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ABSTRACT 

Inspired by Stillman Drake’s definition of G&lean Units as those for which 

& = (g)g where g is any finite, constant acceleration measured in units of L and 

T, we construct a lcinematical dimensional analysis based only on two universal, 

dimensionless constants. For the linear relation between L and T we use Ein- 

steinian Units 6 = (1)~. For orbiting masses negligible compared to some mass 

unit M, we use Keplerian Units based on his second law $ = (&)&. Then the 

unit for orbital angular momentum is ti, independent of the mass scale. This allows 

us to define dimensionless coupling constants f2 = p = i where v is the orbital 

velocity. We find that most of relativistic quantum mechanics requires only kine- 

matical units. Dynamical units require a mass scale with universal significance, 

set by the orbital velocity v = c (or f2 = 1). In dimensional form this becomes 

M = (l)[g]k A ssuming baryon number conservation, the fact that the proton 

is the lightest stable baryon allows us to calculate fic/Gmz M 1.7 x 1O38 as the 

Beckenstein number of the proton-the number of bits of information lost in its 

formation-and connects our units to the elementary particle mass scale. 
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1. Introduction 

l.l., GALILEO'S MEASUREMENT OF T 

The idea for this paper came to me from Stillman Drake’s discussion [l] of the 

actual historical route by which Galileo arrived at his “times squared law” for free 

fall. What Drake shows is that Galileo found, by measurement, that if the time te 

it takes for a pendulum of a specific length e to swing to the vertical through a 

small arc is 942 units, then the time ta it takes a body to fall from rest through a I -- 
distance equal to that length (d = l) is 850 units. Although Galileo had no way 

of knowing this, we now believe that this ratio must be given by 

t e n- -=-= 
ta 2Jz 

1.1107 . . . 

“anywhere that bodies fall and pendulums oscillate” [2]. Consequently, we can 

now assert that Galileo’s measurement of 942/850 = 1.108 to four places was the 

first kinematical measurement of ?r. His measurement agrees with the currently 

predicted value to considerably better than 1 percent accuracy. 

Drake’s discovery of “Galileo’s constant,” which he symbolizes by & = 

7r/21/2, is the result of a lifetime dedicated to painstaking research into the ques- 

tion of when and how and to what accuracy Galileo, in historical fact, arrived at his 

results. I do not have space here to do justice to his arguments. Drake spent many 

hours in “hands-on” examination of what remain of Galileo’s working papers. His 

conclusions are supported by watermarks on the paper, when Galileo had arthritis, 

what it was prudent to destroy before the Inquisition seized his records, what was 

a fragment preserved by literally “cut and paste” from lost manuscripts, . . . . The 

methodology and many important conclusions were reported some time ago [3]. 

Some important conclusions rely on recent measurements with reconstructed ap- 

paratus. Equally important investigations of the records of Galileo’s telescopic 

observations are relevant in demonstrating once again that the founder of experi- 

mental physics was a superb observer. I hope those of you who have not yet had 

-&-pleasure of reading this scientific “detective story” will be motivated to take a 

look at it. 
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1.2. CONTEXTS FOR THE MEASUREMENT OF T 

I call Galileo’s measurement kinematical because it involves the measurement 

of time in conjunction with length. The first geometrical measurement of 7r is 

lost in the mists of prehistory. The Bible quotes a value of 3, which sometimes 

makes trouble for fundamentalists, and even state legislators who are influenced by 

them? The success of Euclidean Geometry established the presumption that r for 

perimeters, areas, and volumes is the same. So far as I know, David McGoveran was ; -- 
the first to suggest [4] that in Discrete Physics these three numbers are conceptually 

distinct and subject to empirical measurement; his argument is still implicitly 

geometrical. On the other side, once the concept of mass is introduced, the meaning 

of 7r changes again. I call measurements of 7r that involve length, time and mass 

dynamical. Following Einstein, Wheeler’s geometrodynamics relates mass to the 

curvature of space, and freezes the universe into a static 4-space. I think of his 

theory as “geomet rost atics” in contrast to our constructive, context-dependent 

approach which necessarily introduces multiple connectivities. These connections 

c&not be “flattened out” for the same reason that parallel processing computers 

of sufficient complexity cannot be reduced to a single Turing machine. Penrose [5] 

seems to be unaware of this latter fact, 

Drake’s analysis suggested to me that, just as our finite and discrete theory 

has a natural unit for velocity, it also has a natural unit for acceleration. This 

further suggests that, once physicists get used to the idea of accepting 7r as a 

context-dependent empirical number on the same footing as c, it will become easier 

to convince them that coupling constants and mass ratios can be computed from 

general structural requirements. This paper is a first effort in that direction. 

.* Toward the end of the nineteenth century my father, when he was Professor of Chemistry at 
GL- Rose-Polytechnic Institute, once testified against legislation that had been proposed in the 

Indiana state legislature which would have required T to be exactly equal to 3 throughout 
the State! 
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2. Kinematical Units 

2.1. SOME REMARKS ON DIMENSIONAL ANALYSIS 

Dimensional analysis can start with the observation that, historically, the 

unit in which any physical quantity is measured is arbitrary. The units are chosen 

initially for convenience in measurement, and only as theory develops are com- 

parisons made. Today these comparisons are customarily carried out in terms of I --- 
theory-laden “fundamental constants.” Physicists are used to the scale-invariant 

Newtonian system of units based on mass, length and time. But this, too, is arbi- 

trary. In his excellent book on metrology, Petley notes that in different branches 

of physics and engineering more than three units may be useful and are in fact 

employed. In addition to mass, length and time, electrical engineers are accus- 

tomed to use charge, or some equivalent, as an independent dimensional concept 

with an independent unit. Petley finds that up to seven dimensional units [6] may 

be employed in standard contexts. 

A fact that is often ignored in dimensional analysis is that measurement of 

zero or infinity is impossible. One way to build this fact into the methodology is 

to base measurement on ratios of finite quantities. Prior to Galileo, such ratios 

were always taken between quantities of the same logical type. In their rigorous 

mathematics, both Galileo and Newton used the Eudoxian theory of proportions, 

drawn from the paradigm of length ratios in Euclidean geometry. For instance, in 

the measurements mentioned in the first chapter, Galileo took the ratio between 

two times. It was only later in his work that he took the critical step of taking 

the ratio of a length to a time, and allowed this velocity to pass through all 

values starting from zero, or diminishing to and increasing from zero. Newton, 

following Galileo, allowed velocities to pass through zero without changing their 

direction. This is one way to extend the Euclidean concept of a point to space- 

time. Historically these continuously varying quantities which can include zero led 

t&&e conflict over “infinitesimals.” Operationally, finite measurements in classical 

physics remained restricted to the comparison of finite ratios. 
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In a scale invariant theory based on the calculus, there was no conceptual dif- 

ficulty in using continuous quantities represented empirically by measured finite 

ratios, once the calculus itself was given acceptable mathematical rigor. The situa- 

tion in special relativity is usually represented as specifying a maximum or limiting 

velocity, but this is not the only way to talk about it. In a conventional relativistic 

wave theory in a dispersive medium, or for relativistic deBroglie waves, c is the ge- 

ometric mean between the phase and the group velocity: c2 = vp~vgp. One way of 

;lQoking at the EPR “paradox” is to note that causaZ information transfer (forward 

light cone) is limited by the group velocity, while space-like correlations involve a 

supraluminal phase velocity. These distant coherent effects are no puzzle in the 

classical electromagnetic wave theory for dispersive media, and need be no puz- 

zle in relativistic quantum mechanics if one accepts the deBroglie wave dispersion 

theory as a brute fact. In a sense, the absence of a material model for deBroglie 

wave dispersion need be no more puzzling than the absence of a material model 

for the electromagnetic ether. One is represented by a universal constant with 

dimensions L/T and the other by a universal constant with dimensions ML2/T. 

Operationally, one can cut the Gordian knot there if one wants to. 

The situation changes once there is a maximum or a minimum quantity in 

the theory, in addition to some convenient reference value which may or may not 

have deeper theoretical significance. In papers presented at this conference, both 

Constable and Reed have exploited this fact in different but related ways. I have 

thought a lot about how their different approaches work, and this manuscript has 

profited from these considerations. Prior to the development of quantum theory, 

there was no reason to believe that physics required the insertion of invariant 

maximum or minimum quantities. In our RQM theory [Relativistic Quantum 

Mechanics = RQM = Reconstruction of Quantum Mechanics] scale invariance is 

broken by the invariant length h/ mc, rotational invariance is broken by the smallest 

quantized unit of angular momentum $6 = & and the mass scale is set by the 

largest coherent mass [g] 3. Q uantization based on h/me being the length unit 

I&&s “dynamical” in that it involves a mass parameter, but careful operational 

analysis [7] at the kinematic level reveals that in practice the theory depends 
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only on h/m, and mass ratios relative to any convenient reference mass, until 

gravitational phenomena are discussed. So long as this reference mass parameter 

is arbitrary we can still discuss measurement in terms of length and time units, 

and c as the geometric mean between two unknown upper and lower bounds. We 

will follow this approach before breaking scale invariance. 

2.2. VELOCITY-ACCELERATION UNITS 

We are accustomed in theoretical physics to use arbitrary units of length L 

and of time T. Theoretical expressions assume that quantities identified with 

“length” and “time” always use the same units. Otherwise no consistent way 

to compare theoretical predictions with experiment would be possible. Once the 

limiting velocity c appears, the same assumption applies. Using c in the theoretical 

expressions carries the implicit assumption that when a numerical value is required 

for comparison with experiment c will be given an appropriate numerical value in 

those, units. The units themselves remain disconnected and arbitrary. Special 

relativity has given unique significance to the limiting velocity c which goes far 

beyond its connection to the Maxwell Equations and the “speed of light.” For 

theoretical physicists it became customary to use “c = 1” in theoretical discussions. 

This is often confusing to the uninitiated, though considerably less dangerous than 

the “theorist’s approximation” r2 M 10 for order of magnitude calculations. 

The route currently taken in SI units is to use the definition c = 299 792 458 

meter set- ‘. This creates an unusual metrological situation, which is mentioned 

in Petley’s book. Neither this convention nor c = 1 is quite general enough for 

my current purpose. Noting that Drake has introduced a pure number g = 7r2/8 

to specify a connection between length and the square of a time-the square of 

“Galileo’s constant”-we can also specify a pure number c, which we can call 

“Einstein’s constant.” Since these are pure numbers, theoretical equations-which 

as mathematical expressions are themselves pure numbers-can contain c and g as 

&&&uryconstants. Particular numerical choices, such as c = 1, g = 7r2/8, simplify 

some expressions at the cost of complicating others. The choice is different from, 
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but just as arbitrary (until the structure of the theory is taken into account) as the 

choice of the length of the king’s foot, the weight of his head, and the time it takes 

to fall to the ground in the Place de la Republique as units of length, mass, and 

time. My proposal is to take the basic equations for velocity- acceleration units to 

be 

L J% cc [ccl2 ~c = cc; T92 = gg; Tc,, = sp; L,,, = gg (24 

where c, g are pure numbers picked for theoretical convenience, and c, g are physical 

parameters in units of L/T and L/T2 respectively. As Drake has shown, practical 

experiments can be designed to test a specific theoretical value for g independent 

of the system of units L,T. We hope the systems of units presented below will 

show how this notation can be usefully employed to make new connections between 

theoretical ideas and physical parameters. 

SI Velocitv-Acceleration Units 

The SI system uses L = meter; T = set for length and time. After long 

discussion, it has now picked 

c = 299 792 458 meter set -1 
(2.2) 

as a convention which encapsules a host of empirical information. Of course, it 

is still possible to question, empirically, whether the “velocity of light” is indeed 

the same in different empirical situations. Only the metrological language relating 

metrology to laboratory practice has to be changed. 

What is also much more obviously conventional is to define a “standard grav- 

ity” by the relation [8] 

-- I-- 

b;. g = 9.806 65 meter secw2 (2.3) 
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We can take this convention as defining a standard unit for acceleration. Take 

I3 = 1 = c. Then the units of time and length in this system, re-expressed in SI 

units, become 

T 
299 

792 458 Cd = 
9.806 65 

set = 30 507 323 . . . set m 0.966 719 years 

L w M 0.966 719 light years . (2.4) 

In my verbal presentation at ANPA 13, I remarked that “This makes human 

interstellar travel within our galaxy feasible with current technology.” Clive gently 

suggested that this remark needs elaboration. The argument assumes that (unless 

or until “anti-gravity” becomes a technological possibility, rendering g irrelevant) 

any interstellar drive will have to accelerate humans at something like g or less, 

making c/g the appropriate time scale. In fact, if one uses internal rocket power 

which delivers one g to the initial mass of the ship, and continues to deliver one g 

relative to the galactic frame, the remnant of the ship could reach almost anywhere 

in a ship-time close to c/g. But the acceleration inside the ship would squash the 

passengers flat well before that time was approached. However, using an external 

drive delivering g to the passenger compartment (interstellar hydrogen ram-jet, or 

the like), the ship could cross the galaxy in 20 years or so with the passengers 

experiencing only normal gravity. The conceptual design of ram-jets fueled by 

interstellar hydrogen has been discussed in terms of current technology; hence my 

remark. 

A design of interstellar ships capable of reaching a few percent of the velocity 

of light is closer to current realization. Dyson has presented two designs, using 

deuterium bombs for the Orion-type propulsion system. The radiating design 

would move a community of 20,000 people at one parsec per century, and the 

ablating design would move a community of 2,000 people at 10 parsecs per century 

(1 P arsec M 3.3 light years). Since we have evolved under g, and are limited by that 

&itage- I find it amusing to note that if c/g were ten times smaller, interstellar 9 
travel would already be an interesting engineering topic; if it were ten times larger, 
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most engineering schemes would almost inevitably have to wait for radically new 

technologies to be invented or discovered. Those who believe in the “anthropic 

principle”, of whom I am not one, will undoubtedly take off from this fact, if they 

have not done so already. 

Combined Galilean and Einsteinian Units 

In modern notation, Galileo’s law for falling bodies can be written 

1 
d = Zgt; (2.5) 

where we use td rather than ‘9” to remind us of the experiment from which it 

comes. The related result for the time te which it take a pendulum of length !? to 

swing through a small arc to the vertical, which came from Newton’s dynamics, 

can be written 

te = P-6) 

Consequently, when d = l, 8 = 5% as already asserted. In order to utilize 

this combined collection of theoretical, experimental and historical facts, Drake 

proposes a system of “Galilean Units” based on Galileo’s constant which can be 

defined, in the notation already established, by taking 

&’ = 7r2/8 (2.7) 

which is ZocuZZy valid in any region where g is some arbitrary acceleration which 

is constant over the relevant region within experimental error. This definition can 

obviously be extended to many more regions than the environments specified by 

Drake as “anywhere that bodies fall and pendulums oscillate.” 

In analogy to our definition of Galilean units, we define “Einsteinian units” 

hy taking 
‘c1; 

CE = 1 (2.8) 
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and c some conventional or empirical value based on laboratory experience. We 

combine these two conventions to obtain “Galileo-Einstein” units 

Since 8/n2 differs from unity by about 25 percent, the time unit is again close to 

a year, which makes the length unit close to a light year (by the same factor). 

’ Centripetal Acceleration-Radius Units 

Newton, starting from Galileo’s parabolic law for projectile motion and the 

observation that the acceleration measured by Galileo is always directed toward 

the center of the earth, arrived at the conclusion that a projectile launched above 

the atmosphere parallel to the surface with a velocity Ve = a would continue 

to move in a circle of radius Re around the center of the earth with this constant 

velocity. This is obvious from the symmetry and the geometry of the situation 

once one accepts Galileo’s “vector” addition of velocity and acceleration. Newton 

went on to draw dynamical conclusions from this kinematical calculation, but we 

need not follow his chain of thought. 

Galileo, starting from laboratory measurements of space and time intervals 

determined what we now believe to be the dimensionless constant 7r2/8 to rea- 

sonable accuracy. His methodology allowed him to do this using arbitrary units of 

length and time thanks to the Eudoxian theory of proportions. Newton’s theory for 

g allowed him to connect local velocity and acceleration measurements to a “non- 

local” dist ante Re . I call this distance non-local because it can only be inferred 

from laboratory measurement and an astronomical theory based on Euclidean ge- 

ometry, parallax, . . . . 

The situation just described has three natural length and time parameters, 

the radius r, the circumference (length of the trajectory back to the starting point) 

27~, and the time to return to the starting point (period) T. It also has the locally 
..- 

measurable acceleration g with which we are already familiar. We can (following 

Newton), define a centripetal acceleration equal to g and a corresponding circular 
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velocity, v& = gr. One way to define the time unit is to take L,, = r, T,, = E. 

Compared to the Galilean Units defined by Drake, we find that 

(2.10) - 

Since the length of the orbit used in the definition of v relies on the geometric “71. 

I _for perimeters,” and is not locally specified as noted above, comparison of these 

two kinematical measurements of 7r can be thought of as a test of whether the 

“plane of the orbit” is flat. 

We can extend our analysis from satellites in circular orbit to planetary mo- 

tion, using the velocity and distance at perihelion and the semi-major axis of the 

ellipse, as we discuss below. Drake tries to do this in a way that, he believes, gives 

him “non-Keplerian” results discussed in the last chapter of his book. In the light 

of the analysis which follows, we believe this claim should be treated with caution. 

Velocity-Radius Units; coupling constants 

Since the essential parameter in gr units is a velocity, once we introduce 

Einsteinian units, the situation is described by a single dimensionless parameter 

P,“, = 5 (2.11) 

This allows us to relate this classical analysis directly to bit-string quantum me- 

chanics [9]. For any rational fraction velocity ,8 = z any bit-string with 720 O’s 

and 721 l’s for which 121 = Nu and no = NW will serve as a model. For any step- 

length interpret N as the number of times the dimensionless periodic boundary 

condition X = l/p is repeated. If the bit-string is used to model a circular orbit 

where X = 2?rr, the periodicity represents the probability of an interaction which, 

?&Xhe average, delivers just enough centripetal acceleration to maintain the cir- 

cular velocity /?. For any rational fraction velocity (in units of c), the probability 
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of an interaction occurring compared to X steps in straight line motion at that 

velocity specifies a dimensionless coupling constant 

f2 = p = l/X . (2.12) 

The dividing line between “weak” and “strong” interactions defined by f2 = 1 is 

just the interaction which will produce v = c for a radius r = X/27r. In this way 

;r)_ur analysis achieves universal significance, independent of the unit of length. We 

still have an unknown parameter f2 characterizing specific systems. 

2.3. GENERAL KINEMATICAL UNITS 

Once one goes beyond the conceptual fusion between space and time symbol- 

ized by c = 1 and allows time as an independent component of measured (and 

perceived?) experience, one can conceive of kinematical theories which have di- 

mensionless constants other than c = 1 for the linear relation between length and 

time ‘and some dimensionless value for g relating length to the square of a time. 

The earliest such system is contemporary with Galileo, and can be ascribed to Ke- 

pler - in the apochrophal sense in which Drake defines units based on “Galileo’s 

constant.” It specifies an arbitrary constant which relates L2/T to a Keplerian sys- 

tem of units based on his Second Law. In the spirit of our previous discussion we 

could, in any well specified observational context, pick a dimensionless constant 

K2 called “Kepler’s Constant” and combine it with Einstein’s constant. Or we 

could start from Kepler’s Third Law, or from some definition appropriate to quan- 

tum mechanics, or . . . . Once we have done this, the assumption that there are 

only two fundamental kinematical constants will have non-trivial consequences. 

Units based on Kepler’s Second and Third Laws 

Kepler discovered (using Tycho’s data) that for the planets the line from 

the sun to the planet sweeps over equal areas in equal times. This defines the 
..- 

&mensional combination, $, rather than the linear ratio and the & ratio we have 

so far considered. If we were geometrically motivated, we could introduce a unit 
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of area based on Kepler’s First Law (elliptical orbits with the sun at one focus) by 

using the area of the ellipse (Tab, with a the semi-major and b the semi-minor axis). 

This would give us a kinematic way to measure ?r for areas and compare it with 

7r for perimeters. Rather than take this route, I use recent work on foundations 

with Pat Suppes and Acacia DeBarros, parts of which will be reported elsewhere 

[lO,ll]. We can now construct finite and discrete Lorentz transformations from 

three integers (see Appendix). 
I c- Consider a circular orbit of radius r and a minimal step-length Ar. Any 

minimal step between two points on the orbit which (which keeps the radius con- 

stant) specifies an isosceles triangle with base Ar and sides r. The square of 

the area of the triangle [using the general formula for sides a, b, c that 16A2 = 

(a + b + c)(a + b - c)(b + c - a)(c + a - b)] and units of Ar2 is 

[$$I2 = [r/Ar - i][r/Ar + fl . (2.13) 

Since the time increment At = A / r v in units of the period T = 2m/v is &[+I we 

can define the half-integer j = & and the integer e = j - 3 with the consequence 

that in these units 

[%I2 = qe + l)(k)2 = (j2 - J&)2 . (2.14) 

We conclude that the natural unit in which to express Kepler’s second law is 

1/2n for e and 1/47r for j. We take 1/47r to be the minimal kinematic unit for 

angular momentum per unit mass. In the past we have quantized bit-string physics 

using the invariant step length Xc = h/me. Consequently, if we know the mass 

scale, the minimal unit for angular momentum is 2 Lfi This gives us an alternative, 

but consistent, route to quantization. Note that since we computed the area, we 

get only the orbital angular momentum with maximum projection feti on some 

reference direction. To identify the spin contribution we can derive the Dirac 
,.- 

*ation in th’ f is ramework, which we have done elsewhere [12]. Once again the ;ry 

which comes in is the relation between linear and circular measures of periodicity. 
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Since h/m has dimensions of L2/T, we can make our constant for Kepler’s 

second law consistent with relativistic quantum mechanics simply by taking 

Lk2 KRQikf 1 h -= 
2 

=-- 
k 27r m 

or with Galileo-Einstein units by taking 

L +- GE 

K2 

GE 
23 c3 

z-z--- 

TGE r2 g  ' 

(2.15) - 

(2.16) 

Once we have Kepler’s First Law that the orbits are elliptical rather than circular, 

with the sun at one focus, and we generalize our version of velocity-radius units 

to perihelion velocity and distance, Kepler’s Third Law is simply a consequence of 

(kinematic) dimensional analysis: 

L2 3 @E - GE -- 
%E 

= tFcg * 

(2.17) 

Thus, once one accepts my way of combining Galileo’s and Einstein’s kinematics, 

Kepler’s Third Law-although dependent on reference to well defined geometries- 

is only a consequence of a choice of units which are easily related to the earlier 

definitions. Drake’s final chapter entitled “Galilean Units Today” applies Galilean 

units to accepted astronomical data (relative to Mercury). At least from my point 

of view his numerical results are no surprise, and to call them “non-Keplerian” 

becomes more of a semantic than a physics issue. 

Kinematical R&M Units 

Although m appears in my quantum version of Kepler’s second law, it remains 

arbitrary, as indeed it must in any kinematic system. Nevertheless, the essential 

parameter h/m can be given kinematic significance relative to some sufficiently 

stable reference particle, as I have already mentioned in earlier work [7]. Take 

-&-& 1, define velocity by a counter telescope, and measure the double slit inter- 

ference pattern in arbitrary units of length. This defines the relativistic deBroglie 
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wavelength for that particle as a function of velocity. Lengths characteristic of 

other particles can be determined in the same way. Length ratios are now oper- 

ationally specified. For any choice of reference particle, the constant h/m0 can 

be given universal significance using Kepler’s second law, as we saw above. Mass 

ratios remain empirical. The choice of mg remains arbitrary. 

I -- 
3. Dynamical Units: Gravitation 

In conventional parlance, as used for example by Drake, kinematics involves 

a description of motion while dynamics involves a causal, and in principle calcula- 

ble, explanation based on the concept of force. Mach’s Science of Mechanics tries 

to banish the concept of “force” from the subject because of its residual anthro- 

pomorphic connotations. His treatment remains Newtonian, however, in that his 

mass ratios are based on Newton’s Third Law. In recent years, I have become 

increasingly aware of the desirability of separating kinematics from dynamics in 

the discussion of relativistic quantum mechanics. As noted above, I have replaced 

Newton’s Third Law by operationally defined deBroglie wavelengths which spec- 

ify the equivalent of mass ratios. Then I must derive relativistic three-momentum 

conservation. This is done in the Appendix. It remains to give mass an absolute 

significance. 

Thanks to the work we have done above, this is straightforward. We have 

already defined the minimum unit of angular momentum in terms of h/m and 

the shortest possible length as that which gives orbital velocity c. Taking this 

minimum length as ~/MC = r and gr/c2 = 1 = GA4/rc2 = GM2/hc we have that 

the limiting mass for a coherent elementary system is M = [%I+, which should 

come as no surprise. To get this result related to the proton mass takes a little 

more work.* 

Zurek and Thorne [13] have shown that the number of bits of information lost 

in forming a rotating, charged black hole is equal to the area of the event horizon 
..- - :. / 

‘4 An earlier version of the next two paragraphs-SLAC-PUB-5588-was rejected by Phys. 
Rev. Lett. because it was too novel to be published as a “Comment.” 
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in Planck areas, i.e., theBe&enstein number [14]. Wheeler [15] has suggested that 

this could be a significant clue in the search through the foundations of physics 

for links between information theory and quantum mechanics. If one accepts the 

conservation of baryon number, as attested by the experimentally unchallenged 

stability of the proton, one can argue that the proton is a stable, charged, rotat- 

ing black hole with baryon number +l, charge +e, angular momentum ih. and 

Beckenstein number N = hc/Gmpc2 II 1.7 x 1038, 

L -- Consider an assemblage of N proton-antiproton pairs with all quantum num- 

bers zero which contains an additional proton; this system has baryon number +l, 

charge e, and angular momentum iA. Suppose the average distance between each 

pair is h/m+. Then the gravitostatic energy E is 

which is equal to the proton rest energy when N = tLc/Gmi. This is analagous 

to the bound Ne = 137 N fic/e2 on the number of charged particle-antiparticle 

pairs established by Dyson [16] when he showed that the renormalized QED per- 

turbation series in Q is not uniformly convergent. No particulate constituent of the 

gravitational system we envisage can escape; the escape velocity exceeds c. Yet 

proton-antiproton pairs can annihilate to produce Hawking radiation [17], which 

is not, necessarily, bound to the system. The predictable endpoint of this system, 

granted baryon number conservation, charge conservation and quantized angu- 

lar momentum conservation is a system with mass and conserved quantum num- 

bers indistinguishable from those of the proton. Since this system started from 

- N = tLc/Gmi indistinguishable pairs, the number of bits of information lost in this 

way can reasonably be called “the Beckenstein number of the proton.” Of course, 

any particulate mass can be gravitationally stabilized in this way, if it cannot de- 

cay to lighter particles. That the proton is the lightest (indeed, the only known) 

stable baryon makes the identification unique. 
“2. 
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4. Appendix: Integer Lorentz Transformations 

4.1. BASIC ALGEBRA 

Given three positive-definite, finite integers ni, nj, nk with the three indices 

i,j, k finite, distinct, cyclic, positive-definite integers, i.e., 

ni,nj,nk,i,j,Ic,E1,2,3,...,N; Nfixed; i#j#k#icyclic 

‘$e can define 

tij I= ni + nj; tijpij Z= n; - Tlj := Xij 

2 

rij 
:= tfj - Xfj = 4ninj = t~j(l - Pt) := tfj+ffj 

with the consequences that 

tij&j + tjk@jk + tki@ki = 0 

and 

-p.. = @jk i- hi 13 
1 + PjkPki ’ 

Further, since 

ltij - tjkl 5 tki 2 tij + tki 

we can define 

a(tij,tjk;tki) = a(tjk,tij;tki) := 2 ij ~[t2 + tj”k - t~i] 

and draw a triangle (see Figure 1) with sides t;j, tjk, tki and angles 

COS 8k := 
a(t;j, tjk; tki) = @j + t;k - tii 

tijtjk tijtjk ’ 

(44 

(4.2) 

(4.3) 

(44 

(4.5) 

P-6) 

(4.7) 

(4.8) 

Any one side can be interpreted as a combined rotation and boost taking the ..- 
$%ition -and velocity of one event to another event with respect to a third event, 

as we will now show. 
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Figure 1. Kinematical interpretation of the three integers n;, nj, nkO 

4.2. THE THREE-COUNTER PARADIGM; [THE RQM TRIANGLE] 

The figure can be thought of as three counters with associated clocks- 

synchronized using the Einstein convention-which keep a record of the time of 

arrival or departure of a signal, and whether it was a particle or indistinguishable 

locally from a gamma-ray. Since we are using units with c=l, the distances be- 

tween the counters i,j, k are simply tij,tjk,tki. If we launch a signal with velocity 

/?;j from counter i toward counter j and simultaneously launch a signal with -@ki 

from i toward k which, on arrival at k, triggers a signal from k to j with veloc- 

ity -Pjk, the signals from i to j and from k to j will arrive simultaneously at j. 

This explains why, if we pay proper attention to signs, we obtain the usual Lorentz 

velocity addition law independent of how far away counter k is from the ij path. 

Note also that our cyclic convention can be used to define a direction out of 

the plane of the triangle whose sign reverses either if we change our convention 

from cyclic to anti-cyclic or if we interchange two of the indices. Clearly this 

is the “parity” transformation P. In contrast to classical relativistic kinematics, 

our finite assumption forces us to consider transformations which do not conserve 

$ty. Further if we reverse all velocities-which corresponds to time reversal 

T-this discrete transformation produces the same result as the (cyclic c) anti- 

18 



cyclic) parity operation. Consequently the physical paradigm we use to interpret 

the formalism automatically guarantees that at this stage the theory is invariant 

under P2, T2, PT and TP. Full CPT invariance will have to wait until we define 

conserved quantum numbers analagous to and including electric charge. However, 

if we include forward or backward “motion in time” in order to define a conserved 

difference between the number of particles and the number of antiparticles, or 

left-right motion in a single direction to conserve helicity, we can immediately 

linvoke these conservation laws to construct finite and discrete solutions to the 

Dirac equation in 1+1 dimensions [12]. 

Although, thanks to the velocity addition law derived from the usual clock 

synchronization convention, the paradigm obviously has an Lorentz-invariant sig- 

nificance, we have yet to establish formal Lorentz invariance. 

4.3. BOOSTS; DEFINITION OF C, X0 

*Although the last section interpreted the algebra of Section 4.1 as describing 

three synchronized counters fixed in the laboratory, it is also interpretable more 

abstractly as describing coordinate transformations. Consider first the connection 

between counter i and counter j. Note first that the separation t = TV = nj + nk 

and the velocity /3ij = (ni-nj)/tij := xij/tii = x/t only involve the two integers ni 

and nj. If we take as our referent the vanishing of these two integers, symbolized by 

(O,O), for the ltl space-time integer coordinate (z,t), the square of the invariant 

interval between the two events at i and j is t2 - x2 = 4n;nj independent of the 

value of nk or of the position of the counter k. If we take the counter k as the 

referent for both (x’, t’) = ( nj--~,nj+nk)andfor(x”,t”)=(nk--i,nk+ni), 

with invariant intervals ~~i.j = 4njnk and r? . , 3k;a = 4nkni respectively, we see that 

l&e that this connection between these two invariant intervals is again indepen- 

dent of nk and hence of the arbitrary reference system represented by counter k. 
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Clearly p = 5 is simply the boost along the i - j direction which brings the 

event at i and the event at j to a coordinate system in which the two events are at 

rest. Once this is understood, the Lorentz transformation taking (x’, t’) to (x”, t”) 

is easy to work out. 

Our clock synchronization convention and resulting derivation of the Lorentz 

transformation establishes the fact that c has the customary physical significance. 

Note that the unit of length is arbitrary. If we take Xs = h/msc, this corresponds 

’ fo our earlier quantization assumption. h/m and mass ratios measured by a double 

slit plus collimators follow. 

4.4. ROTATIONS; DEFINITION OF tZ 

For rotations, instead of an invariant interval, we need to preserve an invariant 

length. Recall that the square of the area of the triangle is given by 

16A2 = (tij $ tjk + i!ki)(i!ij + tjk - tki)(tij - tjk t tki)(-tij + tjk + tki) 

= 16(n; t nj t nk)n;njnk . (4.10) 

Take 

tjk = r = tki; Ar = t;j . (4.11) 

Require that equal areas be swept out in equal times. Then, if the minimum step 

for rotations (including straight line periodicities) is ti/mc = Ar, the area swept 

out by this minimal step is, in these units, 

[(mcr/h)/(mcAr/ti)]2 = (j - ;,cj t ;, = qe t 1) (4.12) 

where we have defined j = r/ Ar in order to bring out the formal similarity between 

this quanta1 version of Kepler’s second law and the usual quantization of angular 

momentum for particles with spin 3. The details will be presented elsewhere. 

-<:-Note that this route defines fi independent of c. Then, relative to any stable 

mass, scale invariance is broken. 
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4.5. GENERAL LORENTZ TRANSFORMATIONS IN A PLANE 

Since we can now boost to a rest system, rotate, and boost to the final system, 

the basic problem of the Lorentz invariance of our theory has been solved. Given 

two arbitrary integers ni, nj representing events at (0,O) and (5, t) connected by 

the velocity p = x/t = p/E we can obviously always find a third event relative 

to which, in the rest system, the two distances satisfy Eq. 4.11. Taking Ar = & 

L gives us the unique quantum number j either for a free particle (impact parameter) 

or for a circular orbit. We already have the invariant interval r2 = 4ninj giving us 

two of the free particle quantum numbers. The third comes from using an integer 3- 

space coordinate system. The reference mass remains arbitrary until we introduce 

gravitation, which we can do via the combin,atorial hierarchy. The self consistency 

between the linear step-length X = h/me, the unit for angular momentum of $fi 

derived from Kepler’s second law, and the deBroglie relation p = h/X = fik in fully 

invariant form is what convinces me that, finally, I have the correct elementary 

starting point for relativistic quantum mechanics. Working out the details will 

take a book, which I am writing [18]. 
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