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Abstract

As part of the research and development program in preparation for a possible B Factory at SLAC, a
group has been studying various aspects of HEP computing. In particular, the group is investigating the
use of UNIX for all computing, from data acquisition, through analysis, and word processing. A summary
of some of the results of this study will be given, along with some personal opinions on these topics.
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1. Introduction

As part of the research and development work being
done for a possible B Factory detector at SLAC[1], a group
has been studying the computing aspects of such an effort.
With no data expected before 1997, this group finds itself
with a luxury of time to prepare and sufficient time to
prototype possible solutions to recurring problems in High
Energy Physics (HEP) computing. This paper is a report on a
few aspects of the work done so far and the work that is
planned to be done over the next few years.

The B Factory, like many other initiatives being
planned for the late 1990’s, will require a very large amount
of computer processing power to analyze the expected
number of events. The best estimate is about 104 MIPS. To
achieve these resources at a reasonable cost, one expects to
use high performance workstations either working together
in a dedicated farm, or distributed over the local area
network. These workstations run the UNIX  operating
system, so UNIX will undoubtedly be part of the analysis
environment. The focus of the software engineering R&D at
SLAC has been to explore using UNIX for everything else as
well, that is, data acquisition, on-line real-time systems,
production processing, analysis work, code development,
databases, and even office work such as word processing,
mail, and sending faxes.

In some of the areas mentioned above, UNIX is weak
and much R&D needs to be done. However, this paper will
focus on UNIX as a code development environment, where
considerable work has already been done. This paper does
not represent in any way final decisions that will be taken by
a future B Factory collaboration as such a collaboration has
not yet been formed. Furthermore, it only represents
discussions and planning within a small group concerned
about the computing aspects of such a detector, and even
there, not everybody agrees with what might be the final
outcome. However, all those involved do agree that R&D
into computing is as important as the R&D into the detector
components.

2. Computing Cultures

UNIX is a very different culture from the one to which
HEP has traditionally been exposed. By culture we mean
that one accomplishes tasks in certain ways, that one has
certain expectations of what can be achieved, and that there
is a tradition and history; just as with human cultures. To
illustrate what is meant by the UNIX culture, think about
how one edits a file and what features the editor has, how one
compiles and links, or how one manages code development.
Each computing culture accomplishes these tasks, but in
ways that are somewhat different. 
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HEP has the most experience with the mainframe
computing culture, first with CDC and IBM, and later with
DEC VAX/VMS. The HEP perspective of these computing
cultures is based on the FORTRAN programming language
which has served us well. However, the UNIX  culture is
based on the C programming language. The C language was
invented to write the operating system, and C language style
of accomplishing tasks dominates the UNIX environment.

Although the FORTRAN language is only one
component of our mainframe culture, it is an important one
because it influences other aspects of the environment. One
only needs to look at the technology that is in common use.
Take, for example, the set of subroutines, functions and
packages that make up the CERNLIB distribution. Apart
from the mathematical functions, the style of what is in this
library is dominated by the FORTRAN language. Large
production codes and other packages make heavy use of
data management systems such as ZEBRA[2], BOS[3], or
Jazelle[4]. Graphic packages such as GKS or HIGZ[5] are
strongly influenced by their FORTRAN bindings and origins
and the graphics technology at the time they were designed.
Even code management systems such as PATCHY[6],
CMZ[7], or CODEBASE[8] were designed for FORTRAN
programmers by FORTRAN programmers. Also simple
compi ler  preprocessors,  such as EXPAND[9]  or
PREPMORT[10], were invented to satisfy certain needs of
the FORTRAN programmer.

The first question that arises in considering the use of
UNIX  fo r  every th ing ,  i s  how we l l  wou ld  these
FORTRAN-based technologies of our mainframe culture
mix with the UNIX culture. Or even, should we attempt to
mix them. Might it be better to learn the UNIX  way of
accomplishing these tasks? Before deciding on which
technology to import from our mainframe culture to UNIX,
we should first understand fairly well the technology that is
used in the UNIX  culture. The remainder of this paper
focuses on this issue.

3. Programming Languages

At first appearance, there doesn’t seem to be any reason
not  to  use FORTRAN wi th  the UNIX  comput ing
environment. However, as one looks closer, one begins to
see some problems. It starts with the interface to system
calls. As supplied by the UNIX vendor, they are designed to
be invoked from C language programs. Certainly the
interface to the windowing system and the graphical user
interface (GUI) is designed for C language programming, as
well as the interface to the networking system. It is also quite
probable that re-training FORTRAN programmers to use C
will require less effort, in the long run, then trying to support

FORTRAN in an UNIX  environment, at least for many
programming tasks.

So in contemplating a move to UNIX, it would seem one
should also consider moving to a C based language.
However, it is frequently said: The C language is not
suitable to scientific programming. We have found such
statements overly generalized. The software tasks that one
endeavors to achieve in large detector groups go far beyond
the numerically intensive computation where, perhaps, C
may not be well suited. Every language has its strong and
weak points and one needs to take an overall look at all our
computing tasks.

Where C has not been tested for large detector groups in
HEP is with the off-line production codes. The way these
codes are designed is strongly influenced by the handling of
data structures. Packages such as ZEBRA, BOS, and Jazelle
have been used to support the FORTRAN programmer to
such an extent that one is no longer programming in
FORTRAN, rather one uses a hybrid language that I call
FORTRAN+X, where “X” is one’s favorite package. We use
these packages to satisfy two basic needs. The first is to
handle data, such as tracks and vertices, as structured
entities. The second is to be able to move the data from the
computer’s memory to disk in a form that can be read back
for further analysis at a later time.

The use of FORTRAN with such packages has a number
of problems, although not all packages suffer from the same
problems. For example, one might lose access to data points
by name. In some systems access to data is by pointer and
numeric offset into a large common block. Such access
methods have little mnemonic value. Related to that point is
the limited usability of a symbolic debugger when data is
accessed in that way. One might also lose portability of the
code across platforms, as the auxiliary package has to be
ported first. Another important point is that many of these
systems are quite large and everybody needs to learn them
from relatively poor documentation. One could argue that it
is easier to learn another programming language than to
learn all the ins and outs of FORTRAN+X.

On the other hand, the C language has the concept of
data structures built into the language. Access to data in
structures can be made as easily as a statement like

Dynamic memory allocation for these structures is also part
of the language’s standard library and it is probably highly
optimized by a UNIX vendor since it is important to overall
system performance. Naturally, the symbolic debugger
knows about structures as well. Clearly, C is a better
environment than FORTRAN+X when data is best
represented by structured entities.

px = mctrack[itrk]->px;
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As good as the C language is for handling data
structures in memory, there is nothing built-in to the
language or its library for writing the structures to disk. One
needs a package to accomplish this or each application
would need custom code. The Cheetah[11] package is an
example of what can be done. It provides, first of all, a
user-friendly way to allocate space for structures and the
management of pointers to that space. Structures managed
by Cheetah can be written to disk and read back again. At the
beginning of a Cheetah file, there is a complete dictionary of
what type of structures are contained in the file; the name of
the pointer arrays; the name, type, and size of each variable
in a structure; and even the comments from the file that
defined the structure. For interactive applications, the
structure definitions can be dynamically created, and access
to the dictionary is available to the program. Cheetah is
written with only 2,500 lines of C code which has shown to
be very portable across such diverse platforms as IBM
VM/CMS, DEC VAX/VMS, and various flavors of UNIX. The
features of Cheetah compared to its size is also a testimony
to the power of the C language for this kind of package.

Another important study will be the use of object
oriented programming (OOP) technology. The early work at
SLAC on the Reason and Gismo projects has adequately
demonstrated that OOP is a significant advance over
procedural languages for programming with windows and
the GUI. There are now also prototypes of analysis codes
using OOP as well. The MC++[12] project, for example, is an
event generator toolkit written in C++. The Gismo[13]
prototype for detector simulation and reconstruction written
in Objective-C was completed in the spring of 1991 and is
now being re-designed and written in C++. There is also the
CABS[14] analysis package which uses a C++ class library
for support.

It seems that the most popular OOP language and the
one best suited for numerically intensive work is C++. Its
C-based heritage makes it easy to interface to the operating
system, the GUI, etc., while its data abstraction capabilities
allow for OOP and operator overloading. C++ can be
somewhat tedious, however, especially when coding such
things as a base class library. On the other hand, once a good
class library is established, it seems that it is not difficult for
average programmers to accompl ish their  tasks.
Prototyping work is needed to judge the suitability of C++ as
the language for a large detector group.

Now that the FORTRAN ’90 standard has been
published and at least one compiler is available, prototyping
work can begin in this new language. Our emphasis will be
on testing those new features of the language that deal with
areas where FORTRAN ’77 has been weak: the handling of
data structures. Are the derived data types in the language
sufficient for the tasks that need to be done? Will we be able

to write a general purpose I/O system, such as Cheetah, with
FORTRAN ’90? Can it be used when interfacing to UNIX
system calls, to the GUI, or to the networking systems? The
data abstraction aspects of the language are a big
improvement, but it lacks inheritance, thus one can not take
full advantage of OOP. Will this be significant in real world
applications? In order to get some answers to these many
questions, prototyping in both FORTRAN ’90 and C++ will
be done in parallel.

The issue of switching a HEP collaboration to a
language other than FORTRAN is a difficult one. The
prototyping work with other languages fits into a strategy
for gaining acceptance of another language. Before people
will change their habits, they must see the benefits of a
change and examples of HEP analysis code in another
language will be needed to show the benefits. The
prototypes become these examples. One will also need a
sufficiently large body of people who have tried another
language and have enjoyed its benefits. Those that work on
the prototypes become that group. 

Another issue in switching languages that is frequently
raised is one of training. So far we have found that
experienced programmers have been able to learn the C
language relatively quickly. The C++ language, however, is
another story. It is felt that people will need to be motivated
by understanding the benefits before tackling this language.
In both cases, however, having example analysis codes will
facilitate the learning process. It is also true, that more and
more of the younger generation already know C or even C++
when they join the collaboration. 

One final issue in switching languages is frequently
stated something like: You can’t afford to throw out 30 years
of code development and start over again. We find this
statement overly generalized. First of all, we find that in
most detector collaborations a large fraction of code base is
new anyway; probably greater than 50% of the total. Some
existing code can be reused within new code of a different
language. It is an issue of inter-language communication
which is handled adequately under UNIX. 

In evaluating what FORTRAN code could be reused
within another language environment, we have classified
codes in three categories. First, any FORTRAN code whose
input and output is passed entirely via its arguments is a
strong candidate for reuse. Such codes are modular and thus
more easily reused. The second category is FORTRAN code
that communicates via COMMON blocks. Such code is
suspect and its reuse depends on the number of the
COMMON blocks involved, how they are initialized, where
they are used, etc. Finally, any FORTRAN code that uses a
data management system, such as ZEBRA, implies that data
structures are involved, and is a strong candidate to be
re-written in another language.
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A final comment is that we may throw out old code, but
no one is proposing to throw out 30 years of algorithms and
techniques. Rather, by re-writing these concepts in a new
language one is re-casting them in a new, more productive
environment.

4. Code Management

An area of concern when a group of people collectively
write the software base for a collaboration is code
management. UNIX has a rich set of tools with which one
can set up a code management environment with only a thin
layer on top and a few set of rules. First of all, there are the
SCCS[15] and RCS[16] packages. They handle version
control, logging, and locking. The C language preprocessor,
cpp , can be used for configuration control (e.g., taking care
of architecture dependencies) in conjunction with the make
command. Finally, there are utilities like rdist  and rsh  to
help with the code distribution.

We have built a prototype code management and
distribution system based on these native UNIX tools. In the
UNIX world, SCCS and RCS are well known packages. The
CMS system available on VAX/VMS  is similar. Compared to
what HEP has used in IBM mainframes in the past, they have
an impressive set of features. They maintain different
versions of a file within a single file. A working copy of any
version can be checked out of the system. When files are
checked back in, the differences between the new version
and the previous one is automatically generated and saved.
Logs are kept of when changes are made, and the user is
prompted to respond why a change has been made. These
logs can be included in source code when they are checked
out if desired. Check-out can be done with or without
locking. A locker permission list can be used to control who
is allowed to lock a file. Independent of the version number,
a file can be set to a state such as “Exp,” “Dev,” or “Rel.” The
version number can be included in the source file upon
checkout. This is frequently used to initialize a static string
variable. A utility exists to print the value of that variable in
object code, so one can verify the version of object code.
Utilities also exist to show differences between versions,
and to merge different versions.

We have tentatively chosen to use the RCS package. It
appears to be a well thought out and mature system. It is also
freely available (although not public domain) and compiles
easily on most UNIX  platforms. An area missing from
systems such as RCS, however, is configuration control.

The C preprocessor, cpp , implements the source code
preprocessing defined by the ANSI standard. It provides a
number of facilities for code management. The first is the
inclusion of other files into the source. Another utility is the
macro expansion. It is used in two ways. The first is for

parameters which are valid for the scope of the whole file.
The macro expansion can also be used to define inline
functions although it is well known that this feature should
only be used with great care. The most powerful facility
consists of condition directives such as

In this example, the file is included only if the symbol
aix6000  exists. Clearly this facility is important for
configuration control.

Clearly, cpp  works well with source code in the C and
C++ languages. But cpp  can also be used with other
languages, such as FORTRAN. In fact, with most UNIX
FORTRAN compilers, passing the source through cpp  is an
option to the command that runs the compiler and is even
automatically invoked if the source file name ends with a .F
suffix.

An important component of the code management
system is the make command which handles the
compilation and linking steps and can be used for other
things as well. Basically, one sets up a file, named
makefile  by default, in which one lists the dependencies
to build a module and its set of commands. It is similar to
MMS on a VAX/VMS  system, but easier to use. There are also
UNIX  commands to help build the dependencies for
inclusion in the makefile . 

Once the makefile  is written, the user only needs to
edit, save, and type the make command which takes care of
building a new module by compiling only that which is
necessary. To a beginner, it is a bit tricky to write a
makefile , but it is well worth taking the time to learn.
Another way to use make is to set up some extra targets to
do some code management tasks. These targets are
examples of the thin layer on top of UNIX. For example, one
could have a target that would check-in all modified files
into the RCS system, or a target that would install the module
into the production directories.

For code distribution, we have put together a system
that integrates with the code management system. It is
called Code Distribution System (CDS) and is a further
example of a thin layer on top of the native UNIX. It uses the
rdist  and rsh  commands. At the master site, the RCS
files are stored along with a reference working copy. This
reference copy is simply a read-only, checked-out copy of
the latest version. At remote sites, nightly updates are made
of the reference copy by running rdist  at the master site. It
is smart in that it checks the dates of the files at both sites,
taking into account time zone differences, and sends only
those files that have been updated. The user at the remote

#if defined(aix6000)
#include <rpc/rpc.h>
#endif
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site can force an immediate update if he or she desires. At a
remote site, a user can also perform check-in and check-out
operations. The user types a command on the remote
computer that uses rsh  to issue the check-in or check-out
operation on the master site. 

With a system like CDS, one has a distributed code
development environment. The remote collaborators are
equal members of the development team. We have been
using the CDS system between SLAC and McGill University
over the Internet since September 1991 and are currently
running it to other sites as well. Even with McGill’s
relatively poor connection to the Internet, response time is
essentially immediate. 

Our plans are to use the four components, RCS, cpp ,
make, and CDS for our prototype code management
environment. There has been no need to import code
management tools from the mainframe culture or to invent
our own package.

5. Graphical User Interfaces

One of the advantages of knowing that all members of
the collaboration are using UNIX is that you also know that
they probably have large bit-mapped display terminal. It
should be possible, therefore, to build all the analysis
programs with a GUI so that using them will be as easy as
using programs on a popular personal computers such as the
Apple  Mac in tosh.  The Reason[17]  pro jec t  has
demonstrated analysis codes with such a GUI and their
potential.

For this goal to be achieved, one will need to learn how
to program to the GUI. The Reason project used the
NeXTstep environment which comes with a complete set of
tools and has an object oriented programming environment,
so it is relatively easy to build applications. However, most
UNIX  workstat ions are based on the X-Windows
environment where programming the GUI is not so easy.
Fortunately, a large number of programming tools are
becoming available from the third parties, as well as the
computer vendors. However, choosing from amongst them
can be a long and confusing process.

To help evaluate the tools and methodologies in
building an application, we have set up a software
benchmark. The idea is to build the same application with a
different set of tools. The benchmark was made easy enough
to implement so that one wouldn’t spend too much time
developing code that may eventually be thrown away. It has
been made difficult enough, however, to be a real test of the
tools. The specification of the benchmark is given in the
Appendix. When the benchmark is implemented, one will
have an application for viewing data in the form of n-tuples
with a minimum set of interesting features.

A number of people have taken this benchmark as an
opportunity for learning how to program to a GUI
environment. Others have taken it to demonstrate their
previously developed toolkit. The benchmark was based on
two applications that had already met the specifications. The
first was HippoDraw[18] which was done with NeXTstep.
The other was done on a Sun with the InterViews[19] toolkit
which is based on C++. Other work is being done on
DECStations, RS/6000s, SGIs, Intel ’486 under Windows,
and Macintosh. 

6. Conclusions

An organized R&D effort into all aspects of HEP
computing is being conducted as part of the preparation for
a possible B Factory at SLAC. Much work needs to be done
and in many areas it has just started. In other areas, such as
those presented in this paper, we have reached some
preliminary conclusions that set the scope and scale of a
software prototyping program. 

The issue of programming languages is frequently
discussed during the early stages of a collaboration. It seems
that since the B Factory at SLAC will base all computing on
UNIX, that the C language will play the major role in areas
dealing with the operating system, the GUI, and networking.
The use of C or C++ for the off-line programming tasks
needs to be evaluated, as does FORTRAN ’90. 

UNIX appears to have code management tools that are
sufficient to meet our needs. We need only a thin layer on top
of them. The flexibility of these tools has already allowed us
to set up a distributed code development environment.

Software benchmarking will be done to focus our
attention on the problems and to evaluate tools and
techniques. The n-tuple viewer application described in the
Appendix is an example. These benchmarks will also train a
body of people who will learn a lot about the UNIX
environment and culture through their participation. When
the time comes to make hard decisions on the various
computing issues, they hopefully will be based on real
experience and knowledge.
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Appendix

Specifications for B Factory Software Benchmark

Build a data visualization application for data in the
form of a flat table of numbers (commonly called an n-tuple
data set). This tuple viewer must have the following features
and capabilities:

1. Display 1-D and 2-D histogram projections of 
column(s) of data.

2. May use existing histogram/n-tuple package such as 
HBOOK4 or Hippoplotamus.

3. Must have file browser to open n-tuple file.

4. Must have data browser to select which column(s) are 
used in displays.

5. Must be able to point and click to select a few display 
options such as error bars, joining points, etc.

6. For 2-D histograms must have option to display as 
grey scale density, color density, or scatter plot.

7. Initial range of histogram display should autoscale so 
all data is visible.

8. Must be able to change the histogram range and 
number of bins either with sliders or by typing into text 
fields. Histogram displays must dynamically update as 
one drags a slider.

9. Must be able to change the n-tuple file used for the 
histograms without needing to redefine the histograms 
parameters and attributes.
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