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ABSTRACT 

New non-perturbative methods for dealing with Hamiltonian systems are intro- 
duced. The derivation of these methods requires identities for rewriting exponen- 
tials of sums of operators which are different from the usual Campbell-Hausdorff 
formula. These identities allow one to derive approximations to e -6H which are 
correct to higher order in S and which contain fewer terms than the Campbell- 
Hausdorff formula. This allows one to’generate path-integral actions which are 
more accurate for finite size steps in time and which can be exploited to improve 
the rate of convergence of Monte-Carlo calculations. To show that these methods 
allow one to include effects which show up in the stationary phase approximation 
to the path integral, e.g. instantons, solitons, etc., I not only derive the connection 
between the Hamiltonian and path-integral formalism but the relationship between 
a specific stationary-phase approximation and the corresponding Hamiltonian cal- 
culation. My focus, however, is the direct application of these new identities to 
the study of non-perturbative Hamiltonian dynamics. I show that these meth- 
ods are easier to apply and give better results than those based upon the naive 
t-expansion, block-mean field or real-space renormalization ideas. Comparison of 
the these older methods with the computational tools introduced in this paper are 
discussed in the context of simple examples. It is shown that the new methods 
allow one to extrapolate answers to finite t without the use of Padk approximants. 
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1. Introduction 

, 

This paper develops new, Hamiltonian based, non-perturbative calculational meth- 
ods for studying quantum mechanical systems. These techniques are simpler to im- 
plement, are more accurate and avoid problems encountered in previous methods 
such as the Hamiltonian real-space renormalization group [3] and t-expansion [l]. 
What is more, these methods make manifest the relationship between a specific 
stationary phase approximation to the path-integral and a specific Hamiltonian 
calculation, thus opening the door to the incorporation of instantons, etc. into 
Hamiltonian approximation schemes. 

The key to establishing the relationship between path-integral and Hamiltonian 
approximations is a better understanding of the conventional derivation of the 
path-integral and the the approximations upon which it is based. It is crucial to 
understand the operator foundation of Feynman’s rewriting of e-6H as a product 
of simpler factors and the way one can systematically improve upon this approxi- 
mation. In what follows I investigate this question, provide one possible extension 
of these ideas and use the resulting formalism to establish the correspondence be- 
tween a given stationary-phase approximation to the path-integral and a specific 
Hamiltonian calculation [6]. While th ese results are interesting, the real payoff 
lies in the fact that these better approximation methods can be directly utilized 
in Hamiltonian calculations without reference to path-integral methods. This is 
especially true in the case of lattice’spinlsystems, where they lead to a new formu- 
lation of mean-field and block mean-field approximations and a new approach to 
the Hamiltonian real-space renormalization-group. It will become apparent that 
these computational techniques draw upon ideas related to both the t-expansion 
and Hamiltonian renormalization-group and in order to keep this paper relatively 
self-contained I will review the necessary concepts. 

Since both the Euclidean path-integral and t-expansion study matrix elements 
of embH from different points of view, I begin with a short review of the both 
techniques. The derivation of the path-integral from a Hamiltonian leads naturally 
to the question of the best way to approximate e -6H for small S. Since this question 
is important to a proper understanding of the path-integral and peculiarities of 
the t-expansion, the review is followed with a discussion of just this point. After 
discussing general methods for improving upon Feynman’s approach I apply the 
improved approximation to simple quantum systems; in particular, the harmonic 
and anharmonic oscillator. This discussion shows that if one works at finite values 
of S, as one must in the Monte-Carlo approach to evaluating the path-integral, then 
these improved approximations greatly increase the accuracy of the calcula.tion. As 
part of this analysis I show that there are two sources of inaccuracy in calculations . . . 
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of this type, the first related to the specific approximation used for of embH and 
the second to the quality of the trial wave-function one starts from. I conclude 
with a discussion of methods for improving upon the starting wave-function. 

These discussions not only lay the foundation for the connecting these ideas to the 
stationary-phase approximation to the path-integral but they provide a foundation 
for the Hamiltonian renormalization-group method to be discussed at the end of 
the paper. After applying these ideas to simple quantum systems I apply them to 
a more complicated lattice spin system in order to show the rich set of tools this 
approximation technique provides. I begin with the simplest application of these 
ideas and show the ways in which they can be extended. As in the case of the 
simple quantum mechanical system one must discuss both the approximation to 
e -6H being adopted and the way to choose a wave-function in which to evaluate this 
operator. This brings us naturally to a discussion of the way in which mean-field 
and renormalization-group concepts come into the approximation scheme. 

While this paper is lengthy it only scratches the surface of what can be done and 
I only touch upon many of the topics. The conclusion of this paper discusses 
unsolved problems and work currently in progress. 

2. The t-Expansion Revisited 

The starting point for the t-expansion is the observation that in the limit t + 00 
the state P’(t) > = ,;;::z p> IQ) (24 

converges to the lowest eigenstate of the H with which it has a non-vanishing 
overlap. In particular, if (KPjKPo) # 0, where IQa) is the ground-state of H, then 

w = P’(t) I H P(t) > P-2) 

converges to the ground-state energy. Since 

E(t) = -$ In (Z(t)), P-3) 

where Z(t) is 

Z(t) = (*I evtH I@), (2.4) 

computing the ground-state energy of H is the same as, computing the large t 
behavior of Z(t). Although an accurate computation of the exact ground-state -’ ,.. 
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energy is the eventual goal, it is important to note that interesting results can be 
obtained without taking t + 00. This is because an accurate computation of E(t) 
provides an upper bound on the ground-state energy for any value of t. 

The basic approach of the naive t-expansion is to expand emtH as a Taylor series in 
t, compute the various operator expectation values and reconstruct the large t be- 
havior of Z(t) or E(t) by means of Pad& approximants or by fitting the series to sums 
of decreasing exponentials. Computations done for lattice spin systems and lattice 
gauge theories show that low-order series in t produce fairly accurate results for 
the ground-state energy density and mass gaps. One problem with the t-expansion 
is that these same calculations indicate that highly accurate computations require 
going to high order in t. Not surprisingly, t-expansion calculations become increas- 
ingly difficult in higher order and although many computations eventually simplify 
dramatically, there is no systematic way of recognizing cancellations at an early 
stage. Another problem is that Pad& approximants or exponential fits to Z(t) in- 
troduce unknown errors and a certain arbitrariness remains in the process which 
makes it difficult to estimate the accuracy of a given calculation. 

Part of the motivation for the present work is to find methods to compute Z(t) 
which exhibit cancellations at an early stage and automatically resum large parts of 
the Taylor series, thereby reducing or eliminating the need for Pad6 approximants. 
Since the path-integral is an alternative way of computing Z(t) it is natural to 
reexamine. the steps which go into the. derivation of the formalism to see which 
ideas can be adapted to the Hamiltonian approach. 

2.1 CONCERNING THE PATH-INTEGRAL 

Consider a system defined by two operators 
commutation relation 

P and X which satisfy the canonical 

[X,P] = i 

and a Hamiltonian of the form 

P2 
H = 2m + v(x). 

(2.5) 

w-3 

To maintain contact with the t-expansion I will focus on computing matrix elements 
of the operator 

C(t) = edtH P-7) 

The usual derivation of a path integral representation for a matrix element of this -’ _. ,.I 
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1 

(4 w w> = (4 W” I+> 7 (2.8) 

where S = t/n and I$) is some normalized state, and noting that 

C(S) x e-6P2/2m e-av(x)) e°Cs2) P-9) 

operator begins by rewriting it as 

Because terms of order h2 can be ignored in the limit S + 0, the factor e0t6’) is set 
to unity. Rewriting Eq. (2.8) by inserting a complete set of X-eigenstates between 
each pair of operators, simplifying the resulting expression using 

( I 2f e-6P2/2m lx) oc ,W(Z’-~)/~)~. (2.10) 

and identifying the ratio (z’ - x)/S with the velocity along a classical path, results 
in an expression which can be expressed as an integral of a classical action over 
classical trajectories. 

Common methods for evaluating the integral over paths are: perturbation theory; 
making a stationary phase approximation; latticizing the continuum action and 
attempting to evaluate the resulting integral by Monte-Carlo methods. A problem 
with latticizing the continuum path-integral is that one must take small lattice- 
spacing to make contact with continuum physics which, of course, increases the 
complexity of the calculation and decreases the rate of convergence of the Monte- 
Carlo procedure. A goal of this paper is to develop improved actions which permit 
high accuracy computations for finite values of 6. 

2.2 BEYOND THE FEYNMAN APPROXIMATION 

In what follows I refer to the replacement of embH by a product of exponentials 
as the Feynman approximation, even though this goes under a variety of other 
names. Since this approximation is the crucial first step in the derivation of the 
path-integral it is natural to see if it can be improved. I will discuss this question, 

, 

derive several improved approximations and show how to apply them to various 
problems. Wh’l 1 e real understanding of the simplifications which arise requires 
studying this question on a Hamiltonian by Hamiltonian basis, there are some 
general remarks which should be made. 
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For a Hamiltonian of the form H = A + B, the Feynman approximation is com- 
monly understood to be, 

,-6(A+B) = ,-6A ,-6B ,0(6’) (2.11) 

where 0(S2) is given by 

O(S2) = -;h2(A, B] - S3 $-% L% HII + $6 [A, Bll) + W4) (2.12) 

Although this expression shows that e’(“) can be replaced by unity in the limit 
S + 0, it is not the optimal formula to use in order to minimize the errors for finite 
6. One simple way to improve upon this formula is to adopt the more symmetric 
form 

,-6(A+B) = ,-6A/2 ,-6B/2 eCs (6) ,-6B/2 ,-6A/2 

where C3 (6) has the expansion 

(2.13) 

c3 (6) = - s3 &, [A, WI + &4 [A, Bll > 
- s5 

( -&P, b% [A, [A, ~1111 - &HA> HI, [A, [A, B111 

+ &jP, P7 L% [A, BIllI - &+[A? 47 16 [A, 411 (2.14) 

+&A, 14 14 L% BIllI + &$% [K [By [A, ~11~~) 

+ O(S7) 

This form has several advantages: first, even powers of S vanish and second, the 
coefficients of the terms which remain are considerably smaller. The derivation of 
the formula used to compute this generic form is given in Appendix A but even 
a cursory comparison of Eq. (2.14) and Eq. (2.12) reveals why symmetric approx- 
imations contain no even powers of 6. The argument goes as follows: on general 
grounds the product e 6B/2e6Al2e-‘(A+B) ,‘A/’ ebBI can be written as eD(6) where , 
D(S) can be expanded as a sum of commutators of A and B. Since the logarithm 
of eDc6) must be a hermitian operator and since even powers of S multiply odd 
numbers of commutators, which are anti-hermitian operators, the coefficients of 
even powers of 6 must vanish. 

6 



3. Quantum Systems With One Degree of Freedom 

3.1 THE HARMONIC OSCILLATOR 

The harmonic oscillator plays a central role in quantum mechanics and it is impor- 
tant to be sure that a new approximation technique works for this problem. This 
section compares the Feynman approximation for the harmonic oscillator to the 
higher-order approximations suggested by Eq. (2.13) and Eq. (2.14). 

To simplify notation I will not write the Hamiltonian for the harmonic oscillator 
as 

but will instead use the dimensionless operators 

x’=l/mwx 
H’ = H/m 

In other words, I- will study the Hamiltonian 

H+‘2+;X2 

3.1.1 Three Approximations 

The Feynman approximation to the harmonic oscillator Hamiltonian is 

,-6H Me -+6P2,-;6x2 

(3-l) 

P-2) 

(3.3) 

(3.4) 

and the lowest-order symmetric approximation, obtained by setting C’s($) to zero 
in Eq.(2.13), is 

,-6H xe-f6P2e-$6X2e-f6P2 
P-5) 

Although the lowest-order symmetric approximation is an improvement upon the 

* yeynman approximation, it would be nice to do better. This can be accomplished 
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using a variant of the lowest-order symmetric approximation, also discussed in the 
Appendix, which holds for an exponential of the sum of three operators; namely, 

,-6(A+B+C) = ,--6AJ2 ,-6B/2,-K/2 $4 (6) ,-K/2 ,--M/2 ,-6A/2 
(3.6) 

As before, 

c;(s) = g S2n+1 0’(2?2 + 1) 
n=l 

and the first non-vanishing term in C;(6) is given by 

c;(s) = -b3 $4 [A, Bll + &, [A, Cl1 + $4 [A, Bll 

+&, [A, cl1 + $A [B, cl] + ;P’ [A, Bll 

+rfirc, [A7 Cl1 + &[C’ P7 a) 

The trick is to apply this identity to the operator ec3(‘) and rewrite it as 

,gT3(6) = ,6 B’P=/2 ,6 A’X=/2 ,C9(6) ,6 A’X=/2,6 B’P=/2 P-7) 
for an appropriate choice of S A’X2 and S B’P2. The choice of 6 A’X2 and S B’P2 
is determined from the form of C3 (6) by th e requirement that the correction terms 
begin in order 6 ‘. Since in this case C’s(S) has the form 

c3 (4 

the choice which accomplishes this is 

Because S A’ and S B’ contain all the terms which multiply either X2 or P2 up to 
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order Sg, C’s(S) can be written as 

C3(S) = S A’X2 + S B’P2 + 6 R’ 

where S R’ contains all terms of order Sg and higher. Applying the formula for an 
exponential of a sum of three operators to this expression produces 

,-6H x ,-f6P2 e-i 6X2 e6 B’P=/2,6 A’X=/2 ,C46) ,6 A’X=/2,6 B’P=/2 e-t 6X2 e-i 6P2 

(3.10) 
It follows from the fact that Cg(S) is a sum of multiple commutators of 6 A’, S B’ 
and 6 R’ that Cg(S) starts in order 6 ‘. Appendix A contains explicit higher-order 
formulas for these identities as well as a discussion of the derivation of the lowest- 
order symmetric approximations for sums of operators. 

The compactness of the expression for C3 (6) is due to the fact that the operators 
P2, X2 and S = iXP + l/2 f orm a closed algebra, with the commutation relations 

[x2, P2] = 4s 

[P”,S] = 2P2 

[s, x2] = 2x2 

(3.11) 

It is clear from these relations that the commutators which appear in the general 
formula can all be replaced by P2,’ X2 and 5’; actually, since only odd powers of 
S appear in the symmetric approximation there are no terms involving S. While 
this extreme simplification happens only for the harmonic oscillator, simplifications 
occur for other problems as well. 

3.1.2 Comparing The Accuracy Of Different Approximations 

It is convenient to compare the various operator approximations to embH by com- 
paring their expectation values in a state of the form 

17) = (;) l/4 1 dJ: e-yx2/2 Ix) 

= (l/~$‘l~ /- dpe-P2/2Y lp) 
(3.12) 

where 15) and 1~) are eigenvectors of X and P and y is an arbitrary, real, positive 
parameter. Since the state Iy = 1) is the lowest eigenstate of the true Hamilto- 
nian, any failure to reproduce the correct answer, Z,,,t(S) = ev612, is due to a 
breakdown of the approximation; so comparing these expectation values provides -I ,.I 
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a measure of the relative accuracy of the operator approximations. Comparison of 
expectation values for y # 1 checks both the validity of the operator approxima- 
tions for higher states and the rate at which the contributions from higher states 
are suppressed as one goes to larger 6. 

Carrying out the gaussian integrations for the Feynman approximation leads to 

kfl e- 6~~12 e--6x2l2 I+/> = 2fi 
&y+2b+S2y dw- 

Specializing to y = 1 we obtain 

01 e- 6P212 em6’=12 11) = 4 + 2 i ;/Tg2 ~ 

(3.13) 

(3.14) 

The gaussian integrations for the more complicated case of the symmetric approx- 
imations can be done by means of the recursion relation 

(yl evAlp2 esBlx2 0 emBlx2 emAlp Iy) = N(y, Al, B1) (7’1 0 17’) 

where 

,,A,Bj = 
y+2B+4BAy 

1+2Ay 
112 1 

1+2Ay 

Applying Eq. (3.16) to the higher order symmetric approximation yields 

2;” = 
1 

1+$+$+$+$ (l/y+y) [b+$+$+pi;] +... 

which for y = 1 becomes 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

This shows that when y = 1 the function 2”” is one over the square root of a 
function whose Taylor series agrees with that for e6 up to terms of order Sg. 
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As Z(6) dies exponentially for y = 1, it is hard to see the discrepancies between 
different approximations on a linear plot; it is better to plot E(6), since it should 
take the constant value of l/2. Fig. 1 compares plots of E(6) for 0 5 6 5 1.5 for the 
case of the Feynman approximation, first symmetric approximation (C3 = 0) and 
the next higher order symmetric approximation. It is immediately apparent from 
the plot that even the lowest order symmetric approximation improves upon the 
naive Feynman approximation, however the way in which the next order symmetric 
approximation hugs the exact answer out to 6 M 1 is quite remarkable. The plot 
shown in Fig. 2 shows the same quantities for the case 7 = 2 to show what happens 
starting from a state that has a 50% admixture of higher states. Once again, 
the lowest order symmetric approximation does better than the naive Feynman 
approximation, but the next order symmetric approximation follows the exact 
answer all the way to S = 1. This shows that minimizing the formula for &(6) 
with respect to y for any value of S < 1 will, to high accuracy, produce the answer 
y = 1. 

3.1.3 Consequences 

It is interesting to note that the structure of the higher order symmetric approxima- 
tions provides another way of seeing the harmonic oscillator is a solvable problem. 
Because commuatators of X2 , P2 and S = iXP + l/2 close among themselves, it 
is possible to approximate e-6H as an alternating, symmetric product of exponen- 
tials of Pi and X2 to arbitrary accuracy. The exact ground-state energy can be 
found by recursively evaluating the expectation value of the resulting product of 
operators in a Gaussian wavefunction. While this solution is not an improvement 
upon more direct methods it is interesting to see the way in which things work. 

A more relevant question is “Does the higher order symmetric approximation lead 
to a path-integral formalism which, for given accuracy, requires fewer time slices 
than one based upon the Feynman approximation?“. To answer this question 
compare the columns in Table 1 listing the percentage errors for the Feynman 
approximation and for the higher order symmetric approximation. It is clear that 
to achieve a percentage accuracy of .000049 in the Feynman approximation it is 
necessary to work at S M .Ol as opposed to 6 M .80 for the higher-order symmetric 
approximation. In other words, to get this percentage accuracy using the Feynman 
approximation requires evaluating the expectation value of C(S)80, rather than 
evaluating Eq. (3.10) with C’s(S) set to unity. The evaluation of 

(x 1 w)8o Ix’) 
requires inserting complete sets of states between every factor, in other words, 
doing a seventy-nine slice path-integral, On the other hand, doing the same for 
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Eq. (3.10) y’ Id le s a three time-slice path-integral. Thus, the higher order symmetric 
approximation wins by about a factor of twenty-seven. If the goal is merely one- 
tenth of one percent accuracy then the higher order approximation wins by about 
a factor of twenty. 

As long as a symmetric approximation of the form 

C symm(q = e-f 6P2 e-; 6X2 ,A3(6)P2 ,2B3(6)X2 ,A3(6)P2 e-i 6X2 e-$ 6P2 

is valid, matrix elements of 

(71 cvmm(s/2)2 17) 

must be equal to corresponding matrix elements of 

(71 Cw-(S) 17) 

This provides a measure of the accuracy of the operator approximation, and makes 
it possible, in the absence of the exact solution, to determine the value of S beyond 
which the higher-order symmetric approximation breaks down. 

3.2 THE ANHARMONIC OSCILLATOR 

The anharmonic oscillator is defined by the Hamiltonian 

H=;P2+XX4 

This problem is of interest for two reasons: first, because the problem is not exactly 
solvable-even the lowest order symmetric approximation exhibits structure which 
does not show up in the case of the simple harmonic oscillator; second, because the 
the lowest order symmetric approximation reveals both the reason for the lack of 
convergence of Pad6 approximants to the naive t-expansion and how the symmetric 
approximation avoids this problem. 

As in the case of the simple harmonic oscillator the lowest order symmetric ap- 
proximation is defined by the formula 

,-6H 1 ,-+6P2 --?6X X4 eC3(6) ,-$6X X4 e-i6 P2 e 2 (3.20) 
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In this case, however, the term C’s(6) is more complicated i.e., 

2s+s2-;x2P2+4AxG 
> 

14x2X8+4XX2S+6XX2+kP4-XX4P2 
> 

(3.21) -- 

+ s7 . . . 

where, as before, S = iXP. This complexity makes it impossible to completely 
avoid expansions in 6 when going beyond the approximation e c3(6) = 1, since 
exponentials of operators like X2S or P2X2 cannot be evaluated in closed form. 
A minimal strategy for working with the higher-order approximations is to keep 
terms which just involve powers of X in the exponential and expand operators like 
,i6X4P2 or e6x2s. For example, without any loss of accuracy rewrite ec3(@ as 

,C3(6) = e--63X/4 ,-Fl@,X,X)/2 eC;(S) ,-F1(6,X,X)/2 (3.22) 

where 
463X2 6h5 X2 1465 x3 Fl(S,X,X) = 7x6+ 7x2+ 5 x8 

c;(s) 
= - 

9 ( 2s -+ s2 
- 

; X2P2 ) 

4xx2s+~P4-Ax4P2 
> 

(3.23) 

+ s7 . . . 

and expand cc;(‘) as a power series in 6. In this way the problem of computing 
Z(6) is reduced to computing expectation values of the form 

qq = 2 (%ff I a I%ff > (3.24) 
n=O 

where 

peR> = (;) 1’4 / dz e-r22/(2+6y)-F~(6,X,z) lx> (3.25) 

and the operators 0, are polynomials in X and P. 

While expanding e G(6) - m powers of 6 reduces the range for which the symmetric 
approximation is valid, since only part of the expression is expanded in S, the .I 
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resulting formula should be more accurate than that provided by the naive t- 
expansion. As I will argue in the next section, Pad6 approximants based upon 
this modified series should be much more convergent than those done for the naive 
t-expansion. 

3.2.1 Comparison to the Naive t-expansion 

To apply the naive t-expansion to the case of the anharmonic oscillator expand 

(3.26) 

as a power-series in S, compute the various operator expectation values and then 
reconstruct Z(S) or its logarithmic derivative by means of Pad6 approximants. A 
simple argument indicates that even though every term in the expansion is finite 
for y > 0, Pad& approximants to this series will have trouble converging. To see 
this ignore the P2 term in the Hamiltonian and note that the expectation value 

Z(Y, 6) = (71 ewbxx4) 17) (3.27) 

diverges for negative A, independently of the value chosen for y. The lack of conver- 
gence of the Pad6 approximants reflects the fact that they are unsuccessfully trying 
to reconstruct singular behavior at X = 0. In contrast to the t-expansion, both 
the Feynman and symmetric approximations keep the term XX4 in the exponent. 
This means that without ignoring the P2 term they exhibit singular behavior for 
X < 0 and y > 0. Of course, neither approximation directly reveals the structure 
of the true singularity at X = 0, which is that the function 2 is a function of SX113. 
A simple resealing argument shows why this is the case. Consider the canonical 
transformation 

P’ = pP 

x’ = p-lx 

and substitute this definition in Eq. (3.19) to obtain 

P2 H = TP’2 + +X4 

Setting P = AlI6 gives 

(3.28) 

(3.29) 

(3.30) 

where the only X dependence is the overall multiplicative factor of X1i3, which 
shows that Z(S) and E(S) are actually functions of SX1i3. 
..v 

14 



An interesting feature of both the naive t-expansion and the higher order symmetric 
approximation is that even without this resealing, minimizing 

PL 6) = -; Wh 6)) 

with respect to the variational parameter 7 for S < 1 immediately reveals the fact 
that the energy is a function of SX1i3. In fact, if we generalize the problem to 
include a mass term, i.e. 

,,.” W2 
H=;P2qX2+AX4 

and minimize &(r, w, X, S = 0) with respect to y we obtain 

1 W2 12x ---_ 
4 472 ly3 = 

0 (3.32) 

which shows that E(S) is a function of SX1/3 f or w/A1i3 < 1. Deriving this result 
from a naive perturbative expansion is not easy [a]. 

3.2.2 Techniques For Obtaining Better Answers 

While I have emphasized obtaining accurate operator approximations to eebH, as 
in the case of the simple harmonic oscillator, computing the ground-state energy 
to high accuracy also requires a good trial wave-function. The introduction of the 
variational parameter, y, is a step in this direction but there are other tricks one 
can use. One such trick is to diagonalize a truncated version of the operator e-6H. 

3.2.2.1 A Finite Matrix Approximation 

As always, the general problem is to maximize the expectation value 

(hrial I embH Idtria.l) (3.33) 

In the preceding chapters I+trial) was chosen to make the computation of Eq. (3.33) 
as simple as possible; however, to obtain higher accuracy one can consider a nor- 
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malized trial state of the form 

where the I$J~) ‘s are linearly independent states and the cryj’s are arbitrary varia- 
tional parameters. The expectation value of eBhH in this state is 

5 4 aj ($21 embH l$j) 
i,j=l 

Maximizing Eq. (3.35), subject to the constraint ($tridl$trid) = 1, implies 

5 (+;I e-6H l$j) QJj = p $ ($il$j) aj 

j=l j=l 

which says that the vector whose components are ai is an eigenvector of the N x N 
matrix ($il embH I$j) relative to the metric Mij = ($il$j). Building a variational 
state out of orthonormal states of the form 

In, 7) M Hn(yx) e--yZ2/2 (3.37) 

where Hn(2) is the nth Hermite polynomial, 6 M l/2 and n = 0,2,4,6,8 it is 
possible to numerically calculate the ground-state energy to an accuracy of a part 
in lo8 for a wide range of couplings. 

3.2.2.2 Using Coherent States 

Though it is customary to construct trial-states out of orthonormal wavefunctions, 
it is neither necessary nor always desirable to do so. At times it is simpler to 
evaluate the necessary matrix elements using normalized, linearly independent, 
states which are not orthogonal to one another. For example, consider building a 
trial wavefunction from a sum of coherent states of the form 

Iy, c) = emipc 17) = (IL) 1’4 e-7(z-C)2/2 (3.38) 

In this case carrying out the variational calculation requires evaluating matrix . . 
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elements of the form 

(7, ~‘1 em6 [ip2+v(x)] IT, c) = (rl ,iPc’ ,-6 [f P’+V(X)] ,-iPc lrj (3.39) 

where the state 17,~) is defined to be a translation of the state 17) 

Ir, 4 = 2” 17) 

The virtue of shifted Gaussians is that computation of matrix elements of the form 
Eq. (3.39) is quite straightforward. One way to automate this procedure is to 
introduce annihilation and creation operators A and At such that 

p = -i 
J ;(A - At) 

so that 

A I-d = 0 
and 

I I 
A,At =1 

With these definitions it is simple to show that 

(3.40) 

(3.41) 

(3.42) 

e(aA+PAt) = ,-dW eP”t eaA 

e iPc x ,-iPc =x+c 

eaAXe-(yA = X + (Y 
fi 

eaApewaA=p+ia 

(3.43) 

Using these formulae we see that the inner-product of two shifted Gaussians is 

(y, c’ly, c) = (71 eiP(c’-c) 17) 

=e -y(c’-cy/4 

bl e- 

fiAt e&F’ 17) 

=e -y(c’-c)2,4 

(3.44) 

and the matrix-element (y, c’j embH 17,~) can, without approximation, be written . . 
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as 

(7, ~‘1 es6 [$p2+v(x)] 17, c) = (71 eiP(c’-c) em6 [~p2+v(x+c)] 17) 

=e -Y(c’-c)2/4 (rl ,-6 [i( P+iy (c’-c)/2)‘+V(X+(c’+c)/2)] IT) 

(3.45) 
Going further in the evaluation of this matrix-element requires using either the 
Feynman approximation or one of the symmetric approximations. Using the lowest- 
order symmetric approximation the calculation becomes 

e-$y (c’--c)2 p/l ,-fa(P+$ (c’-c))2,- 6V(X++(c’+c)) ,-f6(P+q (c’-c))” lr> (3.46) 

where I have set ec3t6) to unity. In order to evaluate this expression it is convenient 
to insert a complete set of intermediate states on both ends of the expression and 
rewrite (3.46) as 

(3.47) 
Using the explicit form for 17) as a function of p and doing a bit of algebra reduces 
this to an expression of the form 

a 
7T342 + 6-y) 

e--y (c’-~)~/(4+26y) J & ,-6 V(z+~(c’+c))-2r2’/(2+by) (3.48) 

which for narrow packets and small 6 is, up to a normalization factor, the result 
which would be obtained from the usual derivation of the path-integral. 

3.2.2.3 Connecting to the Stationary Phase Approximation 

If one now decides to use a fixed number of shifted Gaussians, Iy, ci) , i = 1. . . N, 
to construct a trial state, one is left with the problem of determining the ci’s. A 
brute force method for determining them is to solve the relative eigenvalue problem 
and minimize the energy as a function of y and ci. Although this is guaranteed 
to produce the best results it can be difficult to minimize a function of several 
variables. An approach which cuts down on the number of variables which have 
to be varied, is to choose the ci’s to be multiples of a single parameter, c, i.e. 
% = cn. This approach can be very useful when dealing with problems like the ..- 
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simple anharmonic oscillator, however it is not the best way to proceed if V(z) is 
a function which has multiple minima, for example 

V(x) = x (22 - f2)2 (3.49) 

In such a case it is better to choose some of the states to lie at the classical 
minima and then do a calculation to determine the best states to add to this set 
in order to minimize the expectation value of the Hamiltonian. For the preceding 
example begin by calculating the expectation value (y, cl e-6H Iy, c) for a single 
coherent state and maximize this expectation value as a function of 7 and c (that 
is minimize the energy). In the limit of large y and small S the c-dependent part 
of this expectation value is 

(y, cl e-6H Iy, c) M em6 iI Cc2-f’)’ (3.50) 

Maximizing this with respect to c gives the two solutions, Iy, &j). Since both 
states yield the same value for the energy, the Rayleigh-Ritz procedure implies 
that one should diagonalize the 2 x 2 matrix 

(7, +fl f+H Ix +f> (7, +fl e-6H IY, -f> 
(7, --A eebH 17, +f> (7, --A e-6H 17, -f> > 

which, using Eq.(3.48), is proportional to 

( 1 e-&z7J c2n2 

e-2(2+a7, (2fJ2 1 ) 

(3.51) 

(3.52) 

If y is large enough that the states Iy, *f) are nearly orthogonal, simply diago- 
nalizing this matrix produces reasonable results. Such a calculation would yield 
two states which are slightly split in energy; this is the correct qualitative behav- 
ior. If the separation of the two minima is large relative to the natural width 
of the packets, as determined by extremizing the single-state expectation value 
of (y, fl emtH Iy, f) with respect to y, this calculation seriously underestimates 
the true splitting because in the region between the two minima the exact wave- 
function does not fall off as a gaussian but as an exponential. To reproduce this 
behavior and obtain the correct splitting it is necessary to increase the number 
of states used in the trial wave-function by adding states Iy, ci) whose centers, ci, 
lie between the values *tf. Deciding, a priori, to choose N additional states of 
this type, it only remains to determine how to choose the N ci’s so as to obtain ..- 
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maximal mixing and therefore the best estimate of the true ground-state energy. 
The most accurate way to do this is to diagonalize the (N + 2) x (N + 2) matrix 
and minimize its lowest eigenvalue with respect to y and the ci’s. Unfortunately, 
this is a formidable problem and it seems that adopting simpler but a non-optimal 
approach would seem to be in order. A possible procedure is to maximize the 
product 

(7, -fl e-6H 173 cl) - - - (77 Cjl e-6H 17, Cj+l) . . . (7, Cal e-6H l-y, f) (3.53) 

which will provide a set of states which provide the best interpolation between the 
states Iy, &f). Using Eq. (3.47) and taking the limit of large y, Sy and small 6, 
this becomes proportional to 

In this limit, varying with respect to the cj’s leads to a discretized form of the usual 
stationary phase approximation for the Euclidean path-integral but significant cor- 
rections to the familiar formula arise even at the level of the lowest order symmetric 
approximation and for moderately small values of 6 and y. Of course, for finite y 
it is necessary to correctly include the effects due to the non-orthogonality of the 
states when calculating the ground-state energy. 

Eq. (3.54) implies that th e conventional Euclidean stationary phase approximation 
is related to a simple variational calculation for the best set of states to use in a 
Rayleigh-Ritz calculation of the ground-state energy. Clearly, one way to improve 
upon these is to use the lowest symmetric approximation to determine the cj’s and 
then use matrix elements, computed in a higher order symmetric approximation, to 
set-up-the Rayleigh-Ritz calculation. This has the advantage of producing fairly 
simple equations for the cj’s and still systematically incorporating higher order 
terms in S when computing the ground-state energy. 
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4. Lattice Spin Systems: The Ising Model 

Although discussing application of these techniques to other quantum mechanical 
systems would be interesting, it is more instructive to apply them to more compli- 
cated systems. This chapter discusses the application of variants of higher-order 
symmetric approximations to the one-dimensional quantum Ising model in a trans- 
verse magnetic field. Note, this model is equivalent to the two-dimensional Ising 
model studied in statistical mechanics and like its counterpart the 1+1-dimensional 
quantum Ising model is exactly solvable. This, of course, makes it a good test-bed 
for trying out approximation schemes. 

The Hamiltonian of the one-dimensional Ising model is 

H = - c [a,(j) + h(j)& + 1) 1 (4.1) 

The exact solution to this model exhibits a second-order phase transition at X = 1. 
For ? < 1 the ground-state of the system is unique and the order parameter, 
(gZ(j)) = 0. When X > 1 the system has a twofold degenerate ground-state 
corresponding to the non-vanishing values of the order parameter, 

(c h(j)) = f(1 - l/P)“! 

To intuitively understand this result consider the limiting cases, X = 0 and X = 00. 
For X = 0 the ground-state must be a simultaneous eigenstate of all of the operators 
a,(j). This defines a unique state $, namely I$) = nj Ir)j, where Ir)j is the single- 
site eigenstate of a*(j) with el ‘g envalue +l. On the other hand, in the limit of large 
X this state must be a simultaneous eigenstate of the operators a,(j) aZ(j + 1) with 
eigenvalue +l. There are two possible states which satisfy these conditions 

I+R) = n I+)j ; I+L) = n lt)j (4.2) 

where I+j) and I tj are the single-site states such that ) 

OZ(.i) I+> j = I+> j ; aZ(.i> lt)j = - I+)j (4.3) 
In the limit of infinite volume the states I$R) and I$L) do not mix to any finite 
order in perturbation theory and remain degenerate. Since simple perturbative 
arguments show that the degeneracy of the ground-state changes as X goes from 
zero to infinity it follows that there must be a phase transition at some finite value 

six* 
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4.1 A SINGLE-SITE SYMMETRIC APPROXIMATION 

The most natural way to apply the lowest order symmetric approximation to the 
Ising model is to divide the Hamiltonian into two parts, each of whose matrix 
elements can be easily evaluated. One approach is to consider 

A = c~(j) 
j 

B = c h(j)G(j + 1) 
j 

(4.4) 

so that H = -A - B and rewrite 

,-6(-A-B) = ,6A/2 e6B/2 ,C3(6) e6B/2 ,6A/2 
(4.5) 

I will first discuss this approximation by setting e ‘s(6) to unity, since this is what 
I did- for the case of the harmonic oscillator; however, once I have set up the basic 
calculation I will return to a discussion of the structure of C’s(S). 

Once again choose the trial state to render the computation of the expectation 
value in Eq. (4.5) as simple as possible. Given that the operators in A all commute 
with one another, it is natural to use the X = 0 ground-state; i.e. 

Z(6) = (T . . . TI ’ e2 6Cj u&i) e6XcI udib&+l) ,f6C, uz(j) IT . . . T) P-6) 

Since this state is an eigenstate of all of the operators a,(j) with eigenvalue +l it 
follows immediately that 

Z(S) = (e”)” (T . . . TI e6’c3 uz(j)uz(j+l) IT . . . T) (4.7) 

Finally, applying the identity 

,6Xu=(i) u=(j+l) = cash (SX) + sinh (6X) az(j) o,(j + 1) (4.8) 

we obtain 

W)=( )” e6 cash SX (T-T1 II(l+tanh(6X)a,(j)a,(j+l)) IT...T) (4.9) 
j 

To proceed, evaluate the expectation value of the product of operators appearing 
in Eq. (4.9). Th’ is is straightforward since the expectation value of a,(j) vanishes . . 
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in the state IT . . . T) and so the term 1 is the only term in the expansion of the 
product that doesn’t vanish. Thus, 

W) = ( e6 cash SX )” (4.10) 

and the energy density in this approximation is 

E(6) = -i $ log (Z(6)) = -1 - X tanh (6X) (4.11) 

Fig. 3 shows a plot of this approximation compared to the exact energy density for 
S = .5,1,5 for 0 < X < 7. Note, while Eq. (4.11) g ives the exact answer for X = 0 
it undershoots the exact answer for S = 0~) or finite S and large X. To do better 
than this it is necessary to investigate the effect of including higher order terms 
in the expansion and/or choosing a different decomposition of the Hamiltonian. 
Actually, the next section will show that a more correct form of Eq. (4.11) is 

i 

E(S) = -1 - X tanh (6X/d-) (4.12) 

This function behaves quite differently for large X. Plots of this function are shown 
in Fig. 4. 

4.1.1 Beyond The Lowest Order Approximation 

One way to go beyond the lowest order approximation is to expand ec3(‘) as a 
product of exponentials of operators having coefficients which are polynomials in 6 
of order S7 and an exponential of a sum of terms whose coefficients begin in order 
S7. Application of the formula for C’s(S) g’ lven in Appendix A to the definition of 
A and B given in Eq. (4.4) yields 

C3(4 = - c (/LO*(j) + Pzz O&> + Pyy O,,(j) + Pm O,,,(j) j (4.13) 

+ Pyty q/q(j) + Pzzm omzz j 
( 9 .I 
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where 

PE = 
[ 

T 63 + $(2 + X2) s5 + O(S7)] 

pm = -3 S3 + ;(-1 + 8X2) S5 + O(S7)] 

pyy = .~ [ 
; s3 + A(1 - X2) s5 + qa’)] 

pz,, = 
[ 

y s3 + $(3 + 2X2) 65 + 0(6’)] 

Pyzy = 
[ 

g s5 + O(S7) 1 P zzzz = -g s5 + S(S7) 1 

(4.14) 

ana O,,... a,(j) stands for the product 

0 al...O, (d = gal (j) ga2 (j + 1) . . . a,,(j + n) (4.15) 

The same argument used for the harmonic and anharmonic oscillators says it is 
possible to rewrite ec3t6) as 

eC3(6) ,,+& cj o=(i) ,$P:, c, o==(i) ,f&, c, o,,(i) ,ik= c, o=z(j) 

,;&, C, O,z,(j) ,fP:,,, C, Ozz&) eC7(6) ,$Pkzz c, o-(j) e$P:~~ c, %dj) 

,$L C, Oszz(i) ,$%, C, Odd ,$L C, O=(i) 

(4.16) 
where Pi1 . ..a. are defined from the p’s appearing in Eq. (4.14) by leaving off the 
terms of order b7 and higher. Setting ec3c6) = 1 Z(S) becomes 
. . 
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Z(S) = ev6 cash ( $5A)2V 

[ 
( cash (f/3;) cash (&J cash (;&) cash (;P;zz, cash (;P;zY))2 cash (A:,,,)] ’ 

n (1 + tanh (~~WO&o)) n (1 + tanh (i&) Oz(jl)) 
i0 il 

n (I+ tanh (&) O&2)) n (1 + tanh (f&,) Oyy(js)) 
j2 j3 

n (l + tanh (i&) OZZZ(.~~)) n (1 + tanh (i&,) Oyty(j5)) 
i4 j5 

n (1 i- tanh (k) OSZ&S)> n (1 + tanh ($&,) @,&)) 53 j7 

n (1 + tanh (fa,,) OZZZ(.~~)) n (1 + tanh (f&) O,,(jg)) 
is 39 

n(l +ta~h(~/L)O~~(.ilo)) n(l +tanh(~&)O,(jll)) 
ilo jll 

* 

n (1 + tanh ( &Wzz (.h)) 

A2 
> 

(4.17) 
where the operator expectation value is to be taken in the state IT . . . T). Contrary 
to the lowest order approximation, the operator expectation value contains many 
non-vanishing terms and evaluation of these terms results in polynomials in the 
various Pal...a,. 

4.1.1.1 Computing The Energy Density 

While Eq. (4.17) h as resummed some of the S and X dependence of Z(6), it does not 
produce a completely resummed formula for the energy density, E( 6). To see the 
problems which remain and understand what must be done to avoid them consider 
the logarithmic derivative of Z(S) in the approximation where the expectation 
value is taken to be unity. 

E(b)=-I-Xtanh(T) 

4x2 - Tb2+ g (2 + X2) 6’) tanh ($ S2 + g (2 + X2) h4) (4S18) 

+... 

I  , . .  
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Eq. (4.18) is a mixture of polynomials in X and 6 times hyperbolic tangents of 
polynomials in the same variables. Although the hyperbolic tangent is a ratio of 
sums and differences of exponentials, the polynomials multiplying these functions 
make the evaluation of E(S) p ro bl ematic for large values of S and/or X. 

The problem with extending Eq. (4.18) to large X has a simple and generic fix: 
rescale the Hamiltonian by a factor l/dm. In other words, compute the 
ground-state energy for the Hamiltonian 

H’c-x j &4d + &Jfdd & + 1) 1 
and then multiply the answer by dm to find the answer to the original problem. 
This method has the advantage that for both X = 0 and X = 00 there is only one 
term in the Hamiltonian. Since making this change is equivalent to substituting 
s = s/l&T in Eq.(4.18) we see that Eq.(4.18) becomes 

E(S) = - 1 - Xtanh( 
di$) 

4x2 62 + 2ox2 c2 + x2) 64 2x2 
3 (1 + X2) 15 (1 + X2)2 3(1 +X2) 

62 + 10x2 (2 + X2) 
15 (1 + X2)2 

+.-.. 
(4.20) 

which is finite for all values of X. Unfortunately, this trick does nothing to solve the 
problem of going to large S. To go to large S it is necessary to confront the problem 
of reconstructing power-series in 6 with coefficients which are analytic functions of 
S. While the answer might be as simple as treating the coefficients of the simple 
powers of 6 as constants and using them to construct Pad6 approximants I see no 
clear justification for this procedure and the problem needs further study. Since 
the principal aim of this paper is to expose the general idea and explore the various 
possibilities which it suggests, I will not pursue this point further. Instead, I will 
discuss other ways to generate approximations which treat a larger part of the 
Hamiltonian exactly. 
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4.2 THE SYMMETRIC APPROXIMATION WITH LARGER BLOCKS 

Another approach to employing the symmetric approximation is to divide the 
Hamiltonian so that a larger part of the problem is treated exactly. For exam- 
ple, consider the following definition of the operators A and B: 

A = - c H(P) 
.~ =-f: (a*(2p)+a,(2p+l)+Xa,(2P)a,(2p+l)) 

B = - h V(p) 
(4.21) 

P 

= -x h(2p+ 1)4qp+ 1)) 
P 

Since A is a sum of commuting the block-Hamiltonians, H(p), to find the exact 
eigenstates of A just diagonalize each H(p) separately. 

As before begin by by setting ec3(‘), computed for this definition of A and B, set to 
unity. This means that in evaluating the matrix element of the operator product 

,-6H = ,$6A ,6B ,$6A 

the eigenvalue of A factors out and the problem reduces to evaluating the expecta- 
tion value of the exponential of the operators appearing in B. As I already noted, 
in order to find the lowest eigenstate of A it is only necessary to find the lowest 
eigenstate of any one of the H(p)‘s, since each H(p) has the same structure. This is 
trivial, however, because each H(p) re d uces to a two-site problem and so it suffices 
to discuss its matrix elements between the four states ITT), Ill), ITJ) and IlT). Fur- 
thermore, since each H(p) is invariant under the transformation which exchanges 
the operators on the sites 2p and 2p + 1 the states ITT) and IJS) and IrJ) and 
IJT) mix separately. This means that diagonalizing H(p) actually reduces to the 
problem of diagonalizing two independent 2 x 2 matrices. Since, in each subspace, 
0,(2p) and a,(2p+ 1) map these states into themselves and a,(2p) a,(2p+ 1) maps 
one state into the other the matrices to be diagonalized are 

ITT> Id> 

::I; (3 2) 
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and 

Itl> 1st) 
1;:; (A 2) 

The eigenvalues of the first matrix are rdm. and those of the second are ~fx. 
This shows that the maximum eigenvalue of e -L6A is e6 m and 2 so , without 
further ado, 

.- 
Z(S) = (e26mcosh(6X))v’2 n(l +tanh(6X)az(2p+ l)az(2(p+ 1)) 

P > 

Once again, since the ground-state of the block Hamiltonian is a linear combination 
of ITT) and /LJ,), it f o 11 ows that the expectation value of the product of operators 
is unity. Taking minus the logarithmic derivative of Z(6) with respect to S yields 

I(S) = -d* - i tanh (SX) (4.22) 

which goes to the exact answer both for X = 0 and X = 00. A comparison of exact 
ground-state energy density and Eq.(4.22) is show in Fig.5. 

This result is satisfactory if and only it is legitimate to ignore the term ec3c6). 
If this term is taken into account then the energy density once again contains 
polynomials in X and to get an expansion which is valid for large X it is necessary 
to work with the resealed Hamiltonian and multiply the final answer by dm. 
This changes Eq. (4.22) to 

E(S) = -d-- itanh (4.23) 

Unlike Eq. (4.22) , Eq. (4.23) only g ives the exact energy density for large X in the 
limit of S + 00; this, however, is what is to be expected. 

4.2.1 Further Observations 

, 

The fact that [A, B] contains only terms which join two blocks means that the 
higher commutators appearing in the expansion of C’s(&) give rise to products of 
the form O,,...,,(j) which cross a block boundary. Since there are fewer terms 
of this sort, this means that the effect of these terms on the energy density is 
reduced relative to what it would be for a higher-order symmetric approximation .* 
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based upon single-site blocks. The structure of these terms and the way they drop 
off in importance is made even more apparent by considering a decomposition 
based upon bigger blocks. For example, define A as a sum of commuting sub- 
Hamiltonians each of which contains all terms in H which involve operators which 
lie totally within a single block of length L; i.e. 

A = - c H(P) 
P 

L-l 
=- 

CCC 

L-2 

a*@* + T) + c x %(Lp + r) %(LP + ?- + 1) 
P t=O r=O > 

B = - c V(P) 
(4.24) 

P 

= - c x G(L(P + 1) - 1) o&q* + 1)) 
P 

Following the approach used earlier in the discussion of the higher order terms, 
rewrite ec3c6) as in Eq. (4.16), except now the various operators are concentrated 
near the boundaries of the block. So, for example, the term e2 ‘Pi c, Oz(d becomes 
,f@L c, O*((L+l)P-l)+O=((L+l)P) . Since there are only two such operators for each 
block p, this simplifies to 

co;h ( $3;)2v/L l+tarh(~/@,((L + 1)~ - 1) 
> 

1 +tanh(iP:O,((L+ 1)~) 
> 

(4.25) 

Thus the contribution to the energy density of terms proportional to powers of 
cash (p[..) are multiplied by explicit powers of l/L and contribute a smaller amount 
to the energy density. Of course, it is still necessary to evaluate the expectation 
value of the product of operators appearing in the expansion of ec3c6) but the 
number non-trivial terms in this expansion are also greatly reduced from the case 
of the single-site blocks. Furthermore, the calculation of these terms for low orders 
of tanh (6.. .) is quite simple due to the fact that 

0 a1 . ..a. (.wa, . ..!I. (j2) ) = (o.~.....(il$ (%..a,(j,)), (4.26) 

at least for ljr - j2l > m + 12. 

While it would be interesting to pursue the structure of this series further I will 
leave that for another paper. I ,.- 
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4.3 EFFECTIVE POTENTIAL OR MEAN-FIELD METHODS 

Although a symmetric approximation built upon multi-site blocks allows one to 
compute the ground-state energy of the Ising model to high accuracy, extracting the 
location and properties of a phase transition from such a calculation will be difficult. 
In this section I show how incorporating “mean-field” (or “effective potential”) 
ideas into the symmetric approximation scheme simplifies the task. 

Both the single-site and two-site block calculations described in the preceding sec- 
tions obscure the physics of the phase transition because they start from the lowest 
eigenstate of the operator A in order to simplify the computation. The expecta- 
tion value of the order parameter, a,(j), will always vanish in this state because 
it is invariant under the transformation which takes o,(j) to -a,(j). To avoid 
this incorrect result one must use a trial-state which allows for a non-vanishing 
value of a,(j), which immediately suggests a variational approach to the problem 
of choosing the best trial state. 

There are many ways to introduce a variational wave-function into this problem, I 
will Iimit myself to discussing one possibility. In this approach one first computes 
the ground-state energy density of a family of Hamiltonians which differ slightly 
from the Ising Hamiltonian and then converts the results into a one-parameter 
family of “bounds” on the ground-state energy density of the unmodified problem. 
One then minimizes these bounds with respect to the free parameter so as to 
produce the “best” bound on the true ground-state energy density. 

Begin by considering the family of Hamiltonians, H(J), 

H(J) =HIsing + J C ax(j) j 
1 

(4.27) 
- 4.i) + Jo,(j) + k(j) a& + 1) 

and attempt to compute the ground-state energy for each value of J using a sym- 
metric approximation based upon the decomposition of H(J) 

where 

H(J) = A(J) + B (4.28) 

A(J) = - c (a,(j) + Jaz(j>> 
j 

B = --pz(j)oz(j + 1) 
j 

As.in earlier calculations, the simplest use of the lowest order symmetric approxi- .” 
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mation rewrites 
( > 

eHcJ) as 

,+A(J) ,-68 ,+A(J) 
> 

(4.29) 

and evaluates the expectation value in the ground-state of A(J), which is a product 
of single-site states of the form nj I$J~), where I$J~) is defined by the equation 

&s(j) I$Jj) = -(h(j) + J%(j)) I$j> = -rnI$j) * 

In this approximation it is possible to rewrite Z(6) as 

Z(6) = (pi- cash (6A))v n(l + tanh (SA)oz(j) o,(j + 1)) 
> 

(4.30) 
i 

To now this calculation parallels earlier ones. A new feature arises because (a,.(j)) 
no longer vanishes. This means that it isn’t possible to replace the expectation 
value in Eq. (4.30) by unity since in the current trial state 

; (a,(j)) = f(J) = -J/d1 + J2. 

To come as close to the original argument as possible one defines 

d(j) = 4) - f(J) 
and rewrites 

Z(S) = (e6JTijicosh(6X))V 

II( 1 + tanh (4 (d(d &’ + 1) + f(J)d(d + f(J>d(j + 1) + fW2) 
j > 

(4.31) 
Factoring out an overall constant and rewriting Eq. (4.31) one obtains 

Z(S) = pm cash (SX) (1 + tanh (6X) f( J)2))v 

rI( 
tanh (SX) 

’ ’ 1 + tanh (SX) f( J)2 (d(j) 0% + 1) + f(J)d(d + f(J)&’ + 1) 
i 

(4.32) 

Introduction of a:(j) simplifies the evaluation of the expectation value since (c:(j)) = 
0 and no term in the expansion of the product of operators containing ok(j) to the . . 
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first power can contribute. The first term which can appear is of the form 

tanh (SX) 3 
1 + tanh (SX) f(J)2 1 ( [f(J)d(dl bk(d ak(.i + 01 [f(J)& + 1)1 ) (4.33) 

and comes from terms associated with the sites j - 1, j and j + 1. Since (sky) = 
1-f(J)2 th e 1 owest non-vanishing contribution to the expectation value, aside from 
unity, is 

tanh (SX) 3 
1 + tanh (6X) f( J)2 

I 
f(J)2 Cl - f(J)2)2 (4.34) 

which vanishes when f(J) is zero or unity. Since the factor f( J)2 (1 - f( J)2) has 
a maximum value of 4/27, th is shows that the contribution of the lowest order 
symmetric approximation can be written as a product of non-trivial functions of 
S times an expansion in a small parameter. Furthermore, since f(J) = 0 below 
the phase transition and is nearly unity a above the transition, it follows that the 
terms of this form can only be significant in the vicinity of the phase transition. 
One should also note that higher order terms in the expansion are of the form 

tanh (SX) 1 2+r 

1 + tanh (SX) f( J)2 f( Jj2 (1 - f( Jj2)‘+’ (4.35) 

and are smaller than the leading order term. 

To simplify the discussion which follows’set the expectation value in Eq. (4.32) to 
unity. A better calculation can be done to include the corrections. Doing this and 
taking the logarithmic derivative of Z(S) yields 

&(J) = -J1+52- Ata&( f(J)2X(1-tanh2(SX)) 
1 + f( J)2 tanh (SX) 

(4.36) 

To convert Eq. (4.36) t o an estimate of the ground-state energy density for the 
Ising Hamiltonian note that if l+(J)) t o d enotes the exact ground-state of H(J), 
then 

E(J) = (+(J)I HIsing l+(J)) + JC (+(J>I az(j> l+(J)) (4.37) 
j 

from which it follows that 

(G(J)1 HIsing I+(J)> = f(J) - J C (+(J)l~~(j> l+(J)) (4.38) 
i 

Since I+(J)) is not an exact eigenstate of HIsing Eq. (4.38) provides and upper 
bound on the ground-state energy density of the Ising Hamiltonian, at least if .* 
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E(J) is a good estimate of the ground-state energy of H(J). From this one sees 
that minimizing this expression with respect to the parameter J will produce a 
best bound on the ground-state energy density. 

Henceforth I will refer to Eq. (4.38) as the “effective potential”, I’(J), and use 
Eq. (4.36) to rewrite it as 

I’(J) = -d= - X tanh (SX) - A fcJj2 (l - tanh2(sX)) _ Jf( J) 

1 + f( J)2 tanh (SX) 
(4 39) . 

Since, for the trial-state in question f(J) = -J/d- 

I’(J) = -d& - X tanh (SX) - X 
1 + J2 tanh (6X)/(1 + J2) 

(4.40) 
Actually carrying out the minimization procedure for Eq. (4.40) will produce very 
strange results for large X. As in the previous section, the solution to this problem 
is to rescale HIsing so that only one term survives as X + co. In this case, however, 
the way to do this is to redefine 

H(J) = ’ 
dl + J2 + X2 

HIsing + J C a,(j) 
.j 1 

1 
(4.41) 

- 
Jl + J2 + X2 d) + Jd) + X ax(j) ~(j + 1) 1 

and multiply the expression for I(J) by 1 + J2 + X2. With this modification the 
effective potential becomes 

I’(J) = -d$-A tanh (#X)-X 
( &-J2 ( 1 ; -J~:~::&)) (4*42) 

where S’ = S/J1 + J2 + X2. 

In the limit S = 0, 

r(J) = - 
d&GrJ2 

(4.43) 

which is just the expectation value of HIsing in a simple product state. In this 

, limit I’(J) is a true bound on the ground-state energy density for HIsing for all J. .- 
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Minimizing this bound with respect to J yields the usual mean-field prediction of a 
second-order phase transition at X = l/2. To simplify the derivation of this result 
it is customary to define 

(4.44) 

and rewrite I’(J) as 

I’(o) = - cos (Q) - X tanh (6X) - X sin2 (o) 
1 - tanh2(SX) 

1 + sin’ (o) tanh (6X) > 

As promised, minimizing with respect to o yields 

sin(o) (1 - 2X cos (a)) = 0 

which has a solution for non-vanishing (Y and therefore non-vanishing (a,(j)) if 
and only if X > l/2. 

+- 
The same calculation for S # 0 is somewhat messier due to the more complicated 
dependence of Eq.(4.42) on J. Nevertheless, it is not difficult to determine the 
value of X -at which the phase transition occurs, since this point is the solution of 
the equation 

1-2Xx=0 (4.45) 

where 

Obviously, since x 5 1 it follows that the location of the X, is greater than l/2. In 
fact, for 1 < 6 < 1.25 we have .67 5 X, 5 1.009. 

4.3.1 Comparison to Other Calculations 

I already noted the simplest mean-field approximation to the Ising model predicts a 
second-order phase transition at X = l/2, which is quite far from the correct value 
of unity. Other attempts to improve upon this result fall into two classes: mean- 
field calculations based upon treating larger blocks exactly ( i.e. block-mean-field 
calculations); attempts to combine the old t-expansion with the simple single-site 
mean-field calculations. 
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The calculation of a better effective potential using the old t-expansion does succeed 
in moving the value of X, closer to unity; however it requires working to high order 
in t and the use of Pad6 approximants introduces poles in J which make the 
extraction of final results problematic. While correct results can be extracted from 
these calculations there is the question of how obvious things would be if the exact 
answer was not known in advance. 

Block-mean-field calculations [4] predict X, > l/2, but X, > .85 is obtained only for 
blocks with more than eight sites. This sort of calculation involves considerably 
more work than the simple calculation just described. While taking 6 M 1.2 is 
suspect for a lowest-order symmetric approximation it is not out of the question 
for a calculation based upon two or three-site blocks, because for larger blocks more 
of the t-dependence is treated exactly. While carrying out a mean-field calculation 
for multi-site blocks is certainly more difficult than the one just described it is 
simpler than carrying out a naive t-expansion calculation or a block mean-field 
calculation for blocks of ten or more sites. 

4.4 ADDING THE HAMILTONIAN RENORMALIZATION GROUP 

The final topic I wish to touch upon is the combination of the symmetric expan- 
sion with Hamiltonian renormalization-group ideas. As with the discussion of the 
mean-field formalism I limit myself to a simple calculation which begins with the 
decomposition of HIsing given in Eq’. (4.21). I will limit myself to introducing the 
basic concepts and setting up the computational framework, I will not attempt to 
do an accurate treatment of the model. 

4.4.1 Review of Hamiltonian Renormalization Group 

The Hamiltonian real-space renormalizaton group procedure is a Rayleigh-Ritz 
calculation in which the trial-state is iteratively constructed. This section reviews 
the general method for the simple case of the Ising model to provide a framework 
for the discussion to follow. A more extensive discussion of these ideas can be 
found in Ref. 3. 

The essential idea behind the Hamiltonian renormalization group procedure is to 
select from the set of all Hilbert-space states a smaller subset of states to be used 
to construct a “best” trial-state. Actually, instead of deciding which states to 
keep from the outset, the idea is to successively discard states in a multi-step 
procedure. Once one which states to discard it is necessary to recompute the 
matrix elements of the Hamiltonian in the remaining states. This produces a new 
e$ective Hamiltonian which has the same form as the original Hamiltonian but has ..- 
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different values for the coupling constants. Thus, there are two steps in a procedure 
of this kind: the first, to decide, on some physical basis, which states to discard; 
the second, to compute the new effective or truncated Hamiltonian. 

To see how this procedure works in detail consider the decomposition of the the 
Ising Hamiltonian specified in Eq. (4.21). A ssume for the moment that the lattice 
has V sites. Since there are two states per site there are 2’ linearly independent 
states in the Hilbert space. The criteria use to select of a set of states to discard 
is based upon the intuitive notion that the lowest 2v/2 eigenstates of the sub- 
Hamiltonian 

A = c H(P) 
P 

should have the biggest coefficients in the expansion of the ground-state of the full 
Ising Hamiltonian. These states are the ones spanned by taking tensor products 
of the lowest two-eigenstates of the two-site Hamiltonians H(p). The eigenstates 
and eigenvalues of these Hamiltonians are shown in Table 2. 

Having decided which states to keep imagine creating a general trial-state by adding 
up these states with arbitrary coefficients. Obviously computing the expectation 
value of the original Hamiltonian in such a variational state only requires knowledge 
of the matrix elements of H between any two states in this sub-space. It is simple to 
show that diagonalizing the truncation of the Ising Hamiltonian to this sub-space 
is equivalent to solving this general .variational problem. 

The computation of the truncated Hamiltonian is done in two steps. First compute 
the truncation of the operator A. As this operator is the sum of the H(p) it suffices 
to compute the truncation of any one of the H(p)‘s because they all have the same 
structure. The generic state we are keeping has the form 

I4 = n l&J (4.47) 
P 

where each of the l$p) ‘s is an eigenstate of the corresponding H(p) which means 
that H(p) d g is ia onal in this basis. In effect this means that these 2’i2 states can 
be thought of as belonging to a new spin theory defined on a lattice with half the 
number of sites. Since the new theory has two states for any site p and since the 
most general diagonal 2 x 2 matrix is a linear combination of the unit matrix and 
oZ it is convenient to rewrite the truncation of H(p) as 

[HCp)lP = -(co + dupe) 

where a:(p) stands for a a-matrix acting on the states of the new effective theory .- 
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and Q and co are given in terms of the eigenvalues of the two-site problem as 

co = - ps+A] 

eo = - pm] 

Thus 

[I 
T 

A = vco + c boa: 
P 

The truncation of the operator B proceeds in a similar manner. Begin by observing 
that B is a sum of terms and it is only necessary to compute the truncation of one 
of the terms in the sum, since they all have the same structure. It is necessary, 
at this point, to note that the truncation of a product of operators which act on 
different blocks is the same as the product of the separately truncated operators; 
i.e. 

[ 
%(2P + 1) 42(P + 1)) I’= [42Pi l)lT [od?(P+ l))lT 

Inspection of the entries in Table 2 shows that 

[;z(2p’] T = [42#+ l)lr = cos(“)~in(e) Ok(P) 

and so 

[ 1 B T = -pa:,(P)o::(P+ 1) 
P 

where 

[ 

2 
x, = cos (0) + sin (0) 

Jz 
d(P) x 1 

Taken together these results show that, up to an additive constant, the truncated 
Hamiltonian can be rewritten as a Hamiltonian of the same general form but 
defined on a lattice with half as many sites. Clearly, this same procedure can be 
repeated, with only minor modifications, ad infinitum. The result of carrying out 
such a calculation is that for X larger than some critical value, A,, the Hamiltonian 
iterates to one in which the coefficient of the a,(p)‘s vanishes, whereas for X < A, 
the coefficient of the operators a,(p) a,(p + 1) iterates to zero. Of course, when 

, this happens the resulting Hamiltonian can be solved exactly. 
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I already noted that the lowest eigenstate of a truncated Hamiltonian provides a 
variational upper bound on the ground-state of the original theory. From this it 
follows that the lowest eigenstate of the limiting Hamiltonian defines a best trial- 
state within the context of this general approximation scheme. Since a Hamil- 
tonian of the form C a,(p) h as a unique ground-state, whereas one of the form 

C~P>G(P+ 1) h as t wo degenerate ground-states, this variational calculation 
predicts very different symmetry properties for the ground-state of the original 
theory depending upon whether X > X, or X < X,. In other words the real-space 

.- renormalization group calculation provides another way of determining the loca- 
tion of the phase transition in the original 1+1-dimensional Ising model. It is a 
simple matter to carry out the naive calculation just described and if one does so 
one obtains a value for X, M .73. There is a long history of attempts to significantly 
improve upon this result by working with larger blocks or by keeping more states 
in the truncation procedure, however the process quickly becomes very difficult 
without a corresponding increase in accuracy. Attempts to combine this procedure 
with the ordinary t-expansion quickly run into difficulties with both the complexity 
of the calculations involved and in the use of Pad6 approximants. In the next sec- 
tion I will show how to implement this simplest renormalization-group procedure 
within the framework of the lowest-order symmetric expansion and discuss the way 
in which the location of the critical point changes with increasing 6. 

4.4.2 Truncation of the Symmetric Approximation 

The calculation presented in section ? involves two distinct steps: rewriting the 
operator e-6H as a product e GA/2 ,-6B ,-6A/2; h c oosing a trial-state in which 
to compute the operator expectation value. It is the second step which must be 
modified in order to incorporate the real-space renormalization group concept into 
the symmetric approximation scheme. Once again, the basic idea is to iteratively 
construct a variational wave-function to maximize the expectation value of e-6H 
and therefore minimize the expectation value of H. As in the preceding discussion 
it is not necessary to commit to a specific wave-function in advance; one can instead 
successively prune away unwanted states and compute a series of truncations of 
,-6H 

I 

In what follows I limit myself to the lowest order symmetric approximation, al- 
though the method generalizes to higher-order approximation quite nicely. Since 
the operator A which appears in Eq. (4.21) is a sum of commuting operators it is .- 
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always possible to rewrite the two exponentials as 

+I/2 = rI ef 6’ (~z(2p)+az(2~+1)+Xa,(2p) a,(2p+1)) 

P 

= 
rI eAp 

P 
(4.49) 

,-6B = cosh(S’X) +sinh(S’X)a,(2p+ l)a,(2(p+ 1)) 
> 

where 6’ is defined to be 6’ = 6/dm in order to include, as in earlier discussions, 
the resealing of the Hamiltonian by an overall factor dm. The truncation 
step introduced in the previous section is equivalent to restricting attention to the 
2V/2-dimensional space of states generated by taking products over p of the two 
eigenvectors of eAp having the largest eigenvalues. Since the different factors eAp 
commute with one another and are diagonal in this space of states the truncation 
of the lowest symmetric approximation becomes 

I-q~+p,:ci”,) [n ( )I 
T 

cd (6’ A> + sinh (6’ A) ~(2p2 + I) a,(2(p2 + 1)) 

PI PZ . 
N "+Pd(Pd) 
P3 > 

(4.50) 
where there is still the problem of computing the truncation of the product over 
pa. The simplest way to understand the truncation of this product is to rewrite it 
as the truncation of an exponential, compute the truncation of the Taylor series 
expansion of this operator and then take the logarithm of the resulting expression. 
More precisely, rewrite 

n( 
cash (6’ A) + sinh (6’ A) crz (2p + 1) ~7~ (2(p + 1)) = e6’ A CP 0z(2p+1) 0z(2(p+1)) 

P > 

(4.51) 
and expand the exponential to obtain 

T T 
e6’ ii C, az(2P+l) U*(2(p+l)) I = 1+s’xC 4P + 1) 4qp + 1)) 

P 1 
+ (6’ v2 

d2Pl + 1) 4qp1 + 1)) a2(2p2 + 1) a,(2(p2 + 1)) 
I 

T (4.52) 
2 

+... 

Operators which do not lie in the same block can be truncated independently of .- 
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one another and so, if pl # p2 or pr # pa f 1 then 

1 
T 

d2Pl + 1) G(Pl + 1)) 42p2 + 1) 0,(2(p2 + 1)) = 

[ 

T 

I[ 1 
T 

G(2Pl + 1) &qp1 + 1)) 42P2 + w&qp2 + 1)) 

If Pl = P2 then the product is the identity operator whose truncation is the identity 
.- operator; so this term contributes 

;(6q2pp 
P 

Finally, if pa = pl + 1 then 

[ 1 
T 

gd2pl + 1) %(2(Pl + 1)) a,(2(p1 + 1) + 1) a,(2(p2 + 1)) 
= 

[n,(2Pl + I,]’ [ 
T 

** d2(Pl + Wz(2(pl + 1) + 1) I[ 1 T 
amp1 + 2)) 

a similar expression holds for pa =. pl - 1. Taking the logarithm of Eq.(4.52) we 
see that except for p1 = p2 and pl = pa f 1 all of the contributions cancel so that 
finally 

L I T 

1% e6r x c, a&p+l) Q(p+l)) = s'x F [oz(2P+lqT [Oz(2(p+ l))lT 

+;v v2 c (lp - ([%(2P + l)] T [~ZMP + l))] T)2) 
P 

+@‘Y2E [0,(2p+ l,]‘( [%(2(P+ 1))0,(2(p+ 1) + I)]? 
P 

It is important to note is that the second term of order (6’ X)2 is part of a linked 
cluster expansion, all of whose terms have a similar structure. This term, which is .- 
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proportional to the difference between the truncation of 

1 
T 

@(P + 1)) 4qP + 1) + 1) 

and 

[m(P+ l))lT [%(2(P+ 1) + l)]? 

is a generalization of the terms which appeared in the discussion of the mean-field 
approximation. As in the case of the mean-field calculation it is small, except 
in the vicinity of the phase transition. Far below the transition 6 << 1, whereas 
well above the transition S >> 1 and the difference of truncations nearly vanishes. 
More precisely, since 

[ I T 
%(2P) = 

cos (8) + sin (f3) 
4 (P) 

a* [ 42p)42p+ 1) = 2 1 
T 1 + sin (28) + -1 + sin (20) 

2 0: (P) 

(4.54) 

this difference is- equal to 
sin (28) - 1 

2 4 (P) 

where tan (8) = (dm - 2)/X. Thus, for X << 1 the order (6’ X)2 is of the 
form -(S2X2/S)o~(p)o~(p + 1) ak(p + 1) w ereas for X >> 1 the operator is h 
-(1/2X2) 4(P) 4(p + 1) ak(p + 1). I n either case, as with the mean-field calcula- 
tion, this term has a small coefficient and the higher-order terms are suppressed 
and can be ignored to zeroth approximation, as they can be included in a later 
calculation. Ignoring these terms and factoring out the term proportional to the 
unit operator, the first truncation of the lowest-order symmetric approximation 
becomes 

e$(6’X)2(1--f(~~s(8)+sin (6))“) a + P fJk(Pl) 
> 

n ( cosh (4 + sinh (7) 4P2) 4P2 + 1)) n (o + /30:(p3)) 
P2 P3 

(4.55) 

, where 7 = S X (sin (6) + cos (0))/2&73 .- 
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At this point the truncation of the symmetric expansion has the same general 
form as the original expression; i.e., this truncation step can be thought of as a 
renormalization-group transformation. Since the form of the product is the same 
as before one can iterate the procedure by defining 

Up = cash (r/2)+sinh (r/2) 42~) ak(2p+l) ) (a+iid(2Pl) (~+go:(2P+l)) 

and rewriting Eq. (4.55) as 

rIUpt1 rI ( coshb-) +sinhW:(2p2 + 1)a:,(2(~2 + 1)) 
> 

nup3 (4.56) 
Pl Pz P3 

The generic truncation step is to then to limit oneself to the subspace generated 
by products of the two highest of Up. Once again the truncation of any Up is of 
the form of a number times the unit matrix plus another number times a;(p) and 
the truncation of the block-block recoupling terms proceeds as before. 

As in the naive Hamiltonian real-space renormalization group approach the idea is 
to study the flows of the matrices 

Upand cash (7) + sinh (T) ak(2p) ak(2p + 1) 
> 

and determine the location of the critical point. The ground-state energy is re- 
constructed from the constant factors which accumulate with each step of the 
renormalization-group procedure. 

4.4.3 Comparison To Other Calculations 

The results of this calculation are quite striking when compared to those obtained 
from the naive Hamiltonian renormalization group or the operator t-expansion5. 
As expected, in the limit S = 0, the analysis agrees with the results of the naive 
Hamiltonian renormalization-group calculation, X, M .78, but this value increases 
towards unity with increasing 6. For values of 6 > .7 the location of the phase 
transition is greater than .93, which is better than the results obtained for the 
mean-field calculation which required working to order t7 and larger values of S. 
This is not really surprising since the renormalization-group procedure is capable of 
producing a much better starting wave-function. To achieve this kind accuracy us- 
ing the much more complicated t-expansion approach to the renormalization-group 
required working to at least t5 and tuning a free parameter in the reconstruction 
procedure. . . 
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5. Conclusions 

I have only scratched the surface of what can be done using the higher-order sym- 
metric approximation scheme to organize lattice spin-system and field-theory com- 
putations. While I touched upon the way in which one can extract the properties 
of the 1+1-dimensional Ising model, I did not discuss the pedagogically interesting 
question of how to derive, for X > 1, closed expressions for the mixing of the two 
would-be vacuum states when working in finite volume; nor did I talk about the 
simple picture which emerges of the important role played by solitons in this tun- 
neling process. Furthermore, while I discussed the mechanics of the Hamiltonian 
renormalization group process and the way in which one can improve these calcu- 
lations, I did not present a detailed discussion of why this formalism does so much 
better for a given amount of work. Given the length of this document I decided 
that these largely pedagogical points were better put off to another paper. 

While I believe that this paper shows that the symmetric approximation scheme 
suggests many possible ways of attacking non-perturbative problems, much work 
remains to be done to see just how far one can get with more interesting exam- 
ples both in one, two and three space dimensions. The application of these ideas 
to,anti-ferromagnets and Hubbard models are of particular interest. While the 
addition of fermions to the scheme poses no particular problems, it remains to 
be seen if the subtleties of such models can be easily extracted using the tools 
presented.. Furthermore, although ‘interesting possibilities for carrying out calcu- 
lations in lattice-gauge systems suggest themselves, detailed calculations have yet 
to be carried out and it remains to be seen how they will compare to results ob- 
tained from strong-coupling expansions, high order t-expansions and Monte-Carlo 
calculations. Preliminary study of these questions show that, as for the cases stud- 
ied in-this paper, heretofore puzzling aspects of t-expansion, Pad6 approximants 
and Hamiltonian renormalization group calculations become easier to understand. 
Also, the same analysis shows there are many fewer terms at each order than for 
the corresponding t-expansion. This suggests that MapleV, the computer algebra 
program used for these calculations, will be able to handle computations in the 
more interesting cases as well. 
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APPENDIX A 

Since the general derivation of the higher-order symmetric expansions leads to 
formulae which cannot be easily evaluated beyond terms of order h3 I begin by 
giving explicit forms for the expansions used in the body of the paper. The formula 
for the simplest symmetric expansion of a sum of two operators is given by 

.~ ,-6(A+B) = e-6A/2 ,-6Bf2 eC3 (6) ,-6B/2 ,-6A/2 (A4 

where the operator C3 (6) can be written as 

c3 (6) = 2 S2n+102n+l (A-2) 
n=l 

Up-to and including terms of order S7 we have 

c3 (6) = -s3 &, LWII + +-$4 ,A,B,,) 
-s5 ( &P, [A, [A, [A, BIllI - &+k4 Bl, [A, [A, Bill 

-&B, P, [A, [A, BIllI - &4 Bl, 14 [A, Bill 
+&A 14 [A, [A, B1111+ -&P, [B, [By [A, 81111) 

-s7 
( &-&B, LB, [B, [By [A, [A, Bl11111- &$A Bl, [B, [B, [B, [A, Blllll 

+&[[B, [A, 41, P, P, [A, BIllI + &P, [By [By [A, [A, kBlllll1 

-&[[A,Bl, [B, LB, [A, k4B11111+ &[P, [A,Bll, [B, [A, [A,Bll11 

+&[[A, [A, 41, P, [B, [A, BIllI + &[B, [B, [A, [A, [A, 14 Bl1111I 

+&i&B, LB, P, P, [B, L%Bl11111- &$A,Bl, [B, [A, [A, [A,Bl1111 .- 
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+&-p, [A, mk4 [A? [A, 4111+ &p7 47 M 47 [A, I4 4111 

+ &$K [A, CA, 14 14 [A, ~111111- & [[A, BIT [A, [A, 14 [A, ~11111 

+&$[A, [A,41,[4 [A, [A, 4111+ &[[A, [A, Bll, [By 14 [A, Bllll 

+&#A L% k 14 [A, [A, ~111111+ &A, Bl, [[A, Bl, [By [A, 81111) 
(A-3) 

The formula for a sum of three operators is 

,-C(A+B+C) = e-6A/2 ,-6812 ,--SC/Z & (6) e-SC/2 e-SB/2 e-6A/2 
(4 

where, up to and including terms of order S5 we have 

C;iS) = --b3 
( 

$4, [A, B]] + $4 [A, Cl] + $4 [A, Bl 

+&, [A, cl] + $3, [B, Cl] + & [A, Bll 

+& [A7 Cl1 + &’ P7 Cll) 

-s5 
( &[C, [C, [A, [A, ~1111- &IL% Cl, [R kCll1 - &,[iK cl, [By [B,Clll 

&[[A’C], [C, [A, Bill + -&‘, [B, [B, [Kcllll+ &icy [R [A, [A~cllll 

-+[B, C], [B, [A, Cl]] + -&KC [C, [C, [A, ~I]]] + &[C, [C, [C, 16 Cllll 
240 

+&[C, [C, [C, [A, Cl111 - $4 4, [G kWll1 - &$4 Bl, 14 [4Clll 

+A[& [B, [B, [B, Cl]]] t -&[R [R P, [A, Cl111 t &C, LB, [B, [A, BIllI 

t&[[& [A, B]], [B, C]] t -&,[K [B, [B, [A, ~I]]] t &[B, [A, [A, [A, Cllll 

-&[[A, B], [B, [A, Bl]] t &[& [B, [A, [A, ~I]]] - A[[4 Cl, [A, [A, Cl]] 

-&[[A) Cl, [A, C[A, Cl11 •t -&,K [A, [A, [A, Cllll- &[[A, % c[c, [A, Bill , . . 

45 



-&)Pwl7[A,[A,~lll+ +pww4[A7~1111+ &p~[A~Bl1~~~~cll 

-&p, Cl, [G P, Cl11 t &jP, PC [A, [A7 c1111- &p? 4, [BY IA9 Cl11 

t&p, ICY P, P, c1111 t &PY 14 14 L% 4111- &k% 4, [A7 [A, Bill 

t&[C, [A, [A, [A, 4111- &,[[A 4, [A, [A, Cl11 - $+%Ci, [A, [A, Bill 

+&[A, [A, [A, [A, ~1111 t &I4 [A, [A, [A, C1lll-t &[c, [By [B, [A, cllll 

-&[[A, B], [C, [B, Cl11 - &[[K Cl, [CT [A, Bill - $$A,Ci, 14 [B,clll 

t&C, [C, [A, [A, Cl111 - &$4 Cl, [C, [A, Cl11 - j&R cl, [c, [A, cl11 

-&A, Cl, [C, [B, Cl11 + &T [G F4 [A, ~1111+ $-,IG icy 16 [A, cll~l) 

The derivations of formulae of this type all follow the same general pattern. While, 
as I have already noted, the formulae one derives in this way can be difficult to 
use, it is useful to understand the ideas behind the derivation to appreciate why 
the-‘statements made in the body of this paper are valid. I will now sketch the 
derivation for the simplest case of the sum of two operators. 

The symmetric expansion for a sum.of two non-commuting operators requires that 
we find an operator C3(6) such that 

&A+B) _ e;A efB ,C3(6) $B $A - 

Equivalently, by multiplying both sides of this equality by by e-fB e-fA on the 
left and e-fA e-tB we can convert it to 

&%(6) = &B &A ,6(A+B) $A &B 

Expanding the exponentials on the right-hand side of the equation yields 

p3w = j+L+m+n &j+k+l+m+n Bj Ak (A + B)’ A” Bn 

j,k,l,m,n=O 
j! Ii! l! m! n! 

and taking the logarithm of both sides we arrive at 

C3@) = c (-1)VP 
‘VI1 Al A ,m1 ,“l,,, 

jr,kr,lr,mr,nr 

Bjl A”’ (A + El)‘1 Am’ Bnl . . . Bjr Akr (A + B)lr Am, Bnr 
(A-5) 

rjl! ICI! ll! ml! n1! . . . j,! k,! 1,! m,! n,! . . 
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where 

~~=r+jrtkltmltnrt...+j,+k,+m,+n, 

qr = jl t h t 11 t ml t nl t . . . t j, + k, + I, + mr + n,. 

While, with great effort, one could manipulate this expression into a sum of multiple 
commutators, there is a trick which simplifies this task. This trick is based upon 
the observation that the mapping 

.~ 0102 .--On + ‘[ol, [02,[03 n . ..[a+1.0n11...1 

which takes a formal product of n operators into a multiple commutator, in other 
words a member of the lie algebra, is the identity mapping when applied to some- 
thing which is already in the Lie algebra. This statement assumes, of course, that 
the basic mapping is extended to a sum of products by linearity. Thus, for example, 

0102 - 02 01 + f[Ol, 02]- ;[02,011= [Ol, 021 

Since one knows that Eq. (A.5) can be be expressed as a sum of commutators, 
it follows that every term in the sum appearing on the right hand side of the 
expression can be independently mapped into a sum of commutators. Of course 
this means that terms which have more than one power of A or B as the right-most 
factor in a summand vanish identically. 

As I already noted, the formula which one obtains in this way is difficult to work 
with. In practice I have found that the simplest way to generate higher-order 
terms is to teach an symbolic math program, in my case MapleV, to do the explicit 
multifilication of finite power-series and then simplify the result by applying the 
mapping defined above to the result. 
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TABLE CAPTIONS 

1: Computation of Feynman and symmetric approximation 

2: Table of eigenvectors and eigenvalues for HP 
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FIGURE CAPTIONS 

1) A plot of E(S) computed for y = 1, for each of the approximations compared 
to the exact answer of l/2. 

2) A plot of E(S) computed for y = 2, for each of the approximations. 

3) A plot of the exact ground-state energy and the simplest approximation based 
on the lowest order symmetric approximation for 6 = .5,1,5. 

4) A plot of the exact ground-state energy and the simplest approximation based 
on the lowest order symmetric approximation for S = .5,1,5. for the resealed 
Hamiltonian 

5) A plot of the exact ground-state energy versus the 2-site lowest order ap- 
proximation for various values of S 
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Table I 
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Eigenvector I Eigenvalue I 

IT’> = cos P> ITT> + sin (0) I44 -diqT 
Ii’> = $( ITi> + NT)) -A 

$( ITl) - IlT> ) x 
- sin (4 ITT> + ~0s (6) 111) AT- 

where tan (4) = (dm - 2)/A 

Table II 
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