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ABSTRACT 

The compact formulation of U(1) H amiltonian lattice gauge theory in 2 + 1 

dimensions is studied using the t-expansion. The ground state energy, average 

plaquette, specific heat, photon mass gap, and the ratio of the two lowest masses 

are investigated. Two contraction techniques are applied: a unistate scheme which 

uses only the strong-coupling vacuum for the trial state, and a bistate scheme 

which allows the introduction of variational parameters and arbitrarily large loops 

of electricflux in one of the trial states. The mass ratio obtained from the bistate 

contraction scheme exhibits precocious scaling. No evidence of a stable scalar 

glueball is found. 
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1. Introduction 

Compact U(1) gauge theory in 2 + 1 dimensions has been the subject of many 

theoretical and numerical studies since the introduction of lattice gauge theory by 

Wilson[” in Euclidean space-time and the subsequent development of the Hamilto- 

nian formulation of lattice gauge theory by Kogut and Susskind? Polyakov’s pio- 

neering study;] followed by the investigations of Banks et al. r1 Glimm and Jaffee:’ 

-and Drell et al. r1 showed that the periodicity of the magnetic portion of the action 

causes the theory to have a single linearly-confining phase and a nonzero mass gap 

in the photon sector. Estimates of the mass gap and string tension as a function of 

the inverse coupling ,0 were obtained by these authors. Giipfert and Mack”’ exactly 

determined the mass gap in the Villain (periodic Gaussian) approximation to the 

Wilson theory and gave a rigorous lower bound on the string tension. Estimates 

of the ground state energy, the mean plaquette, the mass gap, and the string ten- 

‘8-121 sion using strong-coupling perturbation theory, variational methods, [13-lgl and 

a WKB method using a weak-coupling Villain approximation [201 later appeared in 

the literature. Evidence that the string tension in U( l)z+r undergoes a roughening 

transition near p M 0.7 beyond which the on-axis strong-coupling series cannot 

be analytically continued was presented by several authors. L81 [‘I L211 [221 However, the 

behavior of the mass gaps is believed to be analytic near the roughening point!101[221 

The earliest numerical investigations of U( 1) 2+1 were performed by Bhanot and 

Creutzy3] D’Hokert”’ and Ambjorn et aZ.[251 and were standard Wilson loop stud- 

ies using Euclidean Monte Carlo methods. Sterling and Greensite[261 performed 

a notable simulation for a system with external sources and directly measured 

the string tension from energy differences rather than from Wilson loops. Other 

numerical methods which have been applied to U(l)z+r include the Projector 

Monte Carlo method~71[281 the Ensemble Projector Monte Carlo method:’ Green’s- 

function Monte Carlorol the Guided Random Walk algorithmrl] and a Langevin 

techniquey2] 

Although the qualitative features of compact U(1)2+1 lattice gauge theory are .* 
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now well understood, the numerical values of the string tension and mass gap in 

the weak coupling region remain poorly determined. Also, the mass gap in the 

vacuum sector has not yet been reliably computed. 

In this paper, compact U(l)z+r Hamiltonian lattice gauge theory (HLGT) is 

studied using the t-expansion of Horn and 1331 Weinstein. This method has been 

previously used to obtain glueball mass estimates in quenched SU(2)[3*-361 and 

SW3 [37-411 HLGT in 3+1 dimensions, as well as to study scaling in periodic 

QED!‘] The t-expansion uses the operator eAHt to project trial states onto the 

low-lying eigenstates of a Hamiltonian H. Estimates of expectation values are 

obtained through a process of power series expansion and subsequent series analy- 

sis. Although the method is a nonperturbative computational scheme for general 

Hamiltonian systems, it is particularly well-suited to systems defined on a lattice. 

The t-expansion, which will also be referred to here as the projector expansion 

method (PEM), resembles the high-temperature series expansion in statistical me- 

chanics. 

After describing the t-expansion in Sec. 2 and U(l)x+l HLGT in Sec. 3, expan- 

sions for the ground state energy and photon mass gap are determined in Sec. 4. 

An important feature of this study is the fact that two contraction techniques are 

employed: a unistate scheme which uses only the strong-coupling vacuum as the 

trial state, and a new bistate scheme which allows the introduction of variational _. 
parameters and arbitrarily large loops of electric flux in one of the trial states. 

D-Pad& approximants are used in the analysis of the series, which is presented in 

Sec. 5. Also in this section, the vacuum energy expansions are manipulated in 

order to study the mean plaquette and the so-called specific heat, quantities which 

provide clues to the phase structure of the theory and the location of the cross-over 

region from strong to weak coupling. An important finding of this paper is the 

effectiveness of the bistate contraction scheme in determining the photon mass gap 

and the ratio of the two lowest masses in the weak-coupling domain. Precocious 

scaling is observed in the mass ratio. Results and conclusions are summarized in 

- , sec. 6.’ ..- 



2. The t-expansion 

The t-expansion uses emtH to project any trial state, I$s), onto the true ground 

state, /@lo), of Hamiltonian H as the arbitrary parameter t becomes large, provided 

that ($sIQa) # 0. Th e vacuum expectation value of an observable 0 is calculated 

in this method using 

- (0) = poppa) = :%0(t), (2.1) 

where the PEMfunction, O(t), is defined by 

O(t) = (~ole-Ht/20,-Ht/21~Oj 
(+ole-Htl$o) - P-2) 

Instead of employing stochastic techniques to evaluate this matrix element, the 

projector expansion method proceeds by expanding O(t) as a power series in t. 

This expansion yields 

O(t) = fy To;, 
n=O * 

(2.3) 

where the coefficients Ok are termed PEM moments and are defined recursively 

by’331 _ 

Ok =Om - 2 (y) (~oIH~I$o)O~-~, 
p=l (24 

The PEM function must then be reconstructed somehow from its Taylor series in 

order for the limit t + 00 to be taken. An interesting feature of the t-expansion 

is the fact that it exploits the formidable power of analytic continuation to deduce 

long-range behavior from short-range behavior, rather than resorting to statistical 

sampling. 
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The bistate contraction scheme’331 takes advantage of the fact that the trial 

states on the left- and right-hand sides of Eq. (2.2) need not be the same. The 

large t limit of the function 

0,,(t) = (XoIe-Ht/20e-Ht/21~0) 

(Xole-HtI+o) 
(2.5) 

- also yields (0). Th e coefficients of the Taylor series expansion of this function are 

found as before using Eqs. (2.3) and (2.4) except that all operators are now taken 

between (~01 and 140). 

3. U(l)z+l HLGT 

In the compact formulation of U(1) H amiltonian lattice gauge theory studied 

here, the gauge field degrees of freedom reside on the links between the sites of a 

square two-dimensional spatial lattice with spacing a. With each link I is associated 

a link variable Ui which is a lattice version of the parallel transport matrix between 

the adjacent sites connected by the link. Ul is an element of the Lie group associated 

with the gauge invariance of the theory and in U(1) is related to the gauge field 

Al corresponding to the link 2 by 

Ul = e iaeAl = ,i& 
7 (3.1) 

where e is the coupling constant of the theory and 81 = aeAl is known as a link 

phase angle. The sum of the phase angles of the four links of an elementary square 

(plaquette) in the lattice, defined with respect to the direction of circulation around 

the plaquette, is a gauge-invariant quantity called a plaquette phase angle, dp. In 

other words, r$p = (V x e),. The plaquette phase angle is related to the magnetic 

field BP by +p = a2eBp. The dimensionless conjugate momentum associated with 

Al is El = (a/e)dAl/dt and in the temporal gauge measures the electric flux along 
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link 1. The (dimensionless) Hamiltonian of the theory is given in terms of these 

quantities by[431 

H = $E,z+PC(1 -coqbp), 
1 P 

P-2) 

where p = l/g2 and g2 = e2a. Both p and g are dimensionless. An important 

feature of the above Hamiltonian is its local gauge invariance. 
- 

This theory is quantized in the temporal gauge by imposing the following 

canonical commutation relations: 

[e(Z,3,, E(iq i)] = i (a(li;, qs(i,;) - S(G + uj,?qS(%, -3)) ) (3.3) 

where in the above, directed link 1 = (?L,i) is specified by its site of origin n’ and 

its direction 2? = fi,, 2~6,. Th ese commutators take into account that fl(Z,j) = 

-0(6 i aj, -j) and E(n’;j) = -E(Z + a;, -3). Since A0 = 0 is not a complete 

gauge-fixing condition, the theory contains spurious degrees of freedom. The phys- 

ical states are identified as those which satisfy Gauss’s law: 

cv ’ ‘%#‘phys) = c E(n’, ;)l$phys) = 0, 
i=fd,,fB, 

(3-4) 

or in other words, those states which are gauge invariant. 

A convenient basis in which to calculate PEM moments is the set of eigenstates 

of the electric flux operator. Each state I{n}) in th is so-called E-representation is 

specified by a set of integers {n} corresponding one-to-one with the links of the 

lattice. The total space of states is a tensor product of individual link state spaces. 

In this basis, the operators EJ are diagonal and the link variables Ul and U: are 

stepping operators. The state annihilated by every El is called the strong-coupling 

vacuum and is the state in which nl = 0 for all 1. -< . ..s 
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Another convenient set of states is defined in the plaquette-flux representation. 

Electric flux configurations {n} which satisfy 

?ZJ = -(v x ??Z)J, P-5) 

.- 

where {m} is an integer-valued field, automatically satisfy Gauss’s law. The set 

of integers {m} corresponding one-to-one with the plaquettes of the lattice can be 

used to label states in this representation. Every state I{m})p in this set is gauge 

invariant. In two-dimensions with free boundary conditions, Eq. (3.5) uniquely 

determines the mp and the states I{m})p are orthogonal and form a complete 

setp4’ Note that this set of states is overcomplete (and thus nonorthogonal) in three 

dimensions and in two dimensions if periodic boundary conditions are imposed. 

The. continuum limit of the U(1) 2+1 lattice theory is taken by varying the 

coupling g as a + 0 in such a way that some physical quantity is held at a fixed 

value. If the mass gap is held fixed as a t 0, then g t 0 and the continuum 

limit exists:” leading not to familiar Maxwell electrodynamics but to a theory of 

massive glueballs. The string tension .in units of the physical ma.ss squared goes 

to infinity in this limit. Ordinary free electrodynamics is recovered by holding the 

unrenormalized electric charge e 2 = g2/a fixed as a + 0. It is not presently known 

whether or not the massless continuum limit obtained by fixing the string tension 

as a + 0 exists. 

4. Calculation of the Moments 

4.1 THE FINITE CLUSTER METHOD 

The combinatorial complexity of PEM moment calculations in infinite lattice 

systems necessitates the use of an efficient and systematic computational approach. 

A procedure which is simple to implement and which provides ways of detecting 

errors is highly desirable, especially when calculating in the bistate contraction 

scheme. A method which readily satisfies these requirements is the finite cluster -, __ . . 
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method (FCM). Th is method was first put forward by Domb[451 in the application 

of the Mayer cluster integral theory to the Ising model. A formal proof of the 

method for the Ising and Heisenberg models was given by Rushbrooke’461 in 1964. 

The method was later generalized by Sykes et a1p7’ who showed using only lattice 

constant theory that the method could be applied in the calculation of any quantity, 

regardless of the type of interaction, as long as that quantity is extensive in nature. 

The finite cluster method relies heavily on graph theory. A gruph G is a col- 

lection of vertices and bonds connecting the vertices. Any two vertices in a graph 

may be connected by at most one bond, and bonds which connect a vertex to itself 

are not permitted. Since the calculations in U(l)a+r HLGT performed here use 

the gauge-invariant plaquette-flux basis, the plaquettes are represented by graph 

vertices and the bonds represent the interplaquette electric mixings. A graph is 

termed connected if it contains at least one path of bonds between any two given 

vertices. A graph H is a subgruph of G if all of its vertices and bonds correspond 

to vertices and bonds of G. If S is a subset of the vertices in G, then a subgraph of 

G consisting of the vertices in S and all the bonds in G which connect the vertices 

in S is called a section graph. Any subgraph F’ of a graph G which is isomorphic 

with a graph F represents an embedding of F in G in the zueuk: sense. Any section 

graph p of G which is isomorphic with a graph F is an embedding of F in G in 

the strong sense. Clearly, a strong embedding is also a weak embedding, but the 

converse is not necessarily true. The number of distinct weak embeddings of Gr in 

G2 is denoted by (Gr ; G2) and is called the weak embedding constant of Gr in G2; 

the strong embedding constant of G1 in G2 is denoted by [Gr; Gz]. For example, 

[G4;G6] = 0 and (G4;Gs) = 4, referring to the graphs of Fig. 1. On a square 

two-dimensional lattice lcsq, [GJ;&] = 14 (defined p er site) and (G4;Lsg) = 18; 

the embeddings of G4 in ,!Z,, in which the end vertices occupy nearest-neighbor 

sites of the lattice are allowed only as weak embeddings. 

. 

The usefulness of the FCM depends greatly on the property of eztensivity. A 

quantity is extensive if, when evaluated on a disconnected graph, it is the sum of 

- < that-quantity evaluated separately on the connected components of the graph. An 
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extensive matrix element A(L) d fi d e ne on a regular lattice L of infinite extent is 

calculated in the FCM by summing specific contributions, called the FCM weights, 

to A(L) from all connected finite-sized graphs G which can be embedded in L. The 

procedure is prescribed by writing 

and similarly for all subgraphs, 

V-2) 
FCG 

where di (G) is the strong FCM weight for A on G and the (c) above the summa- 

tion signs indicates that these sums include only connected subgraphs since A is 

extensive. By rewriting Eq. (4.2) in the following form: 

h(G) = A(G) - c [J’; GMA(J’), (4.3) 
FcG 

the FCM weights may be evaluated recursively using Eq. (4.3) on the connected 

subgraphs of L in order of increasing size. Although these equations ha.ve been 

written in terms of strong embedding constants, weak embedding constants may 

also be used. When using strong constants, the size of a given graph G is the 

number of vertices in G; for weak constants, the size of G is the total number of 

vertices and bonds in G. 



4.2 GROUND STATE ENERGY DENSITY 

Although the vacuum energy per plaquette is neither an interesting nor phys- 

ically relevant quantity, its evaluation is important for three reasons: it is the 

simplest quantity which can be calculated and so provides a first test of the re- 

liability of any computational algorithm; any nonanalyticity in this energy with 

respect to the inverse coupling /3 signals a phase transition; and interesting quan- 
- 

tities, such as the mean plaquette, specific heat, and mass gaps, are obtained from 

manipulations of the ground state energy PEM function. 

The PEM function co(t) for the ground state energy per plaquette is most 

easily calculated if each trial state is a tensor product of identical plaquette or link 

states. If one trial state, I$o), 1 ies entirely in the physical vacuum sector of Hilbert 

space, then the other, (x01, need not since the Hamiltonian in the projector does 

not mix states in different sectors. This aspect of the bistate contraction scheme is 

particuiarly important in nonabelian lattice gauge theories (which one ultimately 

wishes to study) where the strong-coupling vacuum is the only gauge-invariant 

state which is also a tknsor product of individual link states. In such theories, this 

scheme allows the introduction of variational parameters and arbitrarily large loops 

of chromoelectric flux without sacrificing the simplicity of calculation afforded by 

the use of tensor product states. 

Two PEM functions for the vacuum energy per plaquette are studied here. The 

first, et(t), is given by 

tA(t) = b’i-tie-2PHth) 
0 

(cpo Iee2PHt Ivo) ’ 

where g is the Hamiltonian per plaquette and 1~0) is the strong-coupling vacuum. 

The second function, e;(t), was chosen specifically to examine the effectiveness of 

the bistate contraction scheme and is given by 

&t) = (90 IfiesapHt Ivh) 
(90 k2PHt l9kJ ’ 
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where Iy)xW) is one of the simplest tensor-product states which can be formed, 

IYAW) = n (1+ x cos q& + iw sin &> lvo), (4.4 
P 

.- 

with p labelling plaquettes. This state was chosen since it contains arbitrarily 

large loops of electric flux, yet is simple enough to permit the evaluation of at 

least the first ten or so terms in the t-expansion of the vacuum energy and the 

photon mass gap. In order to obtain reasonable estimates of continuum limit mass 

ratios, the effects of long-range correla.tions must be accurately deduced by the 

approximate means of analytic continuation used in the series analysis. This can 

only be accomplished if a sufficient number of terms in the t-expansion are known. 

In other words, one must not sacrifice too many terms in the expansion in order 

to improve the independent-plaquette trial state. Note also this state cannot be 

obtained from the action of any finite power of the Hamiltonian on the strong- 

coupling vacuum. 

The calcuIation -of a PEM moment Hi ‘in any ground state energy expansion 

is accomplished in the following sequence of steps. First, Hk(Gl) on the smallest 

connected graph Gr is calculated. This is done by setting up an appropriate basis of 

states for the graph and constructing the Hamiltonian matrix H(Gl) and the trial 

state 1$0(G)), as well as Jxo(G1)) h w en using the bistate contraction scheme, in 

terms of these basis states. Hi(Gl) is th en calculated using Eq. (2.4) with 0 = H 

, 

and simple matrix multiplication. The FCM strong (or weak) weight $H;(GI) is 

then determined using Eq. (4.3). Next, the above process is repeated for the second 

smallest connected graph G2 and then for successively larger connected graphs. On 

a given graph G, OH; can be nonzero only if n is sufficiently large to permit 

mixings among all of the plaquettes of G. Thus, for a given n, a graph G, is 

eventually reached for which the FCM weight is zero; the weights for all larger 

graphs also vanish. If one is able to calculate the weights for all graphs smaller 

than G,, then Hi on the infinite lattice can be determined using Eq. (4.1). 
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These calculations are performed using the symbolic manipulation package 

MAPLE. The use of such a language is crucial since it allows one to manipulate 

symbols, such as the coupling constant and variational parameters, and to treat 

numbers exactly, eliminating both round-off and overflow problems. The removal 

of overflow difficulties is very important because the combinatorics encountered in 

PEM lattice calculations can lead to very large numbers. The absence of round- 

.- off errors eliminates the problems which occur whenever differences between large 

nearly-equal numbers are taken. 

The dimension of the basis of states required to evaluate PEM moments us- 

ing the finite cluster method increases rapidly with the order of the moments. 

When calculating higher-order terms, one must consider not only larger connected 

diagrams, but also a larger number of states on the individual plaquettes. This 

growth in basis size limits the number of calculable terms in an expansion. How- 

ever, many of the basis states needed to naively compute an FCM weight on a 

large graph participate only in contributions to the weight which are subsequently 

cancelled by subgraph subtraction$. This fact can be exploited in order to signif- 

icantly increase the number of PEM coefficients which can be determined. The 

easiest way to eliminate the unnecessary basis states is to impose a maximum pla- 

quette flux magnitude. This maximum flux magnitude should be chosen as small 

as possible to minimize basis size, yet large enough in order to exactly compute 

the required weights. An FCM weight on a large graph can be computed using 

this basis truncation scheme only if all subgraph weights subtracted from it are 

calculated using the same truncation scheme. 

The first nineteen coefficients in the power series expansion of et(t) and the 

first twelve in e{(t) were obtained. The first several terms in these series are given 

below: 

#B’(t) = fy e&w, 
n=O * 

(4.5) 
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where 

&if =P, 
Ef =p3, 
&; =4p3, 

~?=16/3~-3/3’, 

of =64p3 - 40p7, .- 

E;’ =4op - 208p7 + 256p3, 

et = 1120p11 + 2560p7 + 1024p3, 

E; = 12544 /3” - 1155 ,815 + 97792 p7 + 4096 p3, 

Ef = - 55440 p15 - 46080 pl’ + 1996800 p7 + 16384 p3, 

E: .= 57456 ,01’ - 1071840 @15 - 3071488 /3” + 34317312 p7 + 65536 p3 , (4.6) 

and 

Ei? =(l - W>P, 4 
E; =(l - x2/2p3 - 2 xp, 

E; =(3 x/2 - x3)p5 + (-6 X2 - 4w2 + 4)p3 - 8 Xp, 

E! =(6X2 - 3X4 - 3)p7 + (-24 X3 - 32 Xw2 + 20 X)p5 

+ (-48 X2 - 80 w2 + 16)p3 - 32 X/J 

E: =(30 X3 - 12 X5 - 20 X)pg + (-120 x4 - 240 x2w2 

+ 160X2 + 80w2 - 40)p7 + (-320 X3 - 1312 Xw2 + 104 X)p5 

+ (-256 X2 - 1104 w2 + 64)p3 - 128 A/?, 

E! =(180 X4 - 60 X6 - 165 X2 + 4O)@l + (-720 X5 

- 1920 x3w2 + 1320 x3 + 1440 Xw2 - 560 X)pg + (-2400 A4 

- 16416 X2w2 - 1120~~ + 1968 X2 + 2912w2 - 208)P7 

-I- (-2112x3 - 33184Xw2 - 1280X)p5 + (32X2 - 13120~~ 

+ 256)p3 - 512 X/L - < (4.7) 
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The connected diagrams needed to compute these moments are shown in Fig. 1. In 

this figure, plaquettes are represented by circles, and the line segments connecting 

the circles represent the links on the lattice shared by adjacent plaquettes. 

4.3 PHOTON MASS GAP 
- 

PEM functions for energy gaps are not extensive 
- functions which are. To calculate an energy gap in a 

but can be obtained from 

sector (Q) which does not 

contain the ground state, first evaluate the following extensive ratio: 

RAF(t) = 
Mle -tH I$? 
(+Ole-tHl$O) ’ 

(4.8) 

where.I@) = S&.1$0) and R (y is an operator with the following properties: if I&,) 

lies entirely in the vacuum sector of Hilbert space, then !&l$o) lies entirely in the 

(a) sector; s1, is an extensive local operator, i.e., it satisfies 

%(ch u G2) = %(ch) + G&72), 

[%&),H(G2>] = 0, (4.9) 

[fL4G2)rH(G1)] = 0, 

where 61 and B2 denote the embeddings of connected graphs Gr and G2 in L such 

that f& n& = 0. R, is usually chosen to project out a state of definite momentum 

and angular momentum. The energy gap in the (cy) sector is then obtained using 

A?)(t) = - $ In &q(t) (4.10) 

(4.11) 

The ground state energy of a lattice system is proportional to N,, the (infinite) 

number of sites in the lattice, whereas energy gaps are finite values, independent 

_ . o.f N,.as N, + 00. The second ratio in Eq. (4.11) tends to the ground state energy 
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as t + 00 and thus, is proportional to N,; the first ratio is a sum of a function 

proportional to N,, which tends to the ground state energy as t + 00, and a 

function independent of N,, which tends to the energy gap as t becomes large. In 

choosing I+:) as suggested above, the O(N,) t erms explicitly cancel for all values 

oft in the difference of the ratios in Eq. (4.11). Th is explicit and exact nullification 

of vacuum noise in energy gap calculations is an attractive and important feature 

of the projector expansion method. 

The bistate contraction scheme can also be used to formulate a non-vacuum 

sector energy gap expansion in which the O(N,) contributions explicitly cancel. If 

the tensor product state 1x0) lies partially in the vacuum sector and partially in 

the (CY) sector, then the following extensive ratio, 

Rb (t) = (xde-tHI+f) 
4 (xolf+W0) ' 

(4.12) 

yields the appropriate energy gap via Eq. (4.10). The coefficients in the Taylor 

series expansions of Ray(t) and R&,(t) are calculated in the same manner as the 

Hi moments. After the contributions to these coefficients from the connected 

subgraphs are summed as in Eq. (4.1), th e energy gap moments are obtained from 

the logarithmic derivative using Eq. (4.10). 

The photon mass gap is an important physical quantity. It is given by the 

difference between the energy of the vacuum and the energy of the lowest state 

which is antisymmetric under lattice reflections and invariant under all lattice 

translations and n/2 rotations. The inverse of this mass gap yields the correlation 

length of the lattice theory in terms of the lattice spacing. The photon mass may 

also be used to renormalize the theory; all other physical quantities, when expressed 

in terms of this mass, tend naturally to their physical values as the continuum limit 

is taken. 

Two PEM functions for the photon mass M are studied here. The first, MA(t), 
-, _. . . 
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is defined by 

MA(t) = (Pi~He-2PHth) (‘polHe-2PHt[vo) 
(cPile-2PHtlw) - (qole-2PHtlqo) ’ 

(4.13) 

where 1~0) is the strong-coupling vacuum and 

- 
IVl) = ~sin4Plvo) 

P 

(4.14) 

is a zero-momentum state in the photon sector. The second function, M’(t), is a 

bistate contraction given by 

MB(t) = (wIH~-~~~~IvA~) (yolHem2PHtlyxw) 
(cPlle-2PHtlV~w) - (v01e-2PHtl~~w) ’ 

(4.15) 

where 19~~) is the tensor product state defined in Eq. (4.4). The coefficients in the 

power series expansions of MA(t) and MB (t ) were calculated using the finite cluster 

method and the basis truncation procedure described in the previous section. The 

first fifteen terms in MA(t) and the first eleven terms in M’(t) were computed. 

Several of these terms are listed below: 

MAW(t) = e kg&w, n=O * 
where 

M,A =2/P, 
Mf = - p3/2, 

Mk = - 6p3, 

Mk =5@7/2$8@3, 

Me = 100 ,B7 + 576 p3, 

Mt =872p7 - 75p’l/2 + 9152p3, ~ 

(4.16) 

. 
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Mt = 992p7 - 3150/3” + 119424p3, 

M+ = 1127 p15 - 68880 pl’ + 150144 p7 + 1472768 p3, 

Mt = 162288 ,815 - 813888p” + 15594496p7 + 17834496 ,B3, 

Me = 6332928 ,B15 - 56910 pl’ - 10023680 @’ + 785082624 p7 

+ 214664192 p3 , (4.17) 

- ind 

Mf = 4312 -I- a/,& 

M: = (X2 - 1)p3/2 + 6 X/3, 

M; = (x3 - 3 x/2)p5 + (18 X2 + 8 w2 - 6)p3 + 32 Xp, 

M/? = (3 x4 - 6 X2 + 5/2)p7 + (72 X3 + 64 Xw2 - 60 X)p5 

+ (256 X2 + 232 w2 + 8)p3 + 144 X,8, 

: Mf = (12 x5 - 30 X3 + 20 X)pg + (360 X4 + 480 X2w2 - 480 A2 

- 160 w2 + 100)p7 + (1920 X3 + 4016 Aw2 - 584 x)p5 

+ (2720 X2 + 3696 w2 + 576)p3 + 608 A@, 

M; =(60X6 - 180X4 + 165X2 - 75/2)/I” + (2160X5 

+ 3840 X3w2 - 3960 X3 - 2880 Xw2 + 1680 A)@’ + (15360 X4 

- + 51408 X2w2 + 3200~~ - 11568 X2 - 9136w2 + 872)p7 

+ (36624 x3 + 127568 Xw2 + 2000 X)p5 + (25056 X2 + 45536 w2 

+ 9152)p3 + 2496 A,& (4.18) 
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5. Series Analysis 

D-Pad& approximants [331’341 are used in the analysis of the series studied here. 

Ideally, one would prefer to use more than one method of series analysis; however, 

no other method has yet been found which is sufficiently accurate to provide a 

useful check of the D-Pad& estimates. Instead, confidence in the PEM function 

reconstruction must stem from agreement among many of the [L/M] D-Pad& ap- 
- 

proximants and from adequate convergence in the approximants as L+ M increases. 

Series analysis results are presented here as the averages and standard devia- 

tions of selected approximants. High L + M approximants which occur in a cluster 

are typically chosen. The standard deviation in the values of the chosen approx- 

imants yields an estimate of the uncertainty in the extrapolation. It should be 

stressed’that such “error” estimates are in no sense rigorous and represent only a 

subjective assessment of the rate of convergence of the available approximants. 

In the bistate contraction scheme, the problem of choosing best values for the 

variational parameters in the trial states must be addressed. If many terms in the 

power series representation of a PEM function are known, then the values chosen 

should be immaterial. However, if only the first ten or so terms are available, one 

must expect that certain values of these parameters will yield better estimates than 

others. Npte that the bistate PEM function for the ground state energy does not 

provide an upper bound on the true energy and that D-Pad& approximants are 

also not guaranteed to lie above the exact energy. 

In the evaluation of the ground state energy and other vacuum expectation 

values, one expects that improvement in the starting states will lead to better 

convergence in the D-Pad& approximants and more reliable series analysis results. 

Hence, separate application of the variational principle to each trial state is a 

good starting point for the bistate series analysis. If adequate convergence of the 

approximants is observed using these variationally-optima1 parameter values, and if 

the average of the selected approximants does not change appreciably under small 
-, _. variations in the parameters about these chosen values, then the bistate series 
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analysis is complete. However, if these conditions are not met, one of the simplest 

ways to proceed is to search parameter space for a region of good convergence 

by freely varying one of the parameters, determining all others by the variational 

method. Often, physical insight can be an important guide in this search. 

5.1 THE GROUND STATE ENERGY PER PLAQUETTE 

.- The results of the D-Pad4 analysis of et(t) and c!(t) are presented in Table 1. 

The cf estimates are averages of the following eighteen approximants: [2/8 - 111, 

[3/8 - 121, [4/9 - 131, [5/10 - 121, and [6/11]. The bistate # averages include 

the following eight approximants: [l/6 - 91, [2/6 - 81, and [3/7], and values of 

X and w which minimize the expectation value of the Hamiltonian in the state 

]qxw) are used; this minimum occurs at w = 0 and for real values of X as shown in 

Fig. 2. The series analysis results were insensitive to the values of X and w in this 

region of parameter space. Agreement between the bistate and unistate estimates 

is excellent. The results compare favorably to those of the guided random walk 

(GRW) algorith m on an 8 x 8 lattice [311 (which are presently the best estimates of 

the U(l)z+r HLGT vacuum energy density from any stochastic method) and agree 

well with strong- and weak-coupling perturbation theory. No evidence of a phase 

transition appears. 

5.2 THE-MEAN PLAQUETTE 

The smoothness in the dependence of the average plaquette (cos &) on /3 in 

the cross-over region between strong and weak coupling is of interest here, since 

a discontinuity in this dependence indicates a phase transition. (For example, in 

(3 + 1)-dimensional U( 1) HLGT, th ere is a second-order transition near ,0 x 1 from 

a confining massive phase in strong coupling to a massless Coulomb phase in weak 

coupling.) 

Two PEM functions whose large t limits yield (GOS &,) are investigated here. 

The power series expansions (cos $p)A (t) and (cos 4,)’ (t ) are obtained by manip- 
-, __ . . 
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ulating the ground state energy density series et(t) and e:(t), respectively, using 

the Feynman-Hellmann theorem: 

@OS hr(t> = 1 - -g [/q(t)] ) a=A,B, (5.1) 

-. 
where p = p2 and the validity of the termwise differentiation with respect to p of 

the ground state energy PEM power series has been assumed. 

The D-Pad6 estimates of the mean plaquette are given in Table 2. The aver- 

ages in the first column include the following fourteen approximants: [3/8 - 121, 

[4/9 - 131, [5/10 - 121, and [6/11]. The bistate averages in the second column 

include the following seven approximants: [l/6 - 71, [2/6 - 81, and [3/6 - 71. The 

variational parameter values used in these averages are the same as those used for 

the ground state energy density. Agreement of the unistate and bistate estimates 

with each other and with strong- and weak-coupling perturbation theory is excel- 

lent. The results again compare favorably to those of GRW, particularly for large 

,B. There is no evidence of a phase transition. 

5.3 THE SPECIFIC HEAT 

In statistical mechanics, the specific heat is the second derivative of the free 

energy with respect to temperature, Cv = -T(d2F/i3T2)v. The analogue of the 

free energy in Euclidean lattice gauge theory is the ground state energy[431, and 

the coupling constant is the analogue of the temperature. Hence, the following 

quantity, 

d2 
C(P) = -8j32EOm (5.2) 

is here referred to as the specific heat. 

This quantity is interesting for two main reasons: first, discontinuities in C(p) 

with respect to ,B reveal phase transitions in the lattice theory; and secondly, 

C(p) peaks in the cross-over region between strong- and weak-coupling behavior [341 , 
-~ _ ..- 
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providing valuable information concerning the location in ,f3 at which the onset of 

continuum limit scaling may be expected. 

The D-Pad& estimates of the specific heat using only the series CA(t) obtained 

from c:(t) are shown in Fig. 3. These estimates are averages of the following 

fourteen approximants: [3/10 - 141, [4/10 - 131, [5/10 - 121, and [6/10 - 111. 

Again, there is no evidence of a phase transition. The specific heat peaks near 

,8 M 0.8, suggesting that weak-coupling behavior may set in for p near unity. 

5.4 THE PHOTON MASS 

The weak-coupling behavior of the mass gap is not exactly known. Gijpfert 

and MackL7] showed that the lattice photon mass in the Villain (periodic Gaussian) 

action defined on a (2+1)-d imensional Euclidean lattice is given exactly by 

M2 = &r2/3exp[-2r2/3V(0)], (5.3) 

where V(0) z 0.252731 is the lattice Coulomb Green function at contact. In 

the Hamiltonian formalism in which only the spatial dimensions are discretized, 

l$(O) N 0.321441 is the analogous Green function at contact. It is often claimed 

in the literature that the Villain action is a high-p approximation of the Wilson 

action so that Eq. (5.3) should also give the mass gap in the weak-coupling limit 

of the Wilson formulation of the theory. However, Suranyl *“‘l has disputed this, 

’ asserting that a natural series of models, beginning with periodic Gaussian and 

approximating the Wilson model with arbitrary precision, does not exist. His 

argument is based on the fact that periodic Gaussian models are special forms of 

Wannier function expansions. 

Several calculations have also provided evidence that the mass gap in the Wil- 

son formulation of U(1)2+1 HLGT does not fall off in the weak-coupling region 

in the same manner as in the Villain model. Using a WKB variational method, 

Suranyi *“‘I deduced an exponential fall-off with a decay factor 5.7 f 0.1. Heys and 
-, _. . . 
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Stumpllsl, in a six parameter variational calculation, found 

M2 = (500 f 30)Pexp[-(4.97 f O.OS)/?], (5.4) 

fitting their results for p > 1.2 to the above form. Hamer and Irving[“‘, using a 
-. 

strong-coupling linked-cluster expansion technique, deduced 

M2 = (470 f 200)Pexp[-(5.3 f 0.5)/3], (5.5) 

again fitting their results to this form. These two results are consistent with each 

other but differ from the Villain prediction, M2 = 78.96/3exp(-6.3458) (after 

converting the lattice Coulomb Green function from the Lagrangian to the Hamil- 

tonian formalism), both in slope and overall magnitude. 

The results of the D-Pad4 series analysis of MA(t) and MB(t) are shown in 

Fig. 4.: The MA estimates, indicated by circles, are averages of the following twelve 

._. approximants: [3/5 - lo], [4/6 - 91, and [5/7 - 81; the MB estimates, shown as 

squares, are averages of the [2/5 - 7] and [3/6] D-Pad& approximants. In the bistate 

estimates MB, the variationally-optima1 values of X and w calculated previously 

were used (note that although the projection of ]vxw) onto the photon sector is 

proportional to w, the limit w + 0 can be used since this proportionality factor 

appears idboth the numerator and denominator in the first ratio in Eq. (4.15)). 

The smallest spread in the selected approximants occurs in this region of param- 

eter space. The results interpolate smoothly between strong-coupling behavior, 

shown by the dashed curve, and an exponential decay in the weak-coupling region. 

Agreement between the unistate and bistate estimates is excellent for p < 1.5. 

At this value of the inverse coupling, the spread in the MA approximants begins 

to grow and their average starts to deviate from the exponential decay. The bis- 

tate estimates continue to exhibit the expected weak-coupling behavior until near 

,B M 2. For larger ,B, more terms in the t-expansion are apparently necessary. A fit 

of the &state estimates for 1 2 ,8 < 2 and the MA estimates for 1 5 ,B 2 1.4 to the -, _. 
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form M2 = up exp( -bp) yields the following weak-coupling mass gap behavior: 

M2 = (380 f 20)/3 exp[-(5.23 f 0.04)@]. (5.6) 

This fit is shown in Fig. 4 by a solid line. The results of Hamer and Irving (the dot- 

ted line) and Heys and Stump (the dashed-dotted line) are also shown. Agreement 

with the results of Hamer and Irving is particularly remarkable. 

5.5 THE MASS GAP IN THE VACUUM SECTOR 

The quantity of interest here is the ratio of the mass gap in the vacuum sector 

M, to the lattice photon mass M as ,0 + co. In this limit, the ratio R, = Ma/M is 

expected to tend smoothly to its continuum limit value. In practice, this limiting 

value is found by increasing ,0 from strong coupling until the mass ratio &(,B) levels 

off in the weak-coupling region. From the previous studies of the photon mass and 

the specific heat, one would expect the scaling of R, to set in for ,L? > 1. If the 

continuum theory admits a stable bound state of two photons (a glueball), then the 

weak coupling limit of R, will lie between unity and two. If the continuum theory 

is simply a free field theory of massive scalar photons, as in the Villain model[‘], or 

if the glueball remains in the continuum theory only as a resonance, then a ratio 

R, = 2 should be observed as ,!3 becomes large. Alessandrini et al!“‘, using strong- 

coupling perturbation theory, examined this ratio and tentatively concluded that 

a stable glueball in the vacuum sector did not exist in the continuum limit. Hamer 

and Irving ‘12’ found R, = 2.1 f 0.5 in the weak-coupling limit. However, their 

estimate was based solely on a single Shafer extrapolation of the strong-coupling 

perturbation series. 

Two power series for the ratio R, are studied here. The first series, RA(t), is 

determined using’341 

RA(t) = -$j+Jln (5.7) 
-, __ .e 
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The second series, RB (t), is obtained from the bistate contraction and is given by 

RB(t) = -$iln ($q p(1). 

The results of the D-Pad& series analysis of RA(t) are shown as circles in 

Fig. 5. These estimates are averages of the following twelve D-Pad4 approximants: 

[l/7 - 121 and [2/6 - 111. The L = 0 approximants are not used since they do not 

reproduce the behavior of the Taylor series for all values of t lying in the range 

0 < t < t,, where t, is the largest value of t for which the truncated Taylor 

series exhibits sufficient convergence to be judged a reliable representation of the 

PEM function. These L = 0 approximants decay much too quickly and agree 

with the. Taylor series only for 0 < t < to, where to << t,. In the strong-coupling 

region, most of the approximants agree very well with one another and with strong- 

coupling perturbation theory (the solid curve), but as p is increased, a sharp change 

in their behavior is observed. For /3 > 1.2, the approximants with L > 2 suddenly 

begin climbing in value and disa,gree radically with one another. The RA estimates 

exhibit slight evidence of scaling. They almost level off at an overly large value of 

47 x 2.3 near ,L? x 2 just before the spread in the selected approximants suddenly 

grows. The key observation here is that there is no evidence of a stable glueball in 

the continuum limit. 

This conclusion is confirmed by the results of the analysis of the RB(t) series. 

These bistate estimates, indicated by squares in Fig. 5, are averages of the following 

thirteen approximants: [O/6 - 91, [l/5 - 81, [2/5 - 71 and [3/5 - 61. In order to 

take advantage of any cancellations which might occur in RB(t), the same values 

of X and w are used in both the numerator and denominator of Eq. (5.8). In the 

strong-coupling region, most of the approximants agree very well with one another. 

Parameter values near the variationally-optimal ones yield the least amount of 

spread in the selected approximants and averages which are insensitive to the 

values -of X and w. Thus, for /3 5 0.8, the variationally-optima1 values of X and 
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w are used. Agreement between the bistate and unistate estimates is excellent in 

this region of the coupling. 

As p is further increased, the variances in the bistate estimates obtained using 

the variationally-optima1 parameter values begin to grow quickly, similar to the 

RA estimates. However, a region of averages with much smaller variances suddenly 

appears for w2 < 0 and satisfying 1 < Iwj < 2. Hence, for p > 0.8, the bistate 

estimates are obtained in the following manner: first, w is varied, keeping w2 real 

(this ensures that all coefficients in RB(t) are real, simplifying the series analysis 

since the requirement lim+,, 3RB(t) = 0 is automatically satisfied); for each value 

of w, the parameter X is then chosen by minimizing the ground state energy in the 

state [vxW); the estimate with the smallest standard deviation is finally selected. 

This procedure is illustrated in Fig. 6. For ,B = 0.8, the minimum in the standard 

deviation of the selected D-Pad4 approximants occurs for w = 0 (see Fig. 6(a)); 

for p = 1.3, best convergence of the approximants occurs for w M f1.65i (see 

Fig. 6(b)j. For various values of ,B in the region 0.8 < p < 2.5, a large search of 

parameter space was undertaken and all other parameter values which were tried 

produced estimates -which either were’ consistent with those obtained using the 

above procedure or had much larger variances. 

The bistate estimates provide much stronger evidence of continuum limit scal- 

ing than do the RA estimates. The ratio R, determined from the bistate contrac- 

tion becomes nearly constant for /I > 2 and seems to be approaching a slighly high 

value of 2.2, providing further evidence that no stable scalar glueball exists in this 

theory. 
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6. Conclusion 

The ground state energy per plaquette, the average plaquette, and the specific 

heat in U(l)a+l HLGT were accurately determined on an infinite lattice for a 

wide range of coupling constant values, confirming that this lattice theory has 

only a single confining phase. The results agreed very well with strong- and weak- - 
coupling perturbation theory and compared favorably to results from stochastic 

Hamiltonian methods. Two trial states were used: the strong-coupling vacuum and 

a tensor product of single-plaquette states which were linear combinations of field 

configurations with zero or one unit of electric flux circulating along the plaquette 

boundary. A single-state and a bistate contraction were calculated. Although the 

bistate estimates for the ground state energy and mean plaquette were no better 

than those determined using only the strong-coupling vacuum as the trial state, 

they agreed very well with them, improving confidence in the results. 

The photon mass gap and the ratio R, of the mass gap in the vacuum sector to 

the photon mass were also studied using a unistate and bistate contraction. The 

weak-coupling behavior of the photon mass differed from that of the Villain model 

but was in good agreement with the results of two previous calculations by other 

authors. Scaling in the mass ratio was observed for ,8 > 2 and the weak-coupling es- 

timates of this ratio were consistent with a continuum limit value R, = 2, providing 

no evidence of a stable scalar glueball. The bistate contraction was instrumental 

in enabling the accurate determination of both of the above quantities in the weak- 

coupling region. This suggests that use of the bistate contraction technique could 

lead to improved determinations of glueball and hadron masses in lattice QCD. 
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TABLE CAPTIONS 

1: Ground state energy density estimates compared to those of the guided ran- 

dom walk (GRW) algorithm on an 8 x 8 lattice and strong- and weak-coupling 

perturbation theory (PT). 

- 

.- 

2: Comparison of mean plaquette (cos $J~) estimates. The results are compared 

to those obtained using the guided random walk (GRW) algorithm on an 

8 x 8 lattice and strong- and weak-coupling perturbation theory (PT). 

FIGURE CAPTIONS 

1) All connected graphs consisting of up to six plaquettes which can be embed- 

ded on a square lattice. The circles represent plaquettes and the line segments 

connecting the circles represent the links of the lattice shared by adjacent 

plaquettes. The values in the upper right-hand corners are the strong em- 

bedding constants per site for the graphs in a square two-dimensional lattice. 

2) Values of X which minimize the expectation of the Hamiltonian in the state 

IWJ- 

3) The specific heat CA in U(l)z+r HLGT. 

4) The-lattice photon mass gap. The squares indicate the bistate contraction 

estimates MB and the circles denote the MA estimates. The dashed curve is 

the result from strong-coupling perturbation theory, while the solid curve is a 

straight line fit to the bistate estimates for 1 5 ,B 5 2 and the MA estimates 

for 1 5 /3 6 1.4. The results of Hamer and Irving are shown as a dotted 

curve, and the dashed-dotted curve shows the results of Heys and Stump. 

5) Ratio of the mass gap in the vacuum sector to the photon mass gap. The 

single state contraction estimates Rf are shown as circles, and the bistate 

contraction estimates Rf are displayed as squares. The solid curve is the 

result from strong-coupling perturbation theory. 
-, _. . . 
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6) Average bistate estimates of R, for (a) ,0 = 0.8 and (b) p = 1.3 as a function 

of iw. The parameter w is freely chosen and is imaginary; X is then chosen so 

as to minimize the expectation value of the Hamiltonian in the state ]pxw). 

REFERENCES 
- 

1. Ken Wilson, Phys. Rev. D 10, 2445 (1974). 
-- 

2. John Kogut and Leonard Susskind, Whys. Rev. D 11, 395 (1975). 

3. A.M. Polyakov, Phys. Lett. 59B, 82 (1975); Nucl. Whys. B120, 429 (1977). 

4. T. Banks, R. Myerson, and J. Kogut, Nucl. Phys. B129, 493 (1977). 

5. James Glimm and Arthur Jaffee, Phys. Lett. 66B, 67 (1977). 

6. Sidney D. Drell, Helen R. Quinn, Benjamin Svetitsky, and Marvin Weinstein, 

Phys. Rev. D 19, 619 (1979). 

7. Markus Gijpfert and Gerhard Mack, Comm. Math. Phys. 82, 545 (1982). 

8. A., E., and P..Hasenfratz, Nzlcl. Phys.. B180 [FS2], 353 (1981). 

9. J.B. Kogut, D.K. Sinclair, R.B. Pearson, J.L. Richardson, and J. Shigemitsu, 

Phys. Rev. D 23, 2945 (1981). 

10. V. Alessandrini, V. Hakim, and A. Krzywicki, Nucl. Phys. B200 [FS4], 355 

(1982). 

11. A.C. Irving and C.J. Hamer, Nucl. Phv.js. B235 [FSll], 358 (1984). 

12. C.J. Hamer and A.C. Irving, 2. Phys. C 27, 145 (1985). 

13. Urs M. Heller, Phys. Rev. D 23, 2357 (1981). 

14. D. Horn and M. Weinstein, Phys. Rev. D 25, 3331 (1982). 

15. Thomas Hofsass and Roger Horsley, Phys. Lett. 123B, 65 (1983). 

16. Peter Suranyi, Phys. Lett. 122B, 279 (1983); Nuc1. Phys. B225 [FS9], 77 

(1983). 
-* . ..* 

28 



17. W. Langguth, 2. Phys. C 23, 289 (1984). 

18. David W. Heys and Daniel R. Stump, Nucl. Phys. B257 [FS14], 19 (1985). 

19. David W. Heys and Daniel R. Stump, Nucl. Phys. B285 [FS19], 13 (1987). 

20. Peter Suranyi, Nucl. Phys. B225 [FS9], 538 (1983). 

-. 
21. Gernot Miinster and Peter Weisz, Nucl. Phys. B180 [FS2], 13 (1981). 

._ 22. A.C. Irving, J.F. Owens, and C.J. Hamer, Phys. Rev. D 28, 2059 (1983). 

23. G. Bhanot and M. Creutz, Phys. Rev. D 21, 2892 (1980). 

24. Eric D’Hoker, Nucl. Phys. B180 [FS2], 341 (1981). 

25. Jan Ambjorn, Anthony J.G. Hey, and Steve Otto, Nucl. Phys. B210 [FS6], 

347 (1982). 

26. T. Sterling and J. Greensite, Nucl. Phys. B220 [FS8], 327 (1983). 

27. D. Dahl and R. Blankenbecler, Phys. Rev. D 32, 977 (1985). 

28. J. Potvin and T.A. DeGrand, Phys. Rev. D 30, 1285 (1984). 

29. T.A. DeGrand and J. Potvin, Phys. Rev. D 31, 871 (1985). 

30. David W. Heys and Daniel R. Stump, Phys. Rev. D 28, 2067 (1983). 

31. David Kotchan, Ph.D. thesis,“A Numerical Simulation of U( 1) Gauge Theory 

on the Lattice,” University of Toronto, 1990. 

32. S.M. Eleuterio and R.V. Mendes, CERN preprint TH.4181/85 (1985). 

33. D. Horn and M. Weinstein, Phys. Rev. D 30, 1256 (1984). 

34. D. Horn, M. Karliner, and M. Weinstein, Phys. Rev. D 31, 2589 (1985). 

35. G.J. Mathews, N.J. Snyderman, and S.D. Bloom, Phys. Rev. D 36, 2553 

(1987). 

36. D. Horn and E.G. Klepfish, Tel Aviv University Preprint 1791-90. 

37. C.P. van den Doe1 and D. Horn, Phys. Rev. D 33, 3011 (1986). 
-, _. .m 

29 



38. C.P. van den Doel, D. Horn, and A. Klatchko, Phys. Lett. 172B, 399 (1986). 

39. C.P. van den Doe1 and R. Roskies, Phys. Rev. D 34, 3165 (1986). 

.40. C.P. van den Doe1 and D. Horn Phys. Rev. D 35, 2824 (1987). 

41. D. Horn and G. Lana, Tel Aviv University Preprint 1878-91. 

-- 42. D. Horn, G. Lana, and D. Schreiber, Phys. Rev. D 36, 3218 (1987). 

:_ 43: J.B. Kogut, Rev. Mod. Phys. 51, 659 (1979). 

44. S.E. Koonin, E.A. Umland, and M.R. Zirnbauer, Phys. Rev. D 33, 1795 

(1986). 

45. C. Domb, A&. Phys. 9, 149 (1960). 

46. G.S. Rushbrooke, J. Math. Phys. 5, 1106 (1964). 

47. M.F. Sykes, J.W. Essam, B.R. Heap, and B.J. Hiley, J. Math. Phys. 7, 1557 

(1966). 

30 



Table 1: Ground State Energy Density Estimates 

I P 4 4 GRW(8 x 8) PT 

0.25 0.246095(6) 0.2460951( 1) 0.24610( 1) 0.246095 

0.50 0.46892(5) 0.46893(2) 0.46891(3) 0.46890 

0.75 0.6471( 1) 0.6474(2) 0.6467( 1) - 

1.00 0.7675(4) 0.7689(g) 0.7676( 7) - 

1.25 0.8344( 3) 0.836( 3) 0.8330( 19) 

1.50 -0.8681(5) 0.869(3) 0.8726(31) ~ 

1.75 0.8860(5) 0.887(4) 0.8896(31) ~ 

2.00 0.898( 1) 0.898(5) 0.8984(56) 0.9007 

2.25 0.906( 2) 0.905(5) 0.9165(63) 0.9071 

- 2.50 0.912( 1) 0.911(5) 0.9122 

3.00 0.921( 1) 0.919(4) -~ 0.9198 

4.00 0.931(3) 0.928(5) 0.9294 
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Table 2: Mean Plaquette Estimates 

P (cos 4,jA b 4,) B GRW(8 x 8) PT 

0.25 0.03124(4) 0.0313(2) 0.027(3) 0.03123 

0.50 0.1238(2) 0.123(2) 0.121(2) 0.12381 

0.75 0.2682(4) 

1.00 0.4333(3) 

1.25 0.5723(9) 

1.50 0.663(3) 

1.75 0.719(2) 

2.00 0.757(4) 

2.25 0.785(5) 

2.so 0.807(5) 

3.00 0.840(5) 

4.00 0.881(3) 

0.267(3) 

0.437(3) 

0.575(2) 

0.666(6) 

0.722( 10) 

0.760( 11) 

0.788( 13) 

0.811( 15) 

0.839( 14) 

0.882(13) 

0.275(3) - 

0.439( 10) - 

0.575( 10) ___ 

0.664( 15) ~- 

0.720(9) - 

0.777( 12) 0.761 

O.SOS( 10) 0.787 

0.808 

-- 0.840 

0.880 
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Figure 1: Connected Diagrams 
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Figure 3: Specific Heat 
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Figure 4: Photon Mass Gap 
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Figure 5: Mass Gap Ratio 
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Figure 6(a): R: (@=0.8) 
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Figure 6(b): Ri (@=1.3) 
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