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ABSTRACT 

- 
In this paper the connection between standard perturbation theory techniques 

and the new Bern-Kosower calculational rules for gauge theory is clarified. For one- 

loop effective actions of scalars, Dirac spinors, and vector bosons in a background 

gauge field, Bern-Kosower-type rules are derived without the use of either string 

theory or Feynman diagrams. The effective action is written as a one-dimensional 

path integral, which can be calculated to any order in the gauge coupling; evalu- 

ation leads to Feynman parameter integrals directly, bypassing the usual algebra 

required from Feynman diagrams, and leading to compact and organized expres- 

sions. This formalism is valid off-shell, is explicitly gauge invariant, and can be 

extended to a number of other field theories. 
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1. Introduction 

In the past year significant advances have been made in techniques for calcu- 

lating one-loop scattering amplitudes in gauge theories. Following on the successes 

of several authors at applying string theory and various technical innovations to 

tree-level gauge theory calculations11’2’3’41, Z. Bern and D. A. Kosower have derived 

;Yiiew rules from string theory for one-loop gauge theory scattering amplitudes. In 

reference 5, they present the derivation of the rules and apply them to the com- 

putation of two-to-two gluon scattering at one loop, which previously was difficult 

enough to challenge the most expert [‘I calculators. In reference 6, they present their 

rules in a compact form and work a simple example. Although obtained from string 

theory, the Bern-Kosower rules do not refer to string theory in any way, but as they - 

also .bear little resemblance to Feynman rules, it is of interest to derive them di- 

rectly from field theory. Bern and Dunbarn4’ showed how to map the Bern-Kosower 

rules onto Feynman diagrams and demonstrated that the background field method 

plays an important role; in this paper I take the opposite route, deriving Bern- 

Kosower rules from the field theory path integral with the use of the background 

field method. 

The main result of this paper is that calculational rules similar to those of Bern 

and Kosower can be derived from first-quantized field theory. Unlike the “connect- 

the-dots” approach of Feynman diagrams, first-quantized field theory (particle the- 

ory) views a particle in a loop as a single entity, acted on by operators representing 

the effects of external fields. We are all well-accustomed to this approach in atomic 

&&sics,. where electromagnetic fields are treated as operators acting on quantum 
- 

mechanical electrons, but to my knowledge it rarely been used for calculations with 
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relativistic particles. (Feynman presented formulas similar to those discussed in 

this paper but did not use them to develop perturbation theory!“‘) In any case, 

it will not surprise those familiar with first-quantized strings that just as string 

theory amplitudes are evaluated as two-dimensional path integrals, so particle the- 

ory amplitudes can be calculated using one-dimensional path integrals - the path 

integrals of quantum mechanics. L -- 

In this paper I address the issue of the effective action at one loop. In section 

2, I construct the one-loop effective action of a scalar particle in a background 

gauge field, and derive rules almost identical to those of Bern and Kosower. In 

sections 3 and 4 I generalize this approach to Dirac spinors and vector bosons. 

Section 5 contains a study of the integration-by-parts procedure involved in the 
-. 
Bern-Kosower rules, and an illustration of its relation to manifest gauge invariance. 

After a short comment (section 6) on an alternative organization of color traces in 

this formalism, I conclude in section 7 with some extensions of this approach to 

other field theories. 

2. The Effective Action of a Scalar in a Background Field 

In this section, I will show that the one-loop effective action of a particle in 

a background field, when written as a one-dimensional path integral, is calculable 

at any order in the coupling constant g. A particle in a loop can be described 

as a simple quantum mechanical system existing for a finite, periodic time, or, 

alternatively, as a one-dimensional field theory on a compact space; external fields 

&$as operators on the particle Hilbert space, just as in usual quantum mechanics. 
- 

At any order in the external field, the effective action is a correlation function 
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of these operators in a free and therefore soluble theory, and can be expressed 

in a compact form. By writing the effective action as a one- rather than a four- 

dimensional path integral I employ quantum mechanics instead of quantum field 

theory; as string theory in its present form is a first-quantized theory, it is not 

especially surprising that the expressions found from string theory by Bern and 

L _Kosower are of the same form as those found in this paper. 

Working initially in Euclidean spacetime, let us first consider the one-loop 

vacuum energy of a free scalar field, with Lagrangian 

(2.1) 
First represent it in terms of Schwinger proper time r:‘5’101 
- 

1ogz=1og [J ~4 ,iSd’xL: 1 = - log [ det(-d2 + m2)] 

mdT d4p J J (2.2) 
= - Tr log(-d2 + m2) = 

T (27r)4 
exp [ - k&T(p’ + m2)] . 

0 

The parameter & (the einbein) is an arbitrary constant. Next convert this result 

into a path integral over #(r): 

OOdT 
T T 

log2 = 7 J J Vp Dz exp [ J d7 ip - i ] exp[-$? J dT(PM2 + m2) 3 

=li J 
0 0 

O”dT 
T (2.3) 

-TN 
Vx exp [ - J dr(&i2 + gm2)] , 

0 x(T)=x(O) 0 

where the normalization constant N is 
.-- -x< I 
- J -1 N= Dpe20 j- Tdr&p2 

4 

(2.4 



- 
I- . x-^ 

and satisfies 

N J z)z e-So Tdr&i2 = J dDp e-+ET~2 = [2T‘yq-D/2 . 

cwD 
P-5) 

The result of (2.3) is a  one-dimensional field theory: the particle position xc”(r) 

L  is a  set of four fields living in the one-dimensional space of proper time, called the 

worldline. Eq. (2.3) contains the well-known first-order form of the action for a  free 

particlen21, which, unlike the usual Einstein action, is well def ined in the massless 

lim it: 

cs* mce a  massless particle has no  internal clock, r is not actually proper time  in this 

case, though I will loosely continue to refer to it as such.) Classically, the action is 

reparametrization invariant (that is, invariant under  r + r’(r)) when the einbein, 

the square root of the one-dimensional metric, is chosen to transform in the proper 

way. On  the other hand, the functional integral in (2.3) is not invariant unless one  

integrates over the einbein as well. In the present work I will keep & constant and  

ignore the reparametrization invariance, since it is not needed for practical results. 

Now let us consider the same system (massless, for simplicity) in a  classical 

background Abelian gauge field Ap(x): 

L  = q5tD2q5 (2.7) 
.-- -XL. 
- 

where D, = dp - igA,. The object of interest is the one- loop effective action 
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generated by (2.7), as a function of A,. In analogy to eqs. (2.2)-(2.3), 

I’[A] = - log [det (- D2) ] 

+ 
mdT d4p = J J T @+ (PI exP+YP + sN21 IP) 

0 

L c- 
,=J”$N Jv~ exp[-jdr($i’ + igA[x(r)l.k)] . 

0 0 

Continuing this result to Minkowski spacetime and redefining & + -& gives 

l?[A] =J”$N JP, exp [ -Jdr(-&k2 - igA[x(T)].i)] 

=i J 
0 

O”dT 
TN Vx e-L Tdr(%2) exp[ig dx . A(x)] . 

! 
0 

(2.8) 

This expression is immediately recognizable as the expectation value of a Wilson 

loop of the background field, in a certain ensemble of loops. It is therefore explicitly 

gauge invariant with respect to the background gauge field, as it should be. 

The non-Abelian generalization of this structure is easy to guess; one merely 

inserts a trace over color states: 

JJA] = 77 N JDx TrRexp [ - /dr(&k2 - igA[x(r)]*i)] , (2.10) 
0 0 

where the gauge field is a matrix AFTa in the gauge group representation R of 

%&scalar. Notice that th e usual path-ordering in the Wilson loop appears here as - 

proper-time-ordering, implicit in the path integral construction. 
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L e t us  n o w  cons ide r  th e  e x p a n s i o n  o f th is  e ffect ive act ion to  o r d e r  g N , wh ich  is 

equ i va len t to  stu d y i n g  th e  o n e - p a r t ic le- i r reducib le ( 1 P I) F e y n m a n  d i a g r a m s  with 

N  b a c k g r o u n d  g l u o n s  a n d  o n e  sca lar  l o o p . (By  “g l u o n ” I m e a n  a n y  n o n - a b e l i a n  

vector  b o s o n .) In  th e  sta n d a r d  F e y n m a n  g r a p h  te c h n i q u e  th e r e  a r e  a  n u m b e r  

o f such  d i a g r a m s , invo lv ing b o th  th e  o n e - g l u o n /two-sca la r  ver tex a n d  th e  two-  

L & o n /two-sca la r  vertex. H e r e , th e r e  is on ly  o n e  c o m p u ta tio n . W e  e x p a n d  th e  

* W i lson l o o p  to  o r d e r  g N : 

I? N [A ] =  s  7 : J V  J D X  e -LTdrh i2T r (  f iJdi iA [x(ti)]*i(t;)) . (2 .11)  

0  i= l 0  

U p  to  th is  p o i n t th e  b a c k g r o u n d  fie l d  is c o m p l e te ly  arbi t rary.  T o  c o m p u te  I’N [A ] 

as  a  fu n c tio n  o f m o m e n tu m  e i g e n s ta tes, w e  insert  fo r  A , a  s u m  o f classical  m o d e s  

o f d e fin i te  ( o u tg o i n g )  m o m e n tu m  Ici, po lar iza t ion  ci, a n d  g a u g e  c h a r g e  Tai:  

( 2 .1 2 )  
i= l 

A g a i n  Tai  is a  m a trix in  th e  r e p r e s e n ta tio n  o f th e  scalar.  Inser t ing  th is  fu n c tio n  

in to ( 2 .1 1 )  a n d  k e e p i n g  on ly  th e  te r m s  in  wh ich  e a c h  m o d e  a p p e a r s  prec ise ly  o n c e , 

w e  fin d : 

rN(h, .  . a ,  kN)  =  (@ ? jN 

Tr(TaN..  .Tal)  fi r ldi i  e i  . ,j(ti)eiki’s(‘i) 

i= l 0  

( 2 .1 3 )  

j& & s  te r m s  with al l  o th e r  o rde r i ngs  o f th e  ti a n d  Tai.  ( H e r e  t~ + l E  T.) N o tice  -  

th a t fo r  a  g i ven  in tegra t ion  o r d e r i n g  ( =  p a th - o r d e r i n g  a r o u n d  th e  l o o p  =  p r o p e r -  
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time-ordering = color-trace-ordering), the color information factors out, as is well- 

known in open string theory and tree-level Feynman diagrams. In string theory 

the color trace is known as a Chan-Paton factor!13’ The utility of computing color- 

ordered tree-level partial amplitudes using color-ordered Feynman diagrams was 

emphasized by Mangano, Parke and Xu12’; a study of color-ordering in loop graphs 

:xas performed by Bern and Kosower!71 For pure vector field backgrounds, only 

one color-ordering is actually necessary, as all other orderings are related to it by 

permutation of labels; because of this, I will consider for the remainder of this paper 

only one color ordering at a time, leaving the sum over color orderings implicit. 

String theorists will immediately recognize eq. (2.13); the string theory version 

ef this formula gives the expectation value of N “vertex operators”, which in string 

theory can be interpreted as a scattering amplitude of N strings. For strings, duality 

of the s and t channels implies that not only the one-particle irreducible loop but 

also the trees which are sewn onto the loop are calculated in this way. In particle 

theory, however, eq. (2.13) computes only the e$ective action, the one particle 

irreducible graphs with a scalar loop, at order gN. Still, it has the advantage of 

being well-defined even for off-shell external gauge fields, unlike usual string theory. 

To calculate this expectation value I use the standard path integral methods of 

string perturbation [12’ theory. First, disregard the polarization vectors, and notice 

that the momenta Ici in (2.13) serve as sources of the four fields xp(r): 

.-- -=<. 
Jp(7) = 2 i kTS(3- - tj) 

j=l 

8 
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Using eq. (2.5), we find 

(idN 
=(4~)2(E/2)~~~(~~~ ‘** 

T”‘) I” fi rl& 
o T3 i=l o 

; -- 

T T 

exp[ dr JJ d7’ - ;J’(T)GB(T, T’)J&‘)] 
0 0 

(2.15) 

(idN = (4T)2(~/2)2 Tr(TaN * * .Tal)rgfi ( T’dti) 
0 0 

N 1 
exp [ C ski * kjGB(ti,tj)] - 

i,j=l 

Here GB(t, t’) is the one-dimensional propagator on a loop, which I will discuss 

later. (The B indicates that Gg is the Green function of the Bosonic field xp.) 

The standard method for including the polarization vectors is to exponentiate 

them, with the understanding that the only terms to be used are those which 

contain one Ei: 

i * Af(x(ti)) = Tai exp [Ei * atix:(ti) + iki * x(ti)] (linear in (2.16) E I 

This leads to a new source for xp: 

N 
J’(T) = C S(T - ti) (c’& + ikr) . 

1 

(2.17) 
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Integration over X(T) gives 

rN(h,. . . , kN) = GdN 
(4r)2(~/2)2 Tr(TaN ” ’ 7”“‘) [g( fi r’dti ) 

I=1 0 

ki . kjGB(tj -ti)] 

2ik; * cj&GB(tj - ti) 
3 

again only terms in which each polarization vector appears exactly once are to be 

used. String theorists and those familiar with the work of Bern and Kosower t51 will 

recognize this form for the amplitude. 

-Now let us study the Green function (one-dimensional propagator), which sat- 

isfies the equation 

#GB(t, t’) = b(t - t’) (2.19) 

with appropriate boundary conditions. If we were studying this Green function on 

the real line, the solution would be 

G&t’) = ;It - t’l + A + Bt . (2.20) 

Notice that the Green function is finite as t approaches t’, which is not true for 

higher dimensions; thus there are no operator singularities when x fields come 

together. This naturally simplifies many discussions. 

<;-To $nd the G reen function on a circle of circumference T, one must first note .- - 
that eq. (2.19) h as no solution on the loop; it is equivalent to solving Poisson’s 
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equation for a charge in a compact space, for which the potential is infinite unless 

there is a background charge that makes the total space neutral. Since we have 

one unit of charge at t’, we should add a uniform background charge of density 

-l/T. The new Green function equation is 

;a2&(t, t’) = b(t - t’) - f , (2.21) 

which has a solution when the condition of periodicity in t + t + T is imposed: 

G&t, t’) = ; (It - t’l - (t - t’)Z/T) + constant . (2.22) 

It is convenient to take the arbitrary constant to be zero, as any additive constant 

in Gg cancels out of eq. (2.18). Th is f unction has as its derivative 

&GB(t, t’) = g(sign(t - t’) - 2(t - t/)/T) 9 (2.23) 

and its second derivative is given in eq. (2.21). Note that GB and @GB are 

symmetric in their arguments, while &GB is antisymmetric. These functions (up 

to a multiplicative constant) were found by Bern and KosowerL5] from the one-loop 

string theory bosonic Green function and its derivatives, in the limit where t - t’ 

is large compared to the width of the string theory torus. Roughly adhering to 

their conventions, I shall use the notation G$ E GB(tj - ti), Gg = atJGg, and 

It is useful to transform eq. (2.18) in o a simpler form. First, through the use of t 

$&crucial relations GB(t, t) = 0 and (by antisymmetry in t and t’) &GB(t, t) E 0, 

the-terms in (2.18) with ci . ki and kf are removed without the use of on-shell 
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conditions. Second, it is useful to replace ti + UiT, where ui is dimensionless; N 

powers of T are thereby factored out. Next, observe that the integral over UN is 

trivial; after the first N - 1 integrals no dependence on the ui remains, and so the 

last integral, which contributes a factor of unity, can be dropped. It is useful to 

choose the origin of proper time by fixing tN = T, and as a consequence we should 

;_sum only over color traces which are not related by cyclic permutation. A further 

advantage is gained by choosing the (dimensionless) gauge & = 2. Lastly, antici- 

pating the use of dimensional regularization, I redo the integral over momentum in 

4 - E dimensions as in eq. (2.5). (For th e remainder of this paper, the conventions 

chosen above will be used except where explicitly noted.) 

The result of all these changes is 

rj,r(kl,. . . , kN) = 

i,$+2 j duN-1 y-1duNs2 . . . fduL 
0 0 0 

N 

exp E 
k. . k.Gji 1 3 B I 

i< j=l 

exp [ 5 ( - i( ki * cj - kj * ci) 62 + ci * cj eg)] lbnear in each ~ ; 
i<j=l 

(2.24) 

plus all other proper-time-orderings. Meanwhile the Green functions have become 

GB(t, t’) G T(lu - u’l - (u - u’)“) ; 

&GB(t, t’) E (Sign(U - 24’) - 2(U - U’)) ; (2.25) 

d,2GB(t, t’) = ;(b(U - U’) - 1) . 

Comparison with reference 5 or 6 shows that the correspondence between eqs. (2.24) 
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and (2.25) and the Bern-Kosower rules for the one-particle-irreducible scalar loop 

diagram with N gluons is exact, up to differences in conventions. 

Following Bern and Kosower [‘I, let us study the result of (2.24). The overall 

constant factor, the color trace and the integrals are easy to understand. The 

exponential 

L -- 

=P [ fl: ki - kjG~] = exp [T 5 ki . kj (Iuj - Uil - (Uj - Ui,'>l 
(2.26) 

i< j=l i<j=l 

is a ubiquitous factor which, after the integration over T, becomes the usual Feyn- 

man parameterized denominator for a scalar loop integral (notice it contains no 

polarization vectors, and is thus spin-independent): 

._ 
00 

J 
N 

*kT Ta exp E ki. lc,G~ = 1 r(a + 1) 
0 i<j=l [ - C,“,j=l ki * kj (Iuj - uil - (uj - ui,z)] a+1 * - 

(2.27) 

The remaining term, 

exp [ 5 ( - i(k; . Ej - kj * 6;) 6’2 + Ei . cj c$)] Ilinear in each ~ , (2.28) 
i<j=l ’ 

which I shall call the “generating kinematic factor”, provides the numerator of the 

Feynman parameter integral. It is the only part of (2.24) (other than the overall 

normalization) which has any information about the type of particle in the loop or 

the nature of the external field. It is also the only part of the result which cannot 

be guessed on general grounds; we undergo the usual struggles with Feynman 

-&&grams and loop momentum integrals in order to obtain precisely this piece of - 

information. 
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However, the form of the generating kinematic factor causes some practical 

problems. At first glance (2.24) appears to have expressed the entire result in such 

a way that one has exactly one set of Feynman parameter integrals for each color 

trace, but this is not quite true. The difficulties stem from the GB functions. The 

first problem is that each term with M GB’S has M fewer powers of T than terms 

without GB’s, so a number of different integrals over T must be performed. The ; -- 

second problem is that hiding inside each G$ is a delta function in tj - ti. The 

evaluation of this delta function gives the contribution of the Feynman diagram 

in which gluons i and j come onto the loop via a four-point vertex. Thus the 

expression in eq. (2.24) contains all of the 1PI Feynman diagrams, in fact, and 

each one generates slightly different integrals and integrands. (Fortunately, these 

problems can be dealt with”], as I will discuss in section 5.) 

There is a subtle factor of two concerning the delta function in ei. Consider 

smoothing out the singularity slightly; then, in order to maintain the symmetries 

of Gg and its derivatives only half of the delta function actually contributes to a 

given color trace. In other words, one must be careful to assign half of the delta 

function in Cf$ to Tr(. . . TaiTa, . . .) and the other half to Tr(. . . TajTai . . m). 

I now present the simplest possible example, the contribution of a massless 

scalar to the gluon vacuum polarization. There are two Feynman diagrams, the 

first of which involves two three-point vertices, the other of which involves a single 

four-point vertex. The former is given by 

J dDp (i)2e1 . (2p - kl)c2 * (2p - ICI) 
(id2Tr(TaTb) (24D 

P2(P - k1)2 
(2.29) 

where ICI is the momentum flowing out along gluon 1. The second diagram is given 
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2ig2‘WaTb) J dDp icl . ~2 -- (2T>D p2 . (2.30) 

I now use the Schwinger trickI1” to evaluate (2.29) in a form conducive to compar- 

ison with the expression in (2.24). 

J dDp -61 . (2p - kl)c2. (2p - ICI) 

GwD P2(P - Jd2 

=TTdT j&.x/ f$ 
0 0 

._ 

- q . (2&, - kl)c2 . (2av _ kl)]e-T[p2+a(~:-2P”i’)Ie~‘P v-o 

=jTdTjb[r~.(2a.-k~)~2.(2a.-k~)(ea~1.~’~2/4T~~l~=o 
0 0 

x e-Tkf(a-a2) J dDp’ -Tp’2 
we * 

(2.31) 

Carrying out the derivatives and the integral over momentum, and adding to this 

expression the contribution of (2.30), we are left with 

-(sP”2)2 
II = (4r)2-c/2 Tr(TaTb) 

co dT J 7'1-42 
0 

1 

crJ ( da - ;q .c2 - (1 - 2a)2~1 . k1e2 . kl 
> 

e-Tkf(a-a2) 
I 

0 

-=--- . k.- 
- 

’ where E = 4 - D. 

(2.32) 
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. - 
Alternatively we may write down the result of (2.24) for N = 2: 

1 

I?&, ka> = 
(igc1”2)2 Tr(T”T”) 
(47p/2 [$n J 

1 ~ du &42G~(1-4 

0 0 

k2 . elk1 . t&(1 - u)12 + 61 - E2 &(l - u))] . 

‘Define a = 1 - u, plug in the functions in (2.25), and the result appears: 

~2 + (1 - 2~)~cr . k2c2 . kl 1 . 

(2.33) 

(2.34) 

Note that, as advertised, the diagram involving a four-point vertex (eq. (2.30)) is 

found by evaluating the delta function in (2.34); since Tr(TaTb) = Tr(TbTa) this 

trace receives the full contribution of the delta function. This example also makes 

clear that, as explained by Bern and Kosower “I, the differences ui - uj are directly 

related to the usual Feynman parameters. 

3. The Effective Action of a Spinor 

Particle in a Background Field 

The case of a spinning particle is a simple generalization of the particle theory 

used in section 2. The one-loop action of a Dirac spinor with a vector-like coupling 

to a background field is 

S = J d4x x(i p - m)x (34 
16 



where D, = aP -igA,. The one-loop effective action as a function of A, is therefore 

I’[A] = log [ det (i ~8 - m)] 

= flog [det(ip-m) det(-iJ8-m)] 

= ilog [det (II21 - ~F,,[y~,yy]+m2)] 

;-where I use det(p) = det(y5 8~~) = det(- 8). This expression for the effective 

(3.2) - 

action is also associated with the second order action for a Dirac spinor 

S = J lt 2 d4x - ;xL(JJ + m2)xR (3.3) 
where the $ in (3.2) appears because xL R 1 are two-component Weyl spinors. The 

relevance of these formulas to the Bern-Kosower rules was noted by Bern and 

Dunbar!‘“’ 

Since the gamma matrices are anticommuting operators, it is natural to in- 

troduce worldline fermions to represent them. This technique has long been em- 

ployed to introduce spin[15’17’181, and even colorL1”, into quantum mechanics. There 

is nothing mysterious about this; finite representations of compact groups can be 

generated by a set of fermionic operators. 

One may therefore implement a supersymmetric generalization of the procedure 

outlined in eq. (2.8), introducing Grassmann fields @p(r) as partners of the fields 

xfl(r). I will want the usual fermionic anticommutation relations. 

e$ich imply that as operators the $p fields are just constants equal to 
J $yp, and 

I take as the Hilbert space of the theory the four components lo) of the Dirac 
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fermion, which are acted on in the usual way by the 1c, fields: 

I will now evaluate (3.2) (in th e massless case) as in section 2, taking the 

worldline fermions to have the usual antiperiodic boundary conditions. (One need 

; *consider periodic boundary conditions only for chiral fermions “‘].) Direct construc- 

tion of the particle path integral leads to 

I’[A]= :Trlog [D21 - ~F~~[~~,~~I] 

(3.6) 
T 

Tr exp [ - J dT(&i2 + ;+ - ?1, - igA,P + ig(C/2)@‘F,,f’)] . 
0 

The abelian version of this action was first presented by Brink, Di Vecchia, and 

Howe”“; the nonabelian case was discussed by several authors!161 

In this way, the effective action for a spinor is expressed as a supersymmetric 

Wilson loop, in a free supersymmetric theory. The particle action is invariant 

under the transformation 

-QGs supersymmetry and the superfield formulation of this theory have been ad- .- - 
dressed by many authors, for example in reference 15; I will not discuss it further 
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in this work. 

Now let us consider the effective action (3.6) at order gN. For the moment I 

shall ignore the [ACL, Av] term in F,,; I will return to it at the end of this section. 

Expanding for the moment only the terms with a single power of the gauge field 

to order N, and inserting the momentum eigenstates of eq. (2.12), one finds 

;-- 
rO[A] = -+g)N ,,T~N Ja.~~expI-~d~(~~2+~~.~)~ 

0 0 

Tr fi /dti { Ap[x(ti)] * i”(t;) - E$“(ti)dpAv[x(ti)] * $“(ti)} 
i=l 0 

(3.8) 

1 (9) J - N OOdT = -- 2 
2 

T JV 27x Dt,b exp[- ‘dT(&i2 + $,!I . q)] J J ._ 0 

NOT 

Tr n dti Tai [Ei * aix(ti) + i&Ei * $(ti) ki * $(ti)] eiki’z(ti) J i=l 0 

(I write I” to remind the reader that I have left out the commutator term in Fpv.) 

Here string theorists will find the vertex operators for vector fields used in the 

superstring. 

Again we can put the polarization vectors in the exponentials; using Grassmann 

variables 8 and 8, we may write 

V E igT” [t.?+iEc.+ k.+]eik’2 

J (3.9) 
= igTa dedeexp [et& . i + thh% .1c, + i$fik . $J + ik . X] . 

This leads to sources for xp 

.-- -=g& N . .- - J’(T) = C S(T - ti)(e;ei(& + ikr) . (3.10) 
1 
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and q!P 
N 

7’(7,8,8) = ~S(T - ti)&(eiti + ieiki) . 
1 

(3.11) 

The result of carrying out the x and 1c, integrals (in the gauge I = 2) is 

;_-r;(kl,-, N k ) = -4 sTr(TuN.. . Tal) [&(fj 7ldui > 

O 
N 

=P CC 
i< j=l 

ki-kjGg){ (fi JdOidai) 
i=l 

exp ( 5 ( - i (8jSjki * cj - $iOikj * ci)h’g (3 12) . 
i<j=l 

N 

(EL 

-- 
exp - eiejki * kj + i8iOjki * tj 

i<j=l 

plus terms involving all other proper-time/color orderings. The overall factor of 

four comes from 

J 
4 

IA/I e-L Tdrf@‘q = Tr$,l = C (ala) . (3.13) 
ff=l 

The generating kinematic factor (in braces) has a bosonic part identical to 

(2.28), as well as terms that contain the one-loop Green functions GF (G$ = 
. 

-GF E GF(tj - ti)) of th e f ermionic 1c, fields. In addition to implementing the 

q@straipt th t a every polarization vector appears exactly once, the Grassmann 
- 

integrations over 8 and 8 ensure that in any term of the generating kinematic 
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factor in which crG$ appears, k:GF must also appear. This implies that the GF 

functions always occur in closed chains of the form 

d 

rI 
k=l 

; (id+1 E il) . (3.14) 

(As the GF’S are antisymmetric in their arguments, a term like GyGyG$? is not 
; -- 

ruled out; on the contrary, it is equal to -GyGFG”,’ which is of the form (3.14).) 

The bosonic part of the action in (3.6) is the same as in section 2, so the Gg 

functions are again given by eq. (2.25). The GF functions satisfy 

;&GF(t, t’) = b(t - t’). (3.15) 

Since the fermions also satisfy antiperiodic boundary conditions 

$(t + T) = +(t -+ 0) , (3.16) 

we take the antiperiodic solution of eq. (3.15): 

GF(t, t’) = sign(t - t’) = sign(u - u’). (3.17) 

This function is double-valued, since it changes sign only at t = t’: 

GF(t, t’) = -GF(t + T, t’). (3.18) 

<;-If the theory is abelian, then the single expression (3.12) contains the entire one- 
- 

loop effective action (which is also the full photon one-loop S-matrix.) However, if 
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we are working in a non-abelian gauge theory, then in addition to the expression 

given in (3.12) for the effective action we must include terms involving the quadratic 

term in F,,, 

which generates two-gluon vertex operators of the form 

oi,j = -g2E(TajTai) ej . II, ei . 1c, ei(ki+kj)‘z . (3.20) 

In the second-order formalism for spinors in gauge fields, the usual three-point 

vertices are replaced by vertices with not only one gluon but also two, in analogy 

with scalars in gauge fields. This can be inferred from eq. (3.3). As in the previous 

section, a part of the two-gluon/two-spinor vertex is associated with the delta 

function in &‘B, but because of the particle’s spin this vertex contains a new piece 

generated by the operator Oi,j. 

The contribution of this operator can be evaluated through a process known as 

“pinching”, which is related to the Bern-Kosower rules for trees attached to loops. 

In this process gluons i and j are brought to the same point on the loop (“pinched”), 

and a subsidiary “pinched kinematic factor”, containing the contribution of Oi,j, 

.&extracted from the generating kinematic factor in a systematic way. The reader 
.- - 

may wish to review the Bern-Kosower rules 16’, which serve as motivation for the 
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following unusual manipulation of (3.20): 

oi,j = - g2(TajTai) J dO;d8idejd8j 

(-8igj) exp [BidZei * $(ti) + 6jdej * +(tj) + i(k; + kj) * X] IfEt 
1 3 

= (ig)2(T”JTai) dOidIJidOjdgj J -- 
exp [Bifici * T/J + Bjficj * 1c, + i(k; + kj) * x - B;Bjk; . kjG$] 

k. . k.Gj’ 1 3 F ti=tj 

(3.21) 

Insertion of this operator into (3.8) t o replace two operators of the type (3.9) gives 

the pinched kinematic factor. Comparison with (3.12) shows that the pinched 

factor consists of all the terms in the generating kinematic factor which contain 
. 

ki * kjG3,‘, with the replacement 

k..k.Gji---f +l, if tj > ti; 

1 3 F -1, iftj<t;, 
(3.22) - 

and with ti set equal to tj. Notice that if a term contains ci * cjG$ as well, it 

vanishes since G-$(O) = 0 by antisymmetry. 

In order to keep track of the different pinch contributions, it is useful to write 

down a simple mnemonic rule based on Bern-Kosower diagrams. While this could 

be done in many ways, the particular choice presented here will eventually permit 

a smoother transition from effective actions to scattering amplitudes. 

Draw all (planar) 43 graphs with one loop, N external legs and any number 

NT 5 N/2 of trees with ooze vertex. Consider a particular graph and a particular 

+$or(path)- d or ering; label the external legs clockwise from 1 to N following the 
- 

path-ordering. Now examine the generating kinematic factor of (3.12) term by 
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term. Two external gluons flow into each tree vertex; let j be the gluon lying most 

clockwise, and call the other gluon i. If a given, term does not contain a factor 
. . 

ki . kjG$! for each tree vertex in the graph, then it vanishes. Even then, it must 

contain exactly one Gk ” at each vertex; otherwise it vanishes. If it survives, then 

replace each ki . kjG$ by +l, replace t; + tj in all Green functions, and eliminate 

the ti integral. ; -- 

As an application of the formalism of this chapter, let us consider the contri- 

bution of a Dirac spinor to the gluon vacuum polarization. In the usual first-order 

formalism of Dirac, the single diagram has the form 

J dDp -‘M#l(Id-- $1) A A 
g2Tr(T”Tb) (24D P2(P - kd2 (3.23) 

Usually this diagram is evaluated by writing 

Tr[#l(j-- PI> #2 fl = 4[el-(p--h)a-p+el.p ~2.(p-kl)-p.(p-k1)~1.~2], (3.24) 

after which the momentum integral is performed. One may also use 

f4(+ pi> = 26; ‘p - 4 {is {i $i (3.25) 

and write (after some algebra) 

2TrMW- bcl) 82 A 
= W- h h](p2 + (P - kd2) + Tr[(2a . P- 81 $1)(2a . (p - kl)- $i $z)] 

=-4~1~~(p~+(p-kl)~)+4~1~(2p-kl)w(2p-k1) 

- 4(q - 62 kl . k2 - ~1 . k2 kl . ~2) 
(3.26) 

@mch puts the amplitude in a second-order form. The first and second term yield .- 

the contribution of (2.31) t imes a factor of -2; the last term is independent of the 
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loop momentum. The result is 

I-I = 2 (gd2)2 Tr(T’Tb) O” dT 
(4x)2-6/2 J 7%42 

0 
1 

rrJ ( da 
2 

- -cl . c2 - (1 - 2~2)~~~ . k1c2. kl 
T 

0 

+ (~1 - e:! kl . k2 - q . k;! kl . 62)) e-Tkf(u-a2)] 

> 
, 

(3.27) 

where E = 4 - D. 

By contrast, evaluation of (3.12) at order g2 immediately yields 

kt(h, k2) = -2 
O” dT (igd2)2 Tr(T”Tb) J 1 

(47r)2-c/2 
J du ekpkzG&l--2L) 

0 T1-‘f2 0 

61 . km. kI[&(l - u)12 + cl . c2 &(l - u)) 
(3.28) 

+ (61 - r&l - k:! - el - k2c2 . kl)[GF(l - u)12] , 

which is identical to (3.27). Th ere are no pinches to perform, since the integrand 

contains no terms with a single power of Gp. 
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4. The Effective Action of a Vector 

Particle in a Background Field 

Now let us consider the case of a massless spin-one particle. There are many 

ways to proceed, and among them are several directly inspired by the methods of 

string theory. In a model inherited from the bosonic string, one would introduce a 
; -- 

single oscillator mode with a vector index, whose sole purpose would be to excite 

an unphysical scalar “vacuum” (which would eventually be removed by hand) to a 

vector boson state. One could then imagine projecting out all higher spin states, 

either by hand or by tricks ranging from adding large masses (as in the string) 

or by adding complex phases to the oscillators (along the lines of string orbifold 

constructions). Another possibility is to use a supersymmetric construction; as in 

the superstring, a fermionic oscillator with a vector index can be used to excite a 

“vacuum” (which one projects away) to a state with vector indices. Extra states 

can again be projected out in a number of ways. I will use this latter construction, 

following closely both the usual superstring methodology[121 and the work of Brink, 

Di Vecchia and Howe!151 

The action of a Yang-Mills particle QP, expressed in Feynman gauge, in a 

classical background Ap is well-known to be 

s = J d4a: { Qup[( D2)“*gpv - g( F;~JPa)pvfCab]Qbv + lZ( Dz)% 
(4.1) 

+ order(Q3, Q4, ZQW, etc.)} , 

-@ere l& = aP - igA, and gFpv = i[D,, Dv] are functions only of the background 
- 

field, w is the ghost of background field Feynman gauge, and Jp,, is the spin-one 
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(hermitean) generator of Lorentz transformations: 

(Jpv)p” = i(Sic5,6 - SE6;) . (4.2) 

(Feynman gauge for Qc( is appropriate in that the propagator is 17-l, as we had 

for scalars and spinors; background field gauge is essential since the result must 

be gauge invariant with respect to the classical field A,. The appearance of back- 
-* *- 

ground field gauge in this context and the following expression for the effective 

action were discussed in the work of Bern and Dunbar!14] A useful introduction to 

background field gauge is given in reference 21.) The one-loop effective action is 

found from the part of (4.1) h h q d t w ic is ua ra ic in the quantum fields: 

- r[A] = - flog [ det (D2 - gFpu Jpv)] + log [ det (02)] . (4.3) 
Again the structure of the effective action suggests the use of Grassmann variables, 

and turning to Brink, Di Vecchia, and Howe [15], we find that they have discussed 

the relevant theory. 

Let us consider a particle with coordinates (xp, $J$, $“). We will find it useful 

to consider also the real field $p = (+c” + $T). The worldline fermions satisfy 

If we define a vacuum IO) as the state such that $” IO) = 0 for all CL, then the full 

set of sixteen states (for a given momentum) is 

IO) ; q IO) ; [Tq, $;I IO) ; %dJf;~~~~ IO) ; %v,uti:+;+:1CI: IO) - (4.5) .-- -x;-, 
These are antisymmetric tensors; in four-dimensions the (0,1,2,3,4)-index antisym- 
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. - 
metric tensors have (1,4,6,4,1) components of which only (1,2,1,0,0) are physical 

degrees of freedom. This model therefore describes a scalar, a vector boson, and 

a pseudoscalar. However, if we can implement a projection onto states with odd 

fermion number, then the truncated Hilbert space 

will contain only the spin-one states as physical modes. 

In a complete analysis of this truncated model, one must study the super- 

reparametrization ghosts in order to derive the Bern-Kosower rules; however, I 

have chosen to skirt the issue of ghosts in this article. For the present paper it 

will be sufficient to use a trick borrowed from string theory, in which the gluon 

ghosts of field theory are accounted for by hand, and in which the three-index 

tensor is given a mass which is sent to infinity at the end of the calculation. 

Derivation of the superparticle Lagrangian is straightforward when one ob- 

serves the following: 

Remembering that we will eventually do away with the spurious states, let us 

extend the theory to the full set of sixteen states in (4.5). As in (3.6), we are led 

to the particle Lagrangian 

(44 
.@wever, in order to carry out the trick described above we will want to make the 

- 
three-index tensor heavy. We must therefore break the degeneracy of the sixteen 
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states by adding a harmonic oscillator potential: 

L+L-c($++-l). V-9) 

For positive C the +‘s form a fermionic harmonic oscillator whose states are spaced 

by Am2 = C and whose vacuum is a tachyon with m2 = -C. Fortunately this 

; +achyon is unphysical; it will be removed from the theory by truncation as discussed 

above, and so causes no difficulties. All other states except the vector boson will 

vanish as a result of the truncation or because their masses will be taken to infinity. 

(This construction is taken directly from the superstring!“‘) 

One can proceed straightforwardly with the computation of the effective ac- 

tion in direct analogy to the spinor and scalar cases. The field theory ghosts in 

background field gauge contribute a factor of log det D2; as noted by Bern and 

Dunbar [14’, and as expected from string theory ‘12’, this is exactly the negative of 

the effective action of a complex scalar in the adjoint representation (see eq. (2.10)): 

w&hosts = - Jg N J z>x Trexp [ - /dT(&i2 - igA. k)] . (4.10) 

0 0 

The gauge boson contribution may be calculated by projecting out the even fermion 

states in the theory and by letting C + oo. The projection, which is the GSO 

projection well-known from string theory[221, is implemented by the operator 

PGSO = f [l - (-l)F] , (4.11) : 

-bare F = (++Y - W-)p is the fermion number of a state. Clearly only the states 
- 

of (4.6) survive. It is well-known ‘12’ that the operator (-l)F is implemented in the 
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path-integral by choosing periodic boundary conditions for fermions: 

Ic,(t --f T) = $(t -+ 0) - 

“We may therefore write 

(4.12) 

I’[A] = -iTrlog [D’l - gFpVJp,] 

(sp, PI PGSO exP [ - ~W(P + d2 

- C($+. $J-- - 1) + isFpy@V’~] IGP) 

=t,!-&r JD~;[ JD~ - Jzq 

(4.13) 

0 (5) (0) 
T 

Tr exp [ - J dr ($i2 +d+.&-&i+*$=l) 
0 

where the subscripts (f) and (0) indicate antiperiodic and periodic boundary con- 

ditions on the worldline fermions. 

&;-Proceeding as in the previous section (eqs. (3.6)-(3.12)), we find (in the gauge 
- 

& = 2) 
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rg(kl,... ,“N)=m r 
(‘dN T (TUN 

a-- 

Ui+1 

J dui 
0 

> 

N 

f=P CC 
i< j=l 

ki*kjGg){ (fi JdSidS,) 
i=l 

exp ( 5 ( - i (8jejki * cj - BiBikj * Ei)G’g 
i<j=l 

(4.14) 

kc > 
ZE N -- 

- J’+l+ exp (a C [ - t9;Ojk; . kj + ieiejki * Ej 
p=o i<j=l 

again the symbols (4) and (0) indicate antiperiodic and periodic fermions. No- 

tice the factor of two relative to (3.12) in the exponential of the fermionic Green 

functions. The 2 factors are given (in Minkowski spacetime) by 

=emCT( 2 (SI (feCT)’ Is) )” = 16eCT 
s=o 

=emCTf4+6eCT+... 
(4.15) 

When continued to Euclidean spacetime, the exponentials change sign, and can- 

cellations remove all growing exponentials; I will explain this below. 

The bosonic green functions are identical to those used for the scalar and spinor 

particle (eq. (2.25)), since the free bosonic action 

(4.16) 



I 
: 

is independent of the particle’s spin. The free fermionic action is 

however, this leads in Minkowski spacetime to Green functions which blow up as 

C -+ 00. It is therefore necessary to analytically continue to Euclidean spacetime 

to study this limit. 
; -- 

Moving to Euclidean spacetime, and being careful to define the number oper- 

ator properly, we have 

Ly = f&7/w(& + C)$” , (4.18) 

Let us first compute the Green functions on the line. Define 

G+F-W’) = ($+(W-(t’>) ; (4.19) 

this function satisfies 

(at + e(t - t’)C)G+,-(t,t’) = s(t - t’) . (4.20) 

where 0(t) is a step function which is zero for negative t. This equation implies 

G$-(t, t’) = 19(t - t’) exp(-Clt - t’l) . (4.21) 

Similarly 

GF+(t, t’) = -O(t’ - t) exp(-Clt - t’l) . (4.22) 

Since G$+ and GF- both vanish, 

GF(~, t’) = ($(t)$(t’)) = sign(t - t’) exp(-C/t - t’l) . (4.23) 
._- -x<-, . .- 

Onthe circle of circumference T, we will need to find functions, one periodic (GF)), 
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another antiperiodic (G$)) ’ m t + t + T, which reduce to eq. (4.23) in the limit 

that 2’ + 00. An analysis analogous to the above yields 

G$)(t - t’) = 2 sign(t - t’)e-!P cash [C( ;T - It - t’l)] ; 

Gg)(t -t’) = 2 sign(t - t’)e-W’ sinh[C(iT - It - t’l)] . 
(4.24) 

’ -.&gain these are precisely the functions found by Bern and Kosower in the derivation 

I51 of their field theory rules . 

The next task is to discard the three-index tensor by sending C to infinity. We 

must carefully analyze the effective action (4.14) to see what terms remain in this 

limit. The following discussion is almost identical to that of Bern and Kosower”‘; 

I-repeat it here for the sake of completeness. 

It is necessary to study separately terms with and without GF chains. For 

terms that contain no GF’s, the only dependence on C is given in the prefactors 

2; , which in Euclidean spacetime take the form 

{ +;} = 16rCi{ ;;os;} (CT,2) = eCTf4+6e-CT+... (4.25) 

The first term, associated with the propagation of the tachyon, blows up as C + 00; 

fortunately it cancels in the expression 

&t, - qo,) = 4 + 0(,-y ) (4.26) 

wing us with an overall factor of 4. This factor stems from the sum over the four 

states $1; IO) h’ h w ic can propagate around the loop. These purely bosonic terms 
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are partially cancelled by the contribution of the ghosts (eq. (4.10)); the removal 

of the timelike and longitudinal modes of the vector boson reduces the number of 

states, and the overall factor, from 4 to 2. (In the usual dimensional regularization 

schemes, this number becomes 2 - 3~; however it is natural in this formalism to 

use dimensional reduction or the variant of it developed by Bern and Kosower t5A , 

;dn which the number of states is left at 2.) 

Consider next the expansion in powers of e ’ of a chain product of antiperiodic 

&)’ (0) 7 F s, minus the same chain of periodic G, s. This is precisely the sort of ex- 

pression we obtain from (4.14) as a result of the GSO projection. From (4.24) we 

find that 

&‘(t. d 

tk+t 7 tik) - n Gf)(ti,+, 7 ii,)] 
k=l 

= IfI%P(ti,+, - tik)]esCT exp ( - C f: Itik+l - ti, I) x 
1 k=l 

[ f: exP (2Clti,+l - t&l> + O(ewCT)] . 
n=l 

(Here id+1 E il.) The leading term in (4.27) is of the form 

[fI sign(ti,+, - ti,)jeDCT f: exp ( - Cf(ti; in)) 

1 n=l 

where 

f(ti; tn) = & Itik+l - &,I - 2lt;,+, - tin1 L 0 * 
k=l 

(4.27) 

(4.28) 

(4.29) 

-Q@ess f(ti; tn) = 0 for some n, (4.28) will contribute too strong a power of e-‘, 
- 

and a term containing it will vanish in the limit C + 00. 
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Since the expressions above are cyclic in Ic, one can rotate the k’s to make 

tid = t,,, E m&t;,]; let tmin E min[t;,]. Then 

d 

W in+1 - ti, 1 5 2(trnax - tmin) 5 C Itik+l - ti, I - (4.30) 
k=l 

For f(ti; tn) = 0, both equalities must obtain. Notice that the second equality can 
; -- 

be satisfied only when 

ttIli3JC = ti, > tiddl > ” * > ti, > ti, = t&n (4.31) 

or 

tIIlZ3.X = t&j > ti, > ti, > * * ’ > tidsl = tmin . (4.32) 

(I will call a chain satisfying (4.31) or (4.32) a path- or d ered chain since the ordering 

is with respect to proper time. I remind the reader that the color trace is ordered 

in the same way.) The first equality in (4.30) can only hold when tn = t,,, and 

tn+l = tmin, or vice Versa. Thus the condition f(ti; tn) = 0 can only occur either 

when (4.31) holds and n = d, or when (4.32) holds and n = d - 1. (In the case 

d Y 2, both (4.31) and (4.32) hold.) It f 11 o ows that a path-ordered chain of GF’S 

contributes 

[fIsign(ti,+, - tik)]f2-CT = eTCT 

-1, if (4.31) holds; 

-(l)d-l, if (4.32) holds; (4.33) 
1 -2, if d = 2; 

.QfTcourse, as this derivation is essentially the same as that of reference 5, the result .- - 
(4.33) agrees with that of Bern and Kosower. 
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The exponential in (4.33) cancels the overall factor of eCT which was found in 

eq. (4.25), leaving only the numerical factor -2 or fl. All other terms from such 

a chain, as well as those from chains which are not path-ordered, have additional 

decaying exponentials which vanish in the limit C + 00. Using the above argument 

twice, it is easy to see that a term with more than one GF chain will always vanish 

;-i-n the limit C + 00. We therefore find that out of the expression (4.14), only 

terms with single path-ordered chains of GF’S of length 0 to N contribute, and 

then are simply replaced by the factor fl or f2. At this point all dependence on 

C has vanished and we may return to Minkowski spacetime. 

How should one interpret these rules ? It is easiest to do so from an operator 

standpoint. Since we are throwing away all states of (4.5) except the spin-one 

tensor, we require that the application of a $+ operator, which moves us out of 

the space of spin-one states, be accompanied by the simultaneous application of 

a +- operator in order to bring us back to it. This translates into a requirement 

that the Wick contractions which generate the Green functions do not overlap one 

. . another; hence the GF’S must be path-ordered. 

We now have enough information to write down a set of rules for the unpinched 

diagram, starting with the same formula we had in the spinor case (eq. (3.12)). 

To obtain the generating kinematic factor of the vector boson, manipulate the 

kinematic factor of (3.12): th row away all terms except those with no GF’S and 

-$&se wjth a single GF chain, and multiply terms without GF’S by 2. Next, replace 
- 

the GF chains by 
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-2d, if (4.31) holds; 

-(-2)d, if (4.32) holds; 

-8, if d = 2; 
(4.34) 

I 0 otherwise. 

where the powers of two account for the slight differences between equations (4.14) 

and (3.12). Finally, substitute the bosonic Green functions of (2.25), plug the 

‘“result back into (3.12), multiply by -4 and evaluate the integral. 

The non-Abelian part of Fpv contributes to amplitudes for vectors just as it 

does for spinors. The resulting pinch rules are almost as described in the previous 

section, but one must decide whether to perform pinches before or after requiring 

that all chains be path-ordered. The relevant consideration is that the pinch tech- 

nique is just a trick to generate the correct set of GF’s; one could drop the trick 

and ‘calculate directly the pinched kinematic factor by inserting Oi,j (eq. (3.20)) 

into the path integral, just as is done in (3.8) with the usual V’s (eq. (3.9)). Only 

after the whole set of GF chains in the pinched kinematic factor is known should 

one apply the analysis of eqs. (4.27)-(4.33) t o e ermine which chains survive in d t 

the limit C + oo. Therefore, one should perform all pinches before requiring that 

Gi chains be path ordered; for example, the chain 

GyG$‘+’ ki . ki+lGF17i($ (4.35) 

for tN > tN-1 > . +. > tl will contribute to the diagram in which gluons i + 1 

and i are pinched, even though in the evaluation of the unpinched Bern-Kosower 

diagram it is discarded. (Notice that pinching cannot change the number of GF 

$&ins in a given term, and so one may safely discard from the original generating 
- 

kinematic factor any term with more than one such chain.) 
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- 

- .- I-- 

Thus, the rule for pinched diagrams is the following: Return to the generating 

kinematic factor for the vector boson, and carry out the pinches as explained in 

section 3. Next, apply the path-ordering requirement to GF chains, replacing them 

with the factors in eq. (4.34). Finally, substitute the usual functions for the GB’s, 

insert the kinematic factor into (3.12), multiply by -i and compute the integrals. 

As an example, consider the pure SU(N) Yang-Mills vacuum polarization in 

background field gauge. The reader may check that if the algebra of Feynman 

diagrams is organized as explained by Bern and Dunbarn4’, it is straightforward to 

obtain 

n =(gp’/2)2facdfbdc cy) dT 
(47r)2-c/2 J 

0 T1-‘12 
1 

crJ ( 
da 

2 
- -cl - c2 - (1 - 2~9~6~ . klc2 . kl 

T 
0 

+ 4(tr - 62 kl . k2 - ~1 . k2 kl -62)) e-Tkf(o-a2)] 

> 
) 

(4.36) 

where c = 4 - D. I have included the ghosts in this expression, using dimensional 

reduction in which the number of physical helicity states is exactly 2. 

According to the above rules for vector bosons, this result can be extracted 

from the result of (3.28) by replacing (G$t)2 = -GyGp with +8, multiplying 

.$h$,erms with (Gg)” and GE by 2, and multiplying the entire expression by -4. .- - 
Indeed this gives 
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H = _ (9d2J2 
(47r)2-‘/2 

Tr(TaTb) [& j du ek1’k2GB(1-u) 

0 

cl - k2c2 . kl[&( 1 - u)12 + 61 * 62 eB( 1 - u> 
(4.37) 

which is identical to (4.36) ( recall that (Tidj)cd = -ifacd.) There are no pinches 
; -- 

to perform; this is the complete result. 

It is amusing to combine the results of (2.33), (3.28) and (4.37). Consider the 

gluon vacuum polarization in a theory with nf Dirac fermions and ns complex 

scalars in the adjoint representation: 

n = _ (9P”2)2 
2(47r)2-E/2 

Tr(T”Tb) [--$$I du ek1’k2GB(1-u) 
0 

(2 - 4nf + 2n,) [El * kac2. k&(1 - u)12 + ~1 . ~2 &( 

+4(2-nf)(tl.t2kl.k2-~1.kat2.k 

1 - 41 (4.38) - 

(Since y5 does not play a role in vacuum polarizations, the contribution of a chiral 

fermion to the above expression is exactly half that of a Dirac fermion.) Notice 

that the factor multiplying the bosonic Green functions counts degrees of freedom, 

and therefore cancels for all supermultiplets. With appropriate choices of matter 

supermultiplets in various representations, it is possible to make the remainder 

of (4.38) vanish, leaving the theory one-loop finite. When all particles are in the 

adjoint representation, complete cancellation occurs for the case nf = 2 and ns = 3; 

+$&ia is th e f amous N = 4 spacetime supersymmetric Yang-Mills theory, which is 

known to be finite.‘?3’ Notice that this result requires no integrations; it follows 
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directly from the rules for obtaining the generating kinematic factors from (3.12) 

and from the overall normalizations. 

5. Integration by Parts and Manifest Gauge Invariance 

Bern and Kosower’5’71 showed that there are benefits associated with perform- 

: jng an integration-by-parts (IBP) on all terms involving a 6~; when the (?B’s 

are completely eliminated, it is possible to derive a much simpler set of rules for 

scattering amplitudes. As discussed by Bern and Dunbarn”, this IBP causes an 

interesting and intricate reshuffling of terms. Essentially, the delta-functions which 

produce the four-point vertices of field theory are removed by the IBP, allowing a 

scattering amplitude to be expressed in terms of Bern-Kosower graphs, which have 

only d3 vertices. Each Bern-Kosower graph is related to the “unpinched diagram” 

- the one with all gluons attached directly to the loop - through the systematic 

pinch prescription. 

In the effective action, the reorganization from the IBP is not much of a simplifi- 

cation, as it leads to as many or more diagrams than Feynman graphs. Nonetheless 

it is worthwhile in many cases: the additional diagrams are much easier to calculate 

than usual Feynman graphs due to the systematic “pinch” rules, and the number 

of types of Feynman parameter integrals is reduced. Furthermore, and perhaps 

most importantly, it makes possible a direct analysis of individual gauge invariant 

contributions to the effective action. Still, the IBP is not essential for effective 

actions, and the casual reader may safely skip this section at a first reading. 

L<;l-:~ The reader intending to study this section should be warned that the IBP, while 
- 

necessary for a complete picture of the possibilities opened by the work of Bern and 
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Kosower, represents the weakest link in the present paper. A full understanding 

of the IBP requires a clarification of the role of string duality, which permits the 

reorganization which I will outline below. In the absence of this clarification it is 

only possible to present the IBP and the associated pinch rules as a trick, motivated 

by the Bern-Kosower rules for scattering amplitudes[5’61 and the work of Bern and 

: _Dunbar.n4’ I will demonstrate the validity of this trick in a simple case; however, 

while I have checked that it works in general, I will not present a proof, as the 

only proof I know proceeds case by case and is both tedious and uninformative. If 

a simple and enlightening proof is found, it will be published separately. With or 

without proof, the pinch rules appear completely ad hoc at the present time, and 

the reader is urged to familiarize herself with the Bern-Kosower rules outlined in 

reference 6 to help put the present section in context. 

To illustrate the trick, I present the simplest case. Consider a term from the 

generating kinematic factor of (3.12) of the form 

. . where F contains neither ki nor kj and therefore has no dependence on either ti 

or tj. The IBP of (5.1) can be done with respect to ti, tj, or ti - tj; different 

results will be found in the different cases, the variations among them being total 

derivatives. For simplicity let us IBP with respect to ti; for a particular color 

ordering, the initial expression from (3.12) is 

fANil.. . T& ]dtiBl . . . j: dtl ci*cj eB(ti-tj) Fexp [C k,*k,G$‘] (5.2) 
0 0 0 0 T<S 
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which becomes 

JTdtN-1-e. Tdtijdti-1 
0 0 0 

X [h(ti+l - - 

t2 

. . J dtl ei * ej &B(ti - tj) Fexp [C kT - k,Gg] 
T<S 

ii,“- b(ti - ii-l) - C ki * kmC?B(ti - tm)] . 
m#i 

(5.3) 

;-The last term now fits in neatly with the terms in the generating kinematic factor 

which lack GB’S, but the delta functions - the surface terms from the IBP - 

are an annoyance. (These delta functions contribute only to one color trace, so 

there are no subtle factors of two associated with them.) Essentially they are color 

commutators; they would cancel against surface terms from other proper-time 

orderings were the theory abelian, but cannot do so here since different proper- 

time orderings have independent color traces. Fortunately these surface terms bear 

a simple relationship to the last term in (5.3). Specifically, take the terms in the 

sumovermwithm=ifl: 

-JdtN-l.** ~‘dti]dti-l***Jdtl 
0 0 0 0 

ei * Ej&B(ti - tj) C ki * km&B(ti - tm) F exp [C k, * k,Gg] . 
m=ifl T<S 

(5.4) 

Now, motivated by the pinch rules of section 3 and the work of Bern and Dunbarn”, 

replace ki * ki*lb~*’ with ~1 and set ti = ti*-; in this way the surface terms are 

reproduced. 

The case j = i f 1 is special: one of the surface terms contains CY!Gj G 0, and so 

.+@ pinch ti = tj d oes not get a contribution from the IBP. This leads to a modifi- 
- 

cation of the rule for “pinching” : the pinch of a term containing (&$“)” vanishes. 
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(Again this matches with Bern and Kosowert’land with section 3.) Recall that C!$i 

contains a delta function, which accounts for the Feynman graph in which a four- 

point vertex connects gluons i and j; the missing surface term is cancelled by the 

half of this delta function that contributes to the color trace under consideration. 

In addition to terms like (5.1), th e k inematic factor of eq. (3.12) has terms in 

;-which F(em, kn) contains 6’~ functions dependent on ti and tj, or in which there 
. . 

are several G&S; these cases must be dealt with in turn. It can be shown that 

there is a simple rule governing the resulting pinches which is similar to the Bern- 

Kosower pinch rules for scattering amplitudes. However, as mentioned above, no 

useful or interesting proof is known at the present time, and so for now I will simply 

state without proof the IBP and pinch rules for effective actions. 

-The first stage of the IBP reorganization involves the elimination of all C?B’s 

in analogy to eqs. (5.2)-(5.3). Specifically, carry out the IBP of the generating 
. . 

kinematic factor, dropping all surface terms, until no GB’S remain. (Bern and 

Kosower have proven that this is always possible!“) The result is the “improved 

generating kinematic factor”, associated with the unpinched diagram. Every term 

in this improved kinematic factor contains a certain number of factors of ki - kj, 

where i and j are arbitrary. The number of these factors cannot exceed N/2, since 

the maximum number of @‘s and ki* kjG$‘s in any term in the original generating 

kinematic factor is also N/2. Each pinch absorbs one of these factors, as well as 

one of the integrals over ti, and so the maximum number of pinches which must 

be performed simultaneously is N/2. 

Lit::- Now I present the pinch rules, which are necessary to account for the IBP 
- 

surface terms. The procedure is closely related to the Bern-Kosower rules for 
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scattering amplitudes; the reader is again urged to review reference 6. 

Draw all (planar) q53 graphs with one loop, N external legs and any number NT 

of trees, such that although each tree may have several vertices, the total number of 

tree vertices NV is at most N/2. (D ia g rams with trees may seem out of place in the 

construction of a 1PI object like an effective action, but the trees used here, unlike 

;-those for scattering amplitudes, do not contribute the usual propagator poles; they 

serve only as a mnemonic for ensuring all surface terms are accounted for.) The 

gluons which flow into a tree before entering the loop are said to be pinched; 

the number of these is NV + NT. Consider a particular graph and a particular 

color(path)- d or ering; label the external legs clockwise from 1 to N following the 

path-ordering. Each tree vertex, since it is a three-point vertex, is characterized 

by o,ne line pointing toward the loop and two outward pointing lines I and J, with 

two sets of external legs il, . . . . i, and jl ,...,j, that flow into them. Let J be the 

line lying most clockwise. Now examine the improved generating kinematic factor 
. 

term by term. If a given term does not contain a factor ki . IcjG< or ki - kjG$ for 

each tree vertex, where i belongs to the set of gluons flowing into line I and j flows 
. . . 

into J, then it vanishes. Even then, it must contain exactly one Gs or G$ at each 
. ,. 

vertex; otherwise it vanishes. If it survives, then replace ki - kjG: or ki - kjG$ by 

+l, replace ti + tj in all Green functions, and eliminate the ti integral. 

It is useful to review the arguments of Bern and Kosower for carrying out the 

IBP.‘5’s’81 After the IBP, the improved generating kinematic factor is made up of 

only C?B’S and GF’s; it has no singularities and contains no dependence on T. 

$&is simpler form leads to fewer separate integrations, and also allowed Bern and 
- 

Kosower to construct a formalism in which one needs only d3 graphs to compute 
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scattering amplitudes. In addition, since the kinematic factor is independent of 

T, the overall power of T is given by the number of ti integrations; a diagram 

with N gluons and k pinches has an integral JdT/T3-N+k. As a consequence, 

the ultraviolet infinities of gauge theory appear only in terms with N - 2 pinches, 

since J dT/T is the only possible source of ultraviolet divergences. Indeed one 

may interpret this reorganized amplitude using gauge invariant structures. I will ; -- 

illustrate this in a simple example below, and will discuss this further in later work. 

To see the IBP in action, let us apply it to the vacuum polarization in (2.33): 

II = r2(k1, k2) = (gp”2)2 Tl-(T’T*) [q . 
(47++/2 

c2 kl . k2 - cl . k2c2 . kl 1 
O” dT 

1 

../~-d 

(5.5) 

1 E 
du ekl’k2GB(1-u)[GB(1 - u)]2 . 

0 

This expression has the remarkable property of being explicitly transverse. In usual 

techniques this property is not visible until the full set of integrations is complete. 

(This is the full result; since the integrand contains two powers of &‘g, there is no 

pinch contribution. Of course this will always be true for a two-point function.) 

In fact, (5.5) represents precisely the (Afi)2 piece of Fp”FCLV, which appears as the 

only infinite term in the unrenormalized effective action. In light of the previous 

paragraph, it will not surprise the reader that other infinities, namely the one-pinch 

piece of the (Ap)3 t erm and the two-pinch piece of the (A,)4 term of the effective 

action, reproduce explicitly the remaining pieces of Fp”FpV. Additionally, since 

one may perform at most N/2 pinches, there are no infinities beyond N = 4 in the 

-@ective action. Thus, even though the complicated process of pinching replaces 
- 

the many diagrams of Feynman rules, the IBP and the Bern-Kosower-type pinch 
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rules allow for a clearer separation of the different types of contributions to the 

effective action. This may prove useful in the analysis of the divergence structure 

of more complex theories. 

Another interesting feature of this reorganization is illustrated through the IBP 

of (3.28): 

II = -2(fc2y!;;Tr(TaT’) [cl . cpkl . k2 - ~1 . k2c2 . kl] 

TTY,2 J 
‘du ek1*k2GB(1-u)([bB(1 - u)12 - [GF(~ - u)]‘> . 

1 6 

(5.6) 

b b 

As pointed out by Bern and Kosower 15’121, the IBP allows use of worldline super- 

symmetry in a clever way. Were the system truly worldline supersymmetric, the 

effective action would vanish. Supersymmetry would require that both xp and $+ 
. 

satisfy periodic boundary conditions, so that G$ and Gy would be equal. It follows 

that every supersymmetric amplitude expressed as a function of only GB and GF 

would vanish under the formal replacement C$ + G$. However, in (3.12) the only 

dependence on boundary conditions is hidden in the Green functions themselves; 

the functional dependence on the Green functions is the same in all cases. As a 

result, even when xfl and $fl have different boundary conditions the replacement 
. . 

Gg + G; everywhere in the improved kinematic factor (and use of momentum 

conservation) leads to a complete cancellation. In particular, the result of (5.6) 

has this property. This trick can be used as a check on the algebra of the IBP. 

pi;;;: To find the vacuum polarization for a vector boson loop, follow the rules in 
- 

section 4. Specifically, take eq. (5.6), replace (G$t)2 = -GyGy by +8, multiply 
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the term with (6;)” by 2, and multiply the entire expression by -a: 

II = (gp”2)2 Tr(PT’) [tr . ~lcl . Ic2 - ~1 . kzc2 . kl] 
(477~2~‘12 

(5.7) 

The reader may check that the same result is obtained by integrating (4.37) by 

parts, and that the integration over a yields the usual factor of 11/3 associated 

with the Yang-Mills beta function. 

6. Colorful Comments 

It is often desirable to use a formulation in which only group matrices in the 

fundamental representation appear; the usefulness of this approach for scattering 

[1’2’71 amplitudes is detailed in the literature. In this case one should write the effec- 

tive action as a product of parallel or antiparallel Wilson loops. Since in U(N,) the 

U(1) photon decouples from the SU(N,) gl uons, one-loop amplitudes for SU(N,) 

can be calculated using U(N,)“‘; working with the full unitary group allows the 

use of a number of useful tricks!1’71 If the particle in the loop lies in the adjoint 

representation of U(N,), one may consider it as a sort of “bound state” of a funda- 

.etal IV, and an antifundamental K representation; some of the external vector 
- 

bosons couple to the NC while others couple, independently, to the NC. For a scalar 
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particle, the effective action is 

I’[A] = 
O”dT J rN 

0 

T 

JD~ exp [ - IdT(&g2)] 
0 

T 
1 f r r 11 t 

Tw, exp [J dT(igA - i)] TrN, { exp 11 dT(igA - i)] j . 
0 0 

(64 

The first trace is path-ordered, while the second is anti-path-ordered. In such an 

expression it becomes immediately obvious that one expects contributions with one 

or two group traces at the one loop-level, as is well-known to those familiar with 

the double line formalism of ‘t HooftLz4’ or with open string theory!’ Rewriting 

(3.12) in this form changes only the trace structure: letting Xa(Ta) be the group 

matrices in the adjoint (fundamental) representation, we replace 

Tr(XuN - - - X”’ ) + 5 (-l)mTr(TbN-” . . . Tb’)Tr(TC1 . . . TC”) (6.2) 
m=l 

where tbi+1 > tbi and t,,,, > t,,. Thus we divide the gluons into two sets, writing 

down a path-ordered trace for one and an anti-path-ordered trace for the other, 

and sum over all sets and all orderings. If m = 0 or N the trace of the unit matrix 

yields a factor of NC. Notice that for N = 2 the traces with m = 0 and m = 2 are 

equal, while the case N = 4, m = 2 appears twice in this sum since it is invariant 

under proper-time-reversal; this accounts for the factors of two which appear for 

these traces in the Bern-Kosower rules!’ 

Each color trace in (6.2) is internally path-ordered, but operators in diRerent 

tcaces may be integrated past each other without altering the color structure. As a 
- 

result, surface terms from the IBP and the operator Oi,j (eq. (3.19)) only appear for 
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gluons lying adjacent to each other in the same color trace; we must therefore only 

pinch gluons in the same trace. Again this is in agreement with the Bern-Kosower 

rules!(For vector particles, the rules for GF chains are unaffected by changes in 

the organization of color; for a chain to contribute it must still be path-ordered as 

in (4.31) or (4.32).) 

It may have occurred to the reader educated in string theory that although I 

treated color using a Wilson-loop formalism related to the open string, I might have 

introduced color via the use of internal currents as in the closed string. This has 

I”’ been discussed in the literature. Such a treatment can easily be implemented, and 

rules can be derived using an approach very similar to that of Bern and Kosower t51. , 

however this is somewhat more complicated than the technique used in this paper. 

7. Some Extensions 

There are a number of additional theories that are simple to construct. For 

example, to study massive scalars or spinors in a background gauge field, add a 

mass term to the particle Lagrangian, as in eq. (2.3): 

1 
L--+L--Em2 

2 (74 

$rere c is th e einbein, and I work in Minkowski spacetime. From the point of .- - 
view of one-dimensional general relativity, this is just a cosmological constant. In 
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the gauge & = 2, the scalar effective action becomes 

I’[A]=-J$N Jv~ exp[-/dr(ii2 -m2-igA.k)] 
0 

*dT =- J FJV e+m2T JDx e,[-I&(ii2 -igA.&)] . (7’2) 

0 0 

;-Thus the effect is merely to add a factor of e +m2T to the integrand of the integral 

over T. Exactly the same factor occurs for massive spinors. In Euclidean spacetime 

the factor is e-m2T, which illustrates the decoupling of particles as m + 00. 

Another straightforward modification is the inclusion of background scalars. 

Consider the theory 

L = &%g2 - V(4) (7.3) 

The one-loop particle Lagrangian of a scalar particle in a background scalar field 

can be found by letting 4 = @ + 64, w h ere 64 is a quantum fluctuation around the 

classical field a, and keeping only the terms quadratic in 64. 

(7.4) 

A prime denotes a derivative with respect to @. Notice that mass terms for the 

scalar arise correctly from this formula. 

Spinors interact with this field in a slightly more complex way; the Yukawa 

interaction h@GQ is easily incorporated in analogy to eq. (3.2): 

I’[A] = log [ det (i JJ - ha)] 

-<Jr:.:- . 
- 

= klog [det (~P-~Q)(-~JJ-~Q)] 

= ilog [det ( Jd21 -ih@D+ h2Q2)] 

(7.5) 
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The associated spinor particle has Lagrangian 

L = &f2 + ;T,LJ~ - h2Q2 + ihv,PD,iP . (7.6) i 

Notice that the one-scalar vertex operator for @ = eik” is Va = -ih(ik . $J)@‘~, 

as in string theory. If we let the scalar field have a vacuum expectation value V, 
: *- 

and let @’ = @ - V, then (7.6) becomes 

L = -!.-i2 + i$,$ - (hv)2 - 2h2vQ' - h2Qr2 + iht,!Ptlp@’ . (7.7) 

Of course the particle picks up a mass mg = hv, and the scalar vertex operator 

becomes Y, = -ih(ik .1c, - 2imq)ei”“. 

More interesting is the interaction of a vector boson with a scalar. At this 

point we should remember that a single background scalar can change the particle 

in the loop from a vector into a scalar. 1 We must therefore build a theory which 

consistently describes a particle that can be either scalar or vector. Again string 

theory is a guide; simply use dimensional reduction. Extend the vector theory of 

section 4 to a fifth dimension (add fields x4, $2) but insist that the fifth component 

of all momenta of all particles or fields must vanish. Since the momentum of the 

particle must lie in the usual spacetime, a polarization vector pointing solely in the 

x4 direction will always satisfy the physical condition E. k = 0; thus the particle’s 

new physical mode is a Lorentz scalar, while its others are unchanged. In short, 

we--have a theory of gauge bosons and a Higgs boson in the adjoint representation. 
k-.- . 

- 
The reduction of (4.1) f rom five to four dimensions, with (3 E A4 and q5 = Q4, 
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is 

S = J 8x {Q”“[(D2 + g2@@)abgPv - g(F;JP”)Pyfcab]Qbv 

+ gQap(Dp@)cq+fa*c- g~O(Dp@)cQbpfabc 
(7.8) 

- q5”[(D2 + g2C4)ab$b+ P(D2 + g2@@)%” 

+order(Q3, Q4, DQqS2,sj&w, etc.)} . 

;-This formula stems from the gauge D”Q,+ig[@, ~$1 = 0, called background ‘t Hooft- 

Feynman gauge. Notice that this gauge contains a new, gauge dependent a2d2 in- 

teraction, different from the (a2) d2 interaction present in usual ‘t Hooft-Feynman 

gauge1251, in which PQ, + ig[(@) , qb] = 0. It is clear from (7.8) that if @ acquires 

a vacuum expectation value the gluons, ghosts, and Goldstone bosons associated 

with spontaneously broken generators have the same mass matrix: 

(My = 92 (ilqab = g2facefbde ( tmd) . P-9) 

It is straightforward to add in the symmetry breaking potential for the Higgs boson, 

and to extend this approach to Higgs bosons in other representations. 

The particle Hamiltonian for this theory is 

H = (P/l - gA,)2 - (p4 - g@)2 - igqVFP,tiv + 2ig$fiD,@$4 ; (7.10) 

when p4 is set to zero, the resulting Lagrangian is 

@e last term is the one that turns a scalar in the loop into a vector, and vice 
- 

versa. When (@) is non-zero the mass matrix of (7.9) is clearly generated. To add 
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- 
- . . x-r 

in a Higgs potential V(a), use 

L + L - V”(O)(-$@4 - 1) ; (7.12) 

the oscillator potential for $4 assures that of the physical states only $J$ IO), the 

scalar, will feel the potential. This sort of theory can be used - perhaps profitably 

- for calculations in the standard model; a set of rules is in preparation. : *- 

Adding gravity as a background is also straightforward. Consider a theory of 

a scalar boson in a background metric GPLV: 

& L = LG,,~P~” - -m2 
2& 2 * 

(7.13) 

This is generally covariant with respect to both worldline and spacetime coordinate 

redefinitions. One may extend this theory to particles with spin. The relevant 

Lagrangians were again written down by Brink, Di Vecchia and Howe[15’, and I shall 

not repeat them here. The technique for constructing internal gravitons appears (in 

part) in the same paper: instead of one complex set of worldline fermions, use two. 

Define a particle with an N=4 worldline supersymmetry, described by coordinates 

(9, $2, J&.). The allowed states can be written down as in (4.6); projections onto . 

odd + and x number and onto states which are even under II, --t x leaves a rank-two 

symmetric tensor as the propagating modes of the theory. While not particularly 

elegant, this example illustrates that it is straightforward to construct a tensor 

of any arbitrary rank and symmetry. It may be hoped that useful rules can be 

obtained from this theory as well. 

-<::I.:- Finally, I should point out that every theory described in this paper is part 
- 

of the mode expansion of a string in a background string field.““’ The possible 
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connection of this construction to the Bern-Kosower rules was noted by Bern and 

Dunbar!‘l’ 

8. Conclusion 

In this paper, I have shown that it is possible to construct one-loop effective 

actions perturbatively without the use of Feynman diagrams, and with a method 
; *- 

that has certain conceptual and practical advantages over the standard technique. 

By viewing a one-loop computation as a system of a particle (or superparticle) 

in a background field, one can construct formulas and rules valid to all orders 

in the background field which closely match the string-derived rules of Bern and 

Kosower for gauge theory. It is now evident that one reason for the simplicity of 

the Bern-Kosower rules compared to Feynman diagrams is that string theory is a 

first-quantized system; the ease of one-dimensional as opposed to four-dimensional 

calculations is clearly demonstrated both in this paper and in the work of Bern and 

Kosower. The formalism developed in this paper represents a technical and con- 

ceptual shift away from the standard techniques of path integral perturbative field 

theory and back to basic quantum mechanics and the background field method. 

Appendix: Conventions 

In this paper I have used conventions which are appropriate for particles and 

Wilson loops and which generate expressions that are simple to compare with those 

of Feynman diagrams. Unfortunately they are not the most convenient from all 

points of view, and indeed Bern and Kosower have chosen a very different set of 
, 

@Fventions. It is straightforward to convert from one to the other, and in this 
- 

appendix I explain how to do so. 
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First, let me review my conventions. I use 

g,, = diag{+ - --} ; Tr[TaT*] = i ; 

D, = dp - igA, ; gFpv = i[D,, Dv] 

and for Grassmann integrations 

; -- J -- 
d6dt’ 86’ = 1 . 

(8.1) : 

(8.2) 

To convert my expressions to those of Bern and Kosower:[61 

1. Reverse the order of the color trace. 

2. Write the Grassmann integral of (3.12) as JdeidOi (but keep eq. (8.2). 

3.. Replace C?:B with -&;(B. 

4. Divide all &‘B and GF functions by 2. 

5. Multiply all group matrices by a. 

6. Account for these factors of two by multiplying the entire amplitude by 2N/2. 

As a result, 

7. The improved kinematic factor vanishes under &‘B + -GF. 

8. Pinches at a vertex with gluons j and i, j the most clockwise, result in the 

replacement k; * kj&‘g(G$) + +(-)i. 
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