th“e dominant time-ordered process in the lab frame is virtual ¢g pair production (as
in Fig. 2a) where one of the quarks of the pair scatters, annihilates, or is captured
in the target. Thus at high v in the lab frame, the physics of DIS is dominated
by the Fock state structure of the virtual photon, rather than that of the target.
In fact, it is natural to identify sea quark and heavy quark contributions to the
deep inelastic structure functions at small zg; = Q?%/2q - p with Bethe-Heitler
Rair praduction processes such as that shown in Fig. 3. The presence of spin-one

_gluon exchange in the t-channel automatically implies constant photo-absorption
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cross sections at high » and thus non-vanishing structure functions F(zpj, Q%)

at

zpj— 0. Alternatively, one can identify this type of pair production process

with the photon-gluon fusion mechanism or the evolution of the proton structure

functions and its related radiative corrections. However, from the standpoint of

physics in the rest frame, it is most natural to identify pair production at high v

as

PO

the materialization of the photon’s hadronic structure by the proton target.1

Of course, the frame dependence of DIS does not arise in a strictly Lorentz-

invariant description of DIS, as in the covariant parton model of Landshoff, Polk-

inghorne and Short [3] . However, a space-time description requires a fixed-time

Hamiltonian formalism. In the next section we show how a covariant framework

can be used to relate the physics and kinematics of DIS quantized at fixed time in

the target rest frame to the kinematics of the light-cone formalism.

of

. One of the most important concepts in the analysis of the spacetime structure

DIS in the target rest frame is the loffe time 77 [4] , which is defined as the

effective distance between the production of the quark pair and its interaction in

the nucleus. The virtuality of the pair M? = O(Q?) in the Bjorken scaling region,

implies that

Cr
T = , 1.2
xbjMN ( )

where C; = O(1) is a characteristic dimensionless constant. Thus for small z;; the

photon converts to a quark pair at a large distance before it interacts in the target;

for example, at HERA where one can study structure functions at z; ~ 105 the

X

1 For example, by using the target rest frame picture, it is easy to see that the pair production

__ process of Fig. 2a on a proton target will generally lead to breaking of isospin symmetry

of the anti-quark sea d(z) # (z) because of the stronger Pauli-blocking by the u quarks
Talready present in the proton wavefunction. This type of isospin breaking could account for
the observed violation of the Gottfried sum rule {2] .
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Toffe distance is as large as 10* fm, much larger than nuclear radii. At lower values
of z3;, pair production can occur within the nuclear volume, thus reducing the
total nuclear path length.

As wé shall show in this paper, the constant C7 in the Ioffe time has an essential
dependence on the polarization of the virtual photon. Thus in a given experiment,

one can control the Ioffe time and its consequences for nuclear effects, not only by

P

choosing zp; but also by selecting longitudinal versus transverse photons.

As a working model for nuclear effects, we visualize the following physical
picture for the space-time structure of deep inelastic scattering in a nuclear target
in the target rest frame. (See Fig. 4.)

1. The virtual photon creates a virtual ¢g pair of invariant mass of order Q.
The gluons g1, g2, g3 radiated near the vertex are associated with the QCD

* evolution and radiative corrections to the quark structure function.

2. The pair propagates over the Ioffe time, and then the member of the pair
with the least energy (shown as a § in Fig. 4) gives the main interaction in
the nucleus. The propagation of this quark or antiquark through the nuclear
medium can be described by the Glauber multiple scattering theory [5] used
for hadron-nucleus interactions. For example, the elastic scattering of the g
on upstream nucleons such as N in Fig. 4 before interacting inelastically on
nucleon Ny reduces the flux of § reaching Nj. A model of shadowing (and
anti-shadowing) of the nuclear DIS cross section based on this description is
given in Ref. [6] .

3. The other member of the pair (the ¢ in Fig. 4) carries the majority of

%" the photon energy; its hadronization provides the usual “current quark” jet.

However, during its transit through the nucleus this quark could scatter on
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nucleons such as N3, thus broadening the transverse momentum distribution
of the produced hadrons. The quark can also scatter inelastically and lose
energy by nuclear-induced radiation, as shown, for example, by the emission
of gluon g4. The Landau-Pomeranchuk-Feinberg formation zone analysis [7]
however shows the induced energy loss is finite in the laboratory frame and
does not scale with v. (As shown in Ref. [8] this can be understood as due
) to the destructive interference at low momentum transfer of the amplitudes
producing g4 from nucleons N3 or Ny.) Since the induced k¢ broadening con-
serves probability, the hadron distribution integrated over transverse momen-
tum is unchanged. Furthermore, since the induced energy loss is negligible
compared to the scale v, this effect does not disturb leading-twist QCD fac-
torization. Thus the fragmentation function Dy (z, Q%) with z = p-py/p- q,

" is independent of the nuclear medium; any nuclear dependent-energy loss is

only expected at low v.

4. Finally hadronization of the separated 3 and 3 jets occur. However, be-
cause of the presence of the nuclear medium the resulting hadrons will have
a broadened transverse momentum distribution (k7) 4 and a finite energy
loss (AEg) 4 in proportion to the path length of the leading current quark
through the nucleus which, in turn, depends on the Ioffe time. As we have
noted, one can control the Ioffe time and its consequences for nuclear effects,
not only by choosing z;, but also by selecting the polarization of the virtual

photon.

We also note that induced electromagnetic radiation caused by the transit of

4hie current quark through the nucleus should also increase with Ioffe time. Thus

“the nuclear dependence of associated soft photons in DIS as a function of z3; and



virtual photon polarization will provide important tests of the space-time picture
presented here. In addition, the absolute magnitude of the nuclear dependent

photon radiation could provide a value for the quark-nucleon cross section.

In this paper we will present a detailed calculation of the basic size parameters
controlling DIS inclﬁding the Ioffe time and the impact separation of the pair.
_ The model we use, as in the paper of Bjorken, Kogut, and Soper [9] , corresponds
to Bethe-Heitler pair production by the virtual photon in the Coulomb field of
a target nucleon. The vector exchange allows a non-vanishing of the structure
functions at low z3;. A similar model but with finite gluon mass has also been
analyzed in Ref. [10] . As emphasized by Bjorken, the special kinematic region
of asymmetric pairs (where one quark carries only finite laboratory momentum)
plays a special role in the analysis. In this kinematic regime, the low momentum
qua;k or anti-quark can equally well be identified as a parton associated with the
wavefunction of the proton. However, the remainder of the pair phase space gives
a logarithmically dominant contribution to the leading twist structure functions
and can be associated with photon-gluon subprocesses or terms in the logarithmic
evolution and hard radiative corrections of the target structure function. In order
to “keep the analysis as simple as possible, the calculation is presented for the case
of spinless quarks. The main effect of spin one-half quarks is simply to reverse the

role of o and o7 in the final formulae.

The kinematics of DIS in the laboratory frame and the connection to light-cone
variables are discussed in section 2. In section 3 we analyze the scaling violation of
the virtual photo—absorption cross sections. In the simplest version of the model,
with scalar quarks, the scalar photo-absorption cross section is logarithmically

.dominant over the transverse cross section. In order to keep the formulae trans-



parent we will focus on the calculation assuming Coulomb gluon exchange; i.e., a
massive source. In order to understand the physics of shadowing and other co-
herent processes in a nuclear target, it is also important to analyze the transverse
separation of the quarks in the pair. This is most easily done by using a Fourier
transform in transverse space [9]. The physics of shadowing also requires a detailed

understanding of the formation time of the quark pair. As we show in section 4, the

-,

Ioffe time can be precisely obtained by differentiating with respect to the relevant

energy denominator in time-ordered perturbation theory.

2. Space-Time Kinematics of Deep Inelastic Scattering

. "As noted in the introduction, the laboratory and Drell-Yan frames give two
different physical pictures of DIS. At low z}; the laboratory frame emphasizes the
physics from the standpoint of the dissociating virtual photon. At large zy;, the
light-cone picture seems more natural, emphasizing the parton structure of the
nucleon. In this section we demonstrate the interconnection between these two
perspectives of DIS. In the following sections we shall show how the loffe time
enters into physical processes and where the leading logarithmic contributions to

structure functions arise in terms of the kinematics of the pair dissociation process.

The DIS structure functions at ¢*> = —Q?, F(z,Q?), are generally identified
with the probability distribution G| /p(:c,Qz) for quarks in the nucleon through
the leading twist relation Eq. (1.1), where the parameter zp; is identified with
#= L1 /pT, the light-cone momentum fraction of the struck quark. (We define

pt = p® £ p?). This connection can be made explicit in the Drell-Yan frame where



qﬂ = (q+,q—,7l) = ( 1 _L

. o= (0,0 7_]_)=(:cp el>
- e b] b b x+ b

In this frame, the only light-cone time-ordered diagram that needs to be considered
is that shown in Fig. 1. Since ¢* = 0, pair creation graphs do not occur. In
light-cone gauge, AT = 0, soft final state interactions of the struck quark can be
neglected to leading order in 1/Q% QCD evolution equations in ¢n Q? can be
derived by taking into account gluonic radiation by the struck quark.

“The essential advantage of the Drell-Yan frame is the immediate connection
c;f'the DIS process to the parton structure of the proton itself. However, in the
high energy domain where 2p - ¢ > Q?, i.e. zp; — 0, it is more natural to think
of the DIS process in terms of the structure of the virtual photon, as in Fig. 3.
For example, in the laboratory frame where 72 = 12 4+ Q? the pair state with

invariant mass Mp,i; is off the energy shell by the amount

2
B = M+ T Ve Mo £ € (22)

Thus from the perspective of the lab frame, the photon transforms into a virtual

quark anti-quark pair at a time

2v 1
r= s~ 0 (57 23)
N Miair +Q° May;

_before it interacts with the target, where M is the target mass.
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From the covariant point of view, Figs. 1 and 2a are actually different mani-

festations of the same Feynman diagram (see Fig. 5). We can consider the general

frame
F+7
q= (q+7 q—’ ?.L) = (?’q_v ?J_)
(2.4)
2
L _ M2+
p=(p+ap ??_L)z <p+3 p+ a?_L
where
2-p=2Mv=qTp +qp =27, P, . (2.5)

If we consider £ to be a constituent of the target, then it is natural to parametrize

its four-vector in the form

e2i(7 2 )2
+ EHEatepu) 7 Ly, (2.6)

_)
where ¢ | is perpendicular to p ;. Similarly, the outgoing quark is naturally
considered a fragment of the incoming photon. Thus we parametrize its four-vector

as

2 - - \2
“= (m +(Olozqql-}_ Y1) ,th—,a?_l_%-?l) ) (2.7)

where W | is perpendicular to ¢ ; and « is the fraction of the virtual photon
mgomentum carried by the outgoing quark. On the other hand, u* is also deter-

‘mined from four-momentum conservation u* = ¢* 4+ g#. We thus have the general
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relations:

2 2
m?+a?q, + W 2 1
o q
(2.8)
—2 2
C+ L+, =q (a—-1)
;ij"l' 5
and
e—L+xp_L:(a"l)Q_L+ u . (29)
For example, in any collinear frame with ¢, = P, = 0, ptq~ = 2p-q +
Q*M?/(p*q™) ~2p-q. Then £ = Wy,
Q? m? + 71
= Lt == 2.1
i 21“1{Jr aQ? } (2.10)
and- . '
9 2
l 14
a-1=—1—4 (2.11)
2zp - q

The traditional parton model integration corresponds to limited transverse mo-
menta ui or £, and finite off-shell mass of the struck parton, £?. Thus z = o, =
Q%/2p - q, and o ~ 1 — O(1/Q?). In this kinematic regime, the struck quark then
takes nearly all of the momentum of the incident photon. The assumption that

£2 is finite can also be understood as a limit on the invariant mass Mpect of the

2
spect

spectator system: (p — £)? = M in Fig. 5. (Again, we take p | = 0)

2

M+ €
= (] — gyt et "L P
(p ) ( .T)p ’ (1 —$)p+ ) 4
(2.12)
LSO 7
— £2+e_2L:M2__M§pect+ gL
z ‘ -2z
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and

1 1
l—a)=——
( @) 2p-q 1—x

[ + MZpees — (1 —2)M?] (2.13)

It is then an important question whether one can accurately neglect the kine-

matic corrections due to £3, M2, since these are variables that are integrated

spec

over in the inclusive cross section. The range of these values not only sets the

PORES

corrections to the x = z; relation, but also determines the characteristic time and
irhpact separation which dominates the DIS process.

In order to understand the ranges of these kinematic variables, let us look at a
typical gauge theory contribution derived from gluon exchange in the ¢-channel (see
Fig. 3). This is essentially Bethe-Heitler pair production in the field of the target.
The spin-one gluon in the t-channel leads to an energy-independent contribution
to _t-he virtual photon-nucleon cross section in the scaling limit. It is thus a leading
contribution to the DIS leading twist structure functions in the small z3; regime.
From the standpoint of evolution equations, one encounters this type of contribu-
tion after two applications of the QCD splitting functions; thus this contribution
appears in the logarithmic evolution of the leading order singlet structure func-
tions. Hence the transverse momentum integrations are logarithmic in nature with
a range extending up to O(Q?). We thus expect significant numerical corrections

to the parton relations:

2 2
T = Tp; I:l—{-—m +u'L:| = Tpy [1+ 0(1)]

aQ? log Q?
: 2v 1 0(1) ]
L —— 1+ 2.14
M + Q2 (M‘”bj) [ log Q? (2.14)
- 11
l—a=— [ + M2 — (1 —2)M?] .

2p-ql—=x
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Note that the deviation of z from z;; affects the accuracy of sum rules, etc. based

on parton model distributions.

It should be noted that it is only the strictly asymmetric region where one quark
carries all of the energy v of the photon and the other quark has finite momentum
in the target rest frame that corresponds to the traditional parton model. In this

_case the intermediate quark line can be considered as a constituent of the target.

P

For example in Fig. 3 let us assume that u is finite; then w carries all the energy
v of the photon, and also has limited transverse momentum w; ~ —uj. Since

(u + k)? is finite and
= (u+k+w)? o (u+k)?+ 20 +k° —u® — k%),

we have
(u® + k° —u® — k) /M = -Q*/(2Mv) = —2

which gives the connection between the Bjorken variable and the light-cone mo-
mentum fraction of the quark constituent of the target with momentum —(u + k).
On the other hand, if the gluon had attached itself to the energetic quark w, then

the virtuality of that quark line before the gluon vertex would be large:
(w4 k)? = 2v(k° — k%) = O(v)

which suppresses this diagram compared to the interaction with the slow quark wu.
When one integrates over the full phase space of the Bethe-Heitler process, one finds
that the strictly asymmetric region is just the endpoint of a logarithmic integration

region, providing leading-twist contributions to the structure functions beyond
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what is contained in the traditional parton model. The leading—twist contributions
from the pair production processes with symmetric kinematics may be associated
with the photon — gluon fusion subprocess v* + ¢ — ¢g. In the symmetric region
one sees explicitly the effect of charge (or color) screening: up to logarithmic
corrections, the cross section scales as 1/Q?, because of the destructive interference

_ between the quark and anti-quark scattering amplitudes.

3. Bethe-Heitler pair production

In order to understand the relationship of Bethe-Heitler pair production to deep
ine_l—a'stic lepton scattering, we will consider the simplest model which demonstrates
the essential features, namely scalar charged particle production in QED with a
fixed coupling constant. Since we wish to understand the role of the loffe time, we
work in time-ordered perturbation theory. One can show that the lepton interaction
can be replaced by an incident photon with effective spacelike mass ¢2, just as in
conventioral covariant perturbation theory [11] . Again for simplicity, we consider
scattering on a target of large mass M. In the large target-mass limit, we may
approximate the photon k* exchanged between the pair and the target with a
Coulomb photon and take k% = —k?/2M =~ 0. Because of the Coulomb interaction,
fhe seagull diagrams do not contribute in Coulomb gauge. The surviving four
time-ordered diagrams are given in Fig. 6, where the kinematic notation is also
#gfroduced. Using gauge invariance with respect to the virtual photon current, the

~amplitudes in the lab frame for scalar and transverse photons are, respectively,
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a ] @ M
Mg =(—ie)? =
Ve e (3.1)

[(Eu’ — Ew)(Eyu+ Ey) (Ey— Ew)(Ew+ Ey) +@o u'f)}
Eul(Eu —_ Eul) Eu'(Eu + Eu’) ’

v

. \32M E,+ Ey E, — Ey
P 3 U u _ u u - = — —
MT B ( Ze) E2 l:(Eu’(Eu - Eu’) Eu’(Eu + Eu'))w 6T((f) + (u - w)]’ (32)

with Ey = [E2 + (24 + E) AL (The diagrams where the Coulomb photon is
exchanged between the target and the charged scalar @ are obtained from the ones
written explicitly by exchanging @ and @w.) The contribution of the backward-
. propagating diagrams in Eq. (3.1), (3.2) is O(Q?/v?) with respect to the contri-
bution of the forward-propagating ones.

After some algebra and summing over the photon*polarization, the scalar and

transverse photo-absorption cross sections can be written in a compact form:

1
., R - 1
os :7Q2/da(2a —1)%a(1 - a)/dzul/dzkl iy

0 (3.3)

(- )

WA (dy+ k)PP

1o}, | 1
_3CQem _ 2 27
oT == /daa(l a)/d uJ_/d kl(l_c,z)z

0 (3.4)

%

with

[ il (L +Fk0)? 2y - (i + ko)
- L@ +BP @+ k)2 + 822 (dR + AY)(EL + L)+ )
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k? = k% 4 k2,
B% =m? + ol — a)Q?,
where m and « are respectively the mass and the fractional energy of the scalar
particles. As we are in the large target mass M limit, the energies of the produced
scalars add up to the energy of the virtual photon. Higher twist corrections of

_ order Q?/v? to the cross sections are neglected.

In Egs. (3.3), (3.4) we expanded in @%/E? and &% /E?, assuming that the
transverse components of the pair are much smaller than the respective longitudinal
ones. The regions of phase space where this is not true can be neglected, since
in such regions the longitudinal and/or transverse momentum components of the
exchanged photon are large, and the Coulomb propagator acts as an effective cutoff.
We have checked numerically that the difference between the exact expressions for
the-c':ross sections, from Eq. (3.1) and (3.2), and their approximations (3.3), (3.4)
is less than 10%, at the typical kinematics of the EMC experiment; i.e., Q% = 19
GeV? and v = 113 GeV [12] .

From momentum conservation and the expansion in the transverse momentum

of the pair, the longitudinal momentum of the Coulomb photon is
ky ~ M + p/2v, (3.5)

where p? ~ (7% + m?)/a(l — @) is the invariant mass of the produced pair. Since
the main contribution to the cross sections comes from pairs of mass u? ~ Q? [10],

in the following analytic calculations we take k, constant .

2 In a numeric analysis though, in which one uses the exact expressions (3.1) and (3.2) and

_ integrates over the whole phase space, it is important to keep k, = v + z5;M —u, — w,

%R as given in general by momentum conservation. In those phase space regions where the

" approximate formulae (3.3) and (3.4) fail, k, is large and suppresses the cross sections.
This is true even when the Coulomb photon is given an effective mass.
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We introduce the impact parameter § representation and its Fourier trans-

forms [9,10] '
dz’t—l‘ -k 1 5 et 2
s Py = = 5 = /d2p6 pks —/d2Ul'_Q——'5 ’ (36)
(@ + BO)(@1L + k1)? + 57 2m Uy +5
- /dzﬁl Gy - (@ + ko) _
@2+ B2)(@, + k)2 + 52
: (@ + BH)[(aL + kp)? + B2 (3.7)
1

Vel . e iF iz
dZﬁeurk_L /dzﬁl_l_dzﬁll_ _‘P _‘P :
(27)? / (@, + A5, + B%)

in Eq. (3.3), (3.4). After doing all the angular integrations, and the one over the

?

transverse size of the pair by using the relationship [13]

/dw‘:l:”.i—lv.]u(px) _ IBV—,LP” I{V—M(Pﬂ), (3.8)

(22 + p2)ptt = 26T (n + 1)

the photo-absorption cross sections og and o1 become

/dpp[l — Jo(pk )] Ko(pB)?,

(3.9)

1
o5 = 4a§mQ2/da(2a —1)%a(1 - a)/dk_zj_ .,1
, (k2)2

(k2)2

1
or = 16a2m/daa(1 —a)ﬂz/dkiL/dpp[l - Jo(pk‘l)]]{l(pﬂ)z. (3.10)
4 .

An analysis of (3.9) and (3.10) shows that terms proportional to the quark mass
m give only higher twist corrections; since the pair mass g is large, there are
s logarithmic mass divergences. As we limit our analysis to the leading twist

_contributions, we can neglect m in the following.
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We will perform the integral over the impact parameter p first since this is
advantageous for the computation of the loffe time. The impact integral can be

done through the relationship [13]
[ doolt = ao(ohu)) Kulo8)? =

gt o () PG )

where u = 1 + k? /2B2 The study of Eq. (3.11) is done in the appendix, where we

(3.11)

-

consider 2 kinematic regions (Fig. 7)

i) k2 < 4p? (3.12)

i) k3 > 45°. (3.13)

The parton model contribution where og satisfies Bjorken scaling and o7 is higher
twist comes from the endpoint of region #7) with a or (1 — @) < k? 2 /4Q% and k%

constant and much smaller than Q2.

In the kinematic region 7), which will be the logarithmically dominant region,

\/1—Q—t<2a<1+w/1—@—5 (3.14)

After integrating over p (see appendix), we find that in the region 1)

a takes the values

1ad,, k? (2a —1)?
k2 == Aabulir AN :
=5 [ ey 1)
8a’ / 9 kﬁ_ /
oTr = ——an dk —_— da. 316

‘In (3.15) both the integrations over  and k3 > k2 contribute a logarithmic en-
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hancement [10], whereas in (3.16) the integration over « is regular. In both cases
the integration over k3 < k2 is logarithmically suppressed since the longitudi-
nal momentum of the Coulomb photon acts as a cutoff. The leading behavior
of Eq. (3.15) and (3.16) is given in Table 1. The logarithmic enhancement in
os from the endpoint integration over a corresponds to the dominance of the

asymmetric pair region. As expected, we get logarithmic scaling violations to the

v P

scaling predicted by the parton model for the photo—absorption cross sections.

Table 1: Leading log behavior

of the photo-absorption cross sections

Scalar QED ki <4p? k1 > 4p°
Q%0s m*(Q*ED) | n(Q%/k2)
Q%or n(Q?/k?) const

After the integration on the impact parameter (see appendix), we obtain in

the region )

1
og = 2a§m/dk2l—]_c.§5—2-/da(2a —1)%, (3.17)

or =8a3,, /dki(]}i)Z /daa(l - a) (anﬁ + 1) (3.18)

In (3.17) and (3.18) the integration over a, in the range complementary to
(3.14), is regular. The integration over k% < k_zl_ < Q? gives a logarithmic contribu-
tion in the scalar case, whereas it is regular in the transverse case. The integration
agér k2 < k? is again suppressed, so that in this region (3.17) satisfies Bjorken scal-

‘ing and (3.18) is higher twist. Finally, the regioln of integration with Q? < k2 < v/?
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corresponds to hard radiative corrections, and has no logarithmic enhancements,

so that (3.17) and (3.18) satisfy Bjorken scaling in this region.

Thus the complete leading log contribution from Bethe-Heitler pair production
to deep inelastic lepton scattering cross sections is contained in the full region %),
whereas the contribution of region iz) is next-to-leading, both in the scalar and

_ transverse photon case (Table 1).

-

-

A numerical check of the scaling violation, at fixed x3;, of the exact massless
cross sections, through Eq. (3.1) and (3.2), vs. the leading-log scaling violations
from Table 1 is given in in Fig. 8, where, for sake of comparison, we take k, =
2z3;M according to the previous considerations on the longitudinal size of the
Coulomb photon. The agreement for the scalar cross section is excellent; in the

transverse case, next-to-leading (constant) corrections appear to be significant.

- - The ratio of the scalar to the transverse cross sections,

2
75 En%,
z

(3.19)
aT

diverges for large v and fixed z3;. This is the expected logarithmic correction to
the Callan-Gross relation for scalar quark QED. The leading-log violations to the

structure functions
A7 aem Fo(zh;) = Q* (05 + o)
47"’2016m2$bjFl($bj) = on’T

can also be obtained from Table 1.

% We identify the transverse size of the pair, as a function of the longitudinal

-momentum of the quark, with the mean separation in impact parameter space:
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2 1 / 2 2 '
. = ——— | dk{dpp* —5— 2

where i = S,T and do;/da for Bethe-Heitler pairs is obtained from Egs. (3.15),
(3.17) and (3.16), (3.18). To compute Eq. (3.20) we take d3o;/dk? dpda from Egs.
(3.9) and (3.10) and consider the different asymptotic expansions of the Bessel
“Tanction J ; namely i) pk; < 2 and i) pk; > 2. Because of the asymptotic
convergence of the Bessel function K, in either region the main contribution to
the integration over p in Eq. (3.20) comes from p ~ A7, thus regions i) and
i1) coincide with regions (3.12) and (3.13). We define I(n, v) as the corresponding

integral over the impact parameter and we compute it through the relationship [13]

e (S () r (),

I(n,v) = /d:r:ac'”K,,(gr:)2 =
’ 0
(3.21)

Summing the contribution of regions (3.12) and (3.13) to Eq. (3.20), we obtain

1 1(5,0)f(a) +41(3,0)g(x)

2 _
(P5(2)) = =210 1(5,0) (@) + 41(1,0)g(a) (522
20 = 1 1(5,1)f(a) +41(3,1)g(a) 3.93
{pr(e)) a(l =)@ 1(3,1)(f(a) + 9(a)) + 25 tn (1 + mitae) (32)
where
2 2 /1.2
;. mf(a) = ml_——a—)ﬁn (1 +4a(l — a)%); g(a) = T 4a(? zkaz)Qz/kg (3.24)
% .

~_Taking the soft quark limit (a < k2/4Q?), we find
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1(5,0)+ I1(3,0) 1 2 1

g, (r5@) = T ) T I 0 ol — @@~ Bal—w@ P
| 1
- ;. (p2(a)) =2[1(5,1) + I(3, l)la(1 — @)Qn[k2/4a(1 — 2)Q?] (3.26)

68 1
“15a(1 - a)Q%n[k2/4a(l — @)Q?]’

Thus the transverse size of the pair grows as the longitudinal momentum of
the quark becomes small. The fact that the impact separation is larger for scalar
photons compared to transverse photons is consistent with the larger scalar cross

section for spinless partons.

4. Toffe time

According to the definition given in the introduction, the Ioffe time 7 is the
distance between the point of interaction of the Bethe-Heitler pair with the virtual
photon and the point of interaction with the Coulomb photon. Thus, using Egs.
(2.3) and (3.5), we find, by the uncertainty relation, that the Ioffe time is approx-
imately given by the inverse of the longitudinal momentum (3.5) of the Coulomb

photon3, and depends on the invariant mass g of the pair.

In this section we estimate the loffe time averaging the contribution of the
scattering amplitudes at fixed 7. As we see from Fig. 6, 7 is positive for forward-

propagating diagrams and negative for the backward-propagating ones. Using

'\;?} In time-ordered perturbation theory and in the large target-mass limit, the invariant mass
—of the pair is the same, before (Mgair) and after (p?) the emission of the Coulomb photon,
up to corrections of higher order.
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time-ordered perturbation theory, the photo-absorption amplitudes at fixed 7 in

the target frame are

0(7)

dr v+ Q2 k2

— iT(ButEy) (E£y — Ew)(Ew + Ew)
By

dMs(r) _ 3 | Q> M [eir(Eu—Eu:)(EU' — Ey)(Ey + Ev)

B (4.1)

0(=r)+ i > )

dMT(T) :63 2M [(eiT(Eu—Eul) Eu + Eul 9(7_)

dr k2 E,
(4.2)

. Eu - Eu' - -~ —+ =
et BB ) () + (3 )|

Integrating (4.1) and (4.2) over 7 we recover the photo-absorption amplitudes of
Eq. (3.1) and (3.2). It is easy to see from the expansion of the arguments of
the exponentials that the backward-propagating diagrams are short range in ,

while the forward-propagating ones, which give the leading twist contributions,

are long-range and the corresponding time 7 scales like (zp; M)~L.

Let us identify the mean Ioffe time through the statistical average

2_1/ / dMi(r)[*
(1) = - d(PS); drr—"—|, i=5T (4.3)
where the photo-absorption cross sections are
/d(PS)Z /d LG S, T (4.4)
o; = T——=, 1=3S, .
N dr

% . pol

-where the sum is over photon polarization.
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We now follow the outline ofsection 2; namely, we compute the exact expression
for [ drrdM;(r)/dr (which we will also use for numerical calculations), expand it in
the transverse momenta of the pair in order to derive a simple analytical expression
for ('r)? , and go to the impact parameter representation. The required integrals

are:

oo dMg(t) Q* M
/dTT i =—ce 0

(Bw — Ew)(Eu + Ev) | (Ey — Eu)(Ew+ Ew) .
[ Ey(Ey — Ey)? Ey(Ey + Eu)? + (0 & T,
(4.5)
/ dTT——dMT(T) = — 632—_,—]\—4—
dr k2
—00
Eu + Eu’ E, — Eu' L. . .
[<Eu'<Eu Th T Fulhe BT a @+ @ 9],
(4.6)

As’'in Egs. (3.3) and (3.4), we expand in transverse momentum. Then using Eq.

(4.3), the mean square Ioffe time for scalar and transverse photons is

1
2 1 4ad, 2/ 2 3 3/ 2, | / 2
=" do(2a — 1— k—— | d
(T)s p Qv a(2a — 1)*a*(1 — ) d 2y u

0 (4.7)

(s - evmrm)
o @A (@R s/
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1
3 1
(T)%—» =Llﬁaem 1/2/daa3(1 —a)3/d2k—:——/d2u
J (k2)2

or w2
{ ai (G + k) 2, - (i) + ky)
(@ + 82" [(@L+k)2+ 820 (22 +B22((dL + k)2 + B22)

(4.8)

up to higher-twist terms of O(Q?/v?). By Fourier-transforming in p and integrat-

'i'ﬁg over the angular variables and the transverse momentum u of the pair using

Eq. (3.8), we can express the loffe time in terms of Bessel functions of the impact

parameter

1
231 N3
() =tat@t? [aaZ2m a0l [y
0

gs ﬂ2 (]-;2)2 (49)
/ dpp (1 = Jo(pk1)] K1(pB)",
1 h 1
(7‘)%« =—1604z’ml/2 dac?(1 — a)® dk_ZL_’_
or 0/ / (k2)2 (0.10)

/dpp3 [1 = Jo(pkL)] Ko(pB)*.

The asymptotic analysis of Egs. (4.9) and (4.10), through the asymptotic expan-
sions of the Bessel functions, shows that the leading logarithmic contribution comes
from region ¢), Eq. (3.12), as in the case of the photo—absorption cross sections.

Mass terms can again be neglected since they only yield higher twist corrections.

%."In region %), after integrating over p, by using Eq. (3.21), the leading logarith-

mic contribution to the mean-square Ioffe time is
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2 2 o —1)2
<T)2S = i1(5 1) emQG /dkz(kT)z/da(jT‘:%, (4.11)

2 1 v 2 ki o,
(1) = 54115, 0a%n 5 / s / d (4.12)

oT 72
»=~  Dividing Eq. (4.11) by (3.15), and Eq. (4.12) by (3.16), and using Eq. (3.21),

we find that in the leading logarithmic approximation, the mean-square loffe time

for scalar and transverse photons respectively is

s 6 1
= - 4.13
(T) 5 (beM)z’ ( )
2 1
2
= = — 4.14
(T>T 5 (xbjM)Q ( )
In Fig. 9 we compare the loffe time for m = 0 obtained from the numerical

integration of Eq. (4.3) and the complete amplitudes (4.5) and (4.6), with the
leading logarithmic estimate of Eq. (4.13) and (4.14). In either case we find that
the agreement between the exact Ioffe time and its logarithmic estimate is good.

- We identify the mean loffe time, as a function of the longitudinal momentum

of the quark, through the statistical average

2

) (4.15)

(r())? = m/ 2; /dTT

where integrations in the phase space are done at fixed a. The differential cross

section do;/da is defined as in Eq. (4.4) and is obtained for Bethe-Heitler pairs
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from Egs. (3.9) and (3.10). Analysing the behavior of Eq. (4.15) in the regions
(3.12) and (3.13), using Eqgs. (4.9) and (4.10), the integral (3.21) on the impact

parameter, and the functions (3.24), we obtain (Fig. 10)

v? I(5,1)f(a) + 41(3,1)g(c)

2 g —
(T(CY»S - Q4 I(3,0)f(a) + 4](1’0)g(a)’ (416)
o 1(5,0)f(a) + 41(3,0)g(a) 17
ez Q*1(3,1)(f(e) + g(e)) + 2% tn (1 + ml—"fw)’ w10
Taking the soft quark limit (o < k2/4Q?), we find
i 2_1](5,1)+I(3,1) 1 171
ali%l,l (r(e))s = 41(3,0) + I(1,0) (zp; M)2 ~ 25 (zp;M)2’ (4.18)
5 2 1(5,0)+1(3,0) 1
a_l>r(r)l,1 (@ = 2 (zp; M)24n[k2 [4a(1l — a)@Q?]
; X (4.19)

10 (zp; M)2n[k2/4a(l — a)Q?]

Thus in the scalar case the Ioffe time becomes independent of « in the soft
quark limit, in agreement with the parton-model-inspired kinematic relations of
Eq. (2.14). In the transverse case, due to the logarithmic corrections, the loffe
time vanishes in the soft quark limit. This shows that in the parton-model region
the space-time behavior of the cross section dramatically depends on the virtual
photon polarization, since long-range contributions appear only for the photon

polarization corresponding to the leading photo-absorption cross section.
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5. Conclusions

As we have discussed in this paper, it is important to understand deep inelastic
lepton scattering in the rest frame of the target. In particular, the physics of the
small zp; regime is strongly related to pair production in the field of the target.
The effect of the nuclear environment is also most easily understood from the

. perspective of the laboratory frame where the time evolution of the propagating
quarks can be analyzed.

The general connection between the kinematics of deep inelastic scattering in
the infinite momentum frame and the target rest frame has been presented in
section 2. In the general case, one has to allow for logarithmic corrections to the
conventional parton model relations, as expressed through Egs. (2.14).

In section 3, we study the spacetime development of quark pair production,
a process which is closely related to the perturbative development of the strange
and charm quark sea at low z;. In this calculation, one can identify the kinematic
domain of the traditional Bjorken-scaling parton model as the highly asymmetric
region where the longitudinal momentum fraction « of the interacting quark is
smaller than k% /4Q? and the transverse momentum k% of the exchanged gluon is
constant and much smaller than Q2. The integration over the full kinematics of -
the pair production process reproduces the logarithmic corrections to the virtual
photo-absorption cross sections usually associated with the evolution of the singlet
structure functions.

The transverse size of the quark pair can be identified with the average impact
parameter p. In particular, we show that the transverse size of the pair grows as the
l&i@udiﬁal momentum fraction a of the quark decreases. In the case of spin-less

quarks the virtual photo-absorption cross section for scalar photons logarithmically
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dominates the cross section for photons with transverse polarization. Similarly, we
also find that the transverse size of the quark pair is logarithmically larger in the

scalar polarization case, in agreement with geometric considerations.

The loffe time 77, which gives the coherence length of the pair production
process in the target rest frame, can also be computed explicitly in the pair pro-
~duction model. As discussed in section 4, the loffe time is approximately equal
to the inverse of the longitudinal momentum transfer of the exchanged gluon; its
magnitude also reflects the size of the invariant mass of the pair. In general, 77 is
proportional to 1/z;;. Remarkably, as we show in section 4, the constant of pro-
portionality depends on the virtual photon polarization; e.g., in the case of spinless
quarks Tg/7r = /3, averaging over all kinematic variables. In the parton model
region, where « is small, 70 — 0 corresponding to zero longitudinal coherence
whereas 7sxp; M is finite, reflecting the fact that there are long-range contributions

to the scalar cross section only.

As noted in the introduction, the ability to control the Ioffe time by changing
zp; or the photon polarization allows one to use the nucleus as an instrument to
probe quark—hucleon interactions. It is clearly important to study shadowing and

| énti—shadéwing and nuclear modifications of jet hadronization, energy loss, and

transverse smearing as a function of photon polarization as well as x3;.
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APPENDIX

Calculation of [dpp[1 — J()(pk_]_)]K,,(pﬂ)z.

In the scalar virtual photon case, v = 0 in Eq. (3.11). Thus

- k2
1 1 1.3 af
[ dots ok ot =1 - L (it )|

. e
- 1 + kJ./2ﬁ
1 ) 1 Zn( V1442 /482
~2 2 - E %2 _ kl£2ﬂ
U v M-
(A.1)
The expansions of Eq. (A.1) in the 2 kinematic regions ¢) k3 < 4B% and 1) k% >
- 4% are
0); / dop[1 = Jolpk )] Ko(pB)? = - L | 0((ﬁ)z) (A-2)
’ 3624432 4427 )’
g 1 4%
. _ 2_ 1 4p”
i [ donlt = dook)} (08 = 55 +0 () (A3)

In the transverse virtual photon case, v = 1 in Eq. (3.11). This, as such, is
ill-defined, as one of its I' functions is;singular. The singularity, though, cancels
between the 2 terms of the integrand. Thus to extract the finite residue we set

v =1 — ¢ and take the limit for € that goes to 0 at the end. Using the expansion

M(Q) = —7+0(

where v is the Euler-Mascheroni constant, we obtain

L 1 K2\ 1 k2 /4B°
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Expanding Eq. (A.4) in the regions ) k3 < 44? and ii) k3 > 4/3%, we obtain

2 2
i); /dpp[l ~ Jo(pkL)] K1(pB)* = 3%21%2 + 0((4%)2), (A-5)

;[ doolt - (o o8 = () + 5] + 0 (). (40)

-

Substituting Egs. (A.2) and (A.3) in the scalar cross section, Eq. (3.9), and
Egs. (A.5) and (A.6) in the transverse cross section, Eq. (3.10), yields Eq. (3.15)
and (3.17), and (3.16) and (3.18), respectively.
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FIGURE CAPTIONS

1) DIS in the infinite momentum frame.

2) Time-ordered contributions to DIS in the target rest frame.
3) Bethe-Heitler pair production processes in DIS.

4) DIS in a nuclear target in the target rest frame.

5) DIS in covariant perturbation theory.

6) Photon exchange in the t-channel in the Coulomb-photon approximation, in

time-ordered perturbation theory.
7) Kinematic regions in the integral over the impact parameter.

8) The curves show the leading-log contributions to the scalar and transverse
photo-absorption cross sections @?c from Table 1 at zp; = 0.084. The circled
(squared) dots represent Monte Carlo numerical integrations of the exact
transverse (scalar) cross section. The curves and points are normalized to
their respective values at Q2 = 76GeV2. The size of the errors on the Monte

Carlo integrations is about 10%.

7.9) The horizontal lines are the leading-log predictions from Eq. (4.13) and
(4.14) for the square root of the mean-square loffe time times zp; M. The
circled (squared) dots represent Monte Carlo numerical integrations of the
exact transverse (scalar) loffe time times z3; M, at x3;= 0.084. The size of

the errors on the Monte Carlo integrations is about 10%.

10) The square root of the mean-square Ioffe time times z3; M is plot as function

of a. The whole range of « is shown in Fig. a), whereas in Fig. b) the soft

A qudrk region is resolved. As in Fig. 8, we take k, ~ 2z; M.
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