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ABSTRACT 

A simple model is constructed for the SLC positron system to describe 

the intensity variations induced by beam loxling ill i,lle linac. It is found 

that the system caa he described by t,hc well I~IOIVII logist,ic equation. 

This allows us to use results from the st,ahility anal~.sis to chxacterize the 

positron system, to plxe tolerances on fluctuatjiolls. at~tl to slow \xiations 

on the scavenger bexn intensity. 

*Work’supported by Department of i31ergy cont,ract, D15-rlC:0:3~~7(iS~00.~1.’ 



I. INTRODUCTION 

A design fea.ture of the SLC is that the positron launch, the elect,ron bunch: 

and the second electron bunch (usually called scavenger bunch), share a. common 

high-energy linac strucbure. This causes the bunches t,o intera.ct, via beam loading. 

The leading bunch in t,his t,rain is t,he positron bunch. so it,s intjensity a,ffects the 

energy of the following electron bunch and sca,venger bunch, that is used to produce 

;---the positrons for the next pulse. Its energy va,ria,tion leads to pa.rticle losses in the 

extraction line and affects the positron bunch intellsitJ- oil the nest, pulse. This 

establishes an iterative mecha.nism in which the posit,ron int,ensity depends on the 

intensity of the previous posit,ron bunch. 

The strongest part of t,he launch-to-bunch int,eractioll comes from the finite 

energy aperture of the Sector 19 scavenger elect’ron est,ractioil line. The energ) 

acckptance of the estra.ction line is on the order of a fe\v prrcentS. The energy of’ the - 

scavenger electrons ca,n ea.sily change by t,liis amount as a r~~sult of bean] loading in t)lrc 

linac at typical SLC’ intensitJies. 5ince fluctua.tions in the sca.venger energy-either , 

up or down-both lower the positron intensity, our simple motlel uses a. quadratic 

dependence. 

When the positron bunch intensit,y a,t the &get’ changes, t’here a,re additional 

effects in t,lie downstream positSron syst,em t,ha.t furt.hcr amplify t’hese intensitjy 

changes. They may a.lso modify t,he qua.dra.tic dependen(~e 1~~. ma,king it a,symmetric 

and of higher order. 

In this simple model, \\:e lump a.11 these effects int,o t 11~ quadratic function alld 

.--analyze its implica.t.ions. . 



II. A SIMPLE MODEL 

In this model we denote the number of posit,rons at Sector 19 that were 

produced without the above mentioned feedbxk mechanism by 

110 = ‘]“o . (1) 

I Cd Here so is the intensity of the scavenger bunch a,t tile guu. assumed to be 

produced continuously, aad 17 is the product, of t,he efficiencies through t,he individua.l 

subsystems. Therefore? p. is the number of posit,rons in Sector 19 if the gun 

continuously produced so, the product’ of efficiencies werp ‘1. and there were no effect 

of beam loading. However, one of those efficiencies describes t,lie number of positrons 

in the positron return line as a function of the number of scxvenger electrons iii 

Sector 19. The effect of beam loading on t,his efficiency can now be incorporated into 

the model by multiplying 71 11~. 

where the subscript, 72 refers to the pulse number. In 120 Hz opera,tion. pulses are 

separated by S.3 ms. Here ljnPI denotes t,he positroll int,ensit,y at Sector 19 on the 

n - lth pulse, a,nd .G and 2; arc’ t,he design elect,ron and Ijositrolr current,s for which 

beam loading is compensated. The!7 are usuall!T adjusted I]>- klystron phases in 

Sectors 17 and 1s. Q- a.nd CY+ are coefficients that. describe the strength of the 

feedback mechanism. The ma.gnit.ude of the Q’ is addressed below. 

In this model, the degrading effect of t,he bea,m loading on positron intensity 

-is described by a yua,dratic function t,hat simply. a.dc1resse.s the fa.ct that a.11 off-energy ..- -_ 
scavenger bull& reduces the number of positrons, no tllati,er whether t.he energy 
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is too high or too low. Later this ca.n be developed into a more sophisticated model 

to include additional effects, such as noise induced by- fluctuations in the electron 

intensity or a modification of the clua,clratic dependence on lhe previous pulse. 

In what follows, we will a,lwa,ys a.ssume that the elect,ron iut,ensit!; is constant 

and always properly compensa.tecl [e(lz) = e]. The equat,ion tl1a.t determines the 

dynamics of this model can thus be written 

I -- 

The ma,gnitude of CI+ caa be estimated as folloJv. III t,lle Blue SLC Design 

Handbook (pp. Z-28), the energy loss of a following bunch is estima.ted to be 890 MeV 

per 5 x lOlo part,icles a.t Sector 130. F\Te ca,n convert. t.his number into a,n energy loss 

of-the scavenger bunch at Sector 19, a.nd write 
.- 

d &,a” ( 7-l 1 19 890 h/leV 100 Me\. = 
b-1 30 5 x 101” = lOl(J 

(:3) 

A Aplp = 1% p osi ron intensit>- variation thus tra,nsla.t,es int 0 a 1 Me\,. energy offset 1 t 

of the scavenger bunch, which transla,tes into a relatij-e c~rc’rg~- offset of 

- = 1 MeV AE 
III 3.3 x lo-” 

E :30 GeV (4) 

The present extraction line collima.tors a.re configured ~11~11 I1la.t a l%# energy offset 

reduces the positron yield 1~~7 50%). Therefore. a 1’5. posit,ron int,ensiQT va,ria.tion of 

the previous bunch changes t,he nest positron intensit’!: 1~~. 

50% r( lr,,) = l(r 3.3 x lo-” 
(’ (5) 
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where ~(1%) is the fractional yield reduction of a. sca\.enger bunch due to a 1’6 

intensity variation in the previous positron bunch. We ca,n calculate Q+ from 

1 - a+0.012 = 1 - 1’( 1%) m 

and obtain CX+ = 17. Therefore, we investigate the paramet,er range between 0 < 

a+ 5 25 below. 

It is worthwhile to rewrite Eq. 2 with the following substitutions 

where p. is defined in Eq. 1. We obt,a.in 

‘where Ic, is the resca.led positron intensity; C is a st,abilit.>, pa,rameter related to 

the gain of the feedback mechanism, to the misnlatch of input, scavenger intensit’y 

SO or PO = 71~0, and to the optimum positron intensit,!- for which beam loa.ding is 

compensated 2;. 

Equation S is the well known logistic epcctiotz that describes systems 

with a quadratic sa.tura,tion mecha.nism, a.s in our model. The dynamics of Eq. S 

is very rich-depending on the pa.ra,meter C, it, exhibits bifurca.tion and even cha.ot,ic 

behavior. The different regimes are best represented b!- the Feigenba.um diagram [l] 

shown in Fig. 1. In t,lie range C’ < -l/4, the clynamicl; arc’ unstable; for -l/4 < 

C < 3/4, a sta,ble, period-l fixed point exists. Between :I/4 and 5/4. a period-2 

-fixed point exists, which means tl1a.t the positron intensit,>- \;aries on a,lternate pulses. ..- ._ 
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Figure 1. The jked points of the logistic map giutrr by Ey. 8 for- pwarnete~ 

values of -l/4 < C’ < :3/Z. Note the .sepe;rm 0.f bijurca1iolr.s .star?ing at 

* .c = 314. 
.- 

Between 5/4 and 1.401155189. . . . the system goes through an infinite series of 

bifurcations until it enters the ch.aotic regime. 

The investigation of this map and its implications for the positron system is 

the topic of the following sections. 

III. FIXED POINT 

The period-l fixed point, of the iterated map give11 II!- Ey. 2 or Eq. 8 describes 

a special state tha,t reproduces it’self. It, can be considered the equilibrium state. 

Whether this sta,te is stable or unstable is a,dclressecl belo\~. The period-1 fixed point, 
..- 
xc-c is defined by the equation 
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Figure 2. The normalized equ121.Sr.iurrr po.sitwrr irlttlrsity at 

Sector 19, pco/l;, as a j’unction 0.f llzt nor~rwlized posikr-or, 

intensity without j’eedbnck m~echanlsm y = pull3 jbr, CY+ = 

0.5, 1 (dashed) and Q+ = 5, 15, 25 (soll.cl). 

which can be solved for CC, with the result 

Rewritten for the positron intensities. we get 

where we have introduced y = 110/l? aad have suppr~secl t hr nega.tive root because 

it lea,ds to nega.tive intensities. Figure 2 shows a. plot, of .z = pK,/fi. t,he norma.lizecl 

equilibrium intensity versus y = p-,/lj, the mismakh betn:een sca,venger intensity, 
. 
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Figure 3. The thr-eshold norm,alized positr-orr ilziensity 

without feedback mechanis~m ytllresl, = 14~.~hd,/j) a.5 (I 
function of n+. 

and bea,m loading compensation for different values of o+. For c~+ 5 1. we always 

.have a nonvanishing fixed-output intensit?- l~~)/$. Howe\.er. ii o+ is increa.sed above 

unity, the output intensity drops to zero if y = II~/$ fa,lls below a, threshold. This 

effect imposes a. lim it, on tZhe m isnia,tcli lx%ween t,hc seal-ellgc’r int,ensit>. 5” a,ncl the 

design beam loa,ding compensation 5, namely q.~~/j = ~I~/F ma.y not fall below a 

certain value. The threshold ythresl, = 2~0,t~,,.es~,/j for a gi\.ell O+ is determilled by the 

vanishing of the root, in Eq. 11. We get. 

(1'2) 

Figure 3 shows yth.esl, as a function of cx+. Clea.rly, below cl+ = 1. no threshold exists. 

For increasing cr+ the match between po and 1; has t’o b @et increa.singl!; better, as t’lie 

--~&e&old ytbesl, gets closer to unity. 



The tolerances consequently lie in the few percent range for Q+ in t,he range 

5 5 CY+ 5 25. If, for a few consecutive pulses, the intensit!- of t,he scavenger bunch 

falls below a few percent, the positron system collapses. 

A second observa,tion is t,ha,t for large CU+ (the solid lines in Fig. 2), a,n increa.sed 

scavenger bunch intensity ;y = 7jso/lj does not yield more positrons at, Sector 19 a,s 

the entire system sa.turates, for a fixed bea,m loading compensat,ion. 

L c- 
The previous aaa,lysis only ga,ve a. lower bound on p,-,/$. In the next, section 

we perform a local sta,bility analysis, a.nd investiga.te wha.t happens if we perturb the 

system around its fixed point,. This a,nalysis will a,lso yield an upper bound. 

IV. LOCAL STABILITY ANALYSIS 

In order to determine whether a fixed point, is stable (att,ra.ctive) or unstable 

,(repulsive), we have to perform a. loca,l; linearized st,abilit\. aiia.l~Gs of the equa-tion 

x n = j-(x&. T 0 tl iis end, we compare the distance of t,he 1) + 1 I” it.era tion from the 

fixed point 2, to that. of the 71”~ iterat,ion. For J’,~+ 1 and .I’,, in the vicinity of the 

fixed point x,, defined by x,, = .f( s,,,), we write 

If the absolute value of t,he derivative of t,he ma,p leas ;\II absolut,e ~;alue of less 

- w R’,, 

than unity, the fixed point is stable, because the a,bsolllt,c> \.alue of the distance 

.--la the fixed point decreases mollotonously. Front th(x logist,ic equation, Eq. S. 
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Figure 4. The stability parameter C” = ~~+(p~/j)(l~~/~i - 1) us u 

function 0.f’ y = poll? ,for a+ = 0.5, 1 (dashed) awl a+ = 5, 15, 25 

(solid). For increasirzg a+ the cur~ts get iacreasiugly steeper. The 

horizontal lines denote the stability limits according to Eq. 14. 

.we obtain f’(x) = -ZCx. Using the value for the fixed pointj .v~ from ECU. 10, \~e 

obtain -l/4 < C < S/4, or 

(14) 

This equation constitutes the sta.bility criterion for tile fisecl point,. Figure ‘-1 

shows the stabilit,y pa,ra,meter C’ = Q+ (l~~/j)(l>~/$- 1 ) for lxrious Q+ a.ncl the threshold 

values C = -l/4 and C = S/4. C:lea.rly, the bigger c1+ b c&s. t,lie smaller t,he ra.nge of 

permissible misma.tch between scavenger intensit,y and beam loa,cling compensation 

gets. The limits on p0/2; at, the stability threshold, we can calcula,te from Eq. 14 a.ncl 

obtain for CY+ 2 1 
..- -_ 
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and no limit for cr+ < 1. The lower limit is the same as \VP have a.lready encountered 

in Eq. 12. If the fixed point exists, it is stable. The limits given by Eq. 15 are shown 

in Fig. 5 as a function of cu+. 

The upper threshold marks the point where the periocl-1 fised point becomes 

unstable and a period-2 fixed point emerges [1.2]. This lnarks the first bifurcation 

above which the positron intensity alternates between t\\:o different. values on 

consecutive pulses. This behavior is ca~usecl by an inherent, inst,abilitJ. of the clynamic,al 

system, and is not externally driven. 

Again the tolerances lie in t,lie few percellt~ raiige. i~ncl get. tighter a.s a + 

-increases. However, t,he lower ma.rgiu is tighter t.lla.ll t,he uppc~ tna.rgin a.ud makes a . 

lowering of 1; (adjusting for lower beam loa.ding) a,dvisable. 



V. GLITCH TOLERANCES 

In this section we investigate the effect of a. glikh in the sca.venger bunch 

intensity, To do so we assume that the scavenger intensit,JT pO = ~7s~ was constant for 

a long time, such that the system has a.cquired its equilibrium. Then, for a. single 

pulse, the scavenger intensity drops or increases to a. new value fia, and then resumes 

with po. By the “glitch tolerance” we mean the ma,simurn rela.tive clevia.tion j&/p~, 

* -- for which the system can recover and itera.te back towards t,he original fixed point,. 

In the original stable condition, the fixed point, is giveu by Eq. 11. If the 

scavenger bunch intensity a,ssumes its new value IjO, t,he following positron bunch ha.s 

the intensity 

(16) 

.Then, on the next, pulse the s);st,em get,s ba.cl; t,o normal. just t,he positrou intensity 

is different from its equilibriulll value. The original question caa now be restated: 

how big may 11~ get and still iterate ba.cl; to the fixed point’! In the a.ppendix, it is 

shown that for the logistic map we have t.o require 

in order for J: to iterate back. Tra,nslating ~1~ into .l’ 1~;. Ivrit,iug .X = (11~ -1;)/(po-j3) = 

(PcQFolPo - I;>/(P” - li), we can rewrik Eq. 17 in an equation for t,he rcla.tive st,a.bility 

of IlofPo 

1 - [J1+ %Y(Y - 1) + 11 pt.!/ @) 1+ [Ji + 4a+y(y - 1) + < < I] /2cr+y 

-.-- -_ 1 +jJIm- 11 /2cl+y PO 1+ [J1-- I] /2o+y . 

(18) 
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Figure 6. The permissible normalized sca~uenger lsztensity glitch clnzplitude J&/p0 a.9 

a function po/?j for cu+ = 5,10,15,20,25. The lines denote bounds OIL the permissible 

glitch amplitude for a given p. 11; and cy+ as described bg Eq. 18. 

Using Eq. 18 we ca,n calcula.te the glitch tolerances f’or a,113; 7/ = pa/F and cut. 

Some examples are shown in Fig. 6. It is particula,rly interesting i,o set j/ = 1, because 

that defines a configuration in which the beam loa.cling compensa,tion (1;) is matched 

to the sca,venger int,ensit,y (11~). For this ca.se Eq. 1S reduces to 

I-‘<E<l+& for ,l/ = f* = 1 . (19) 
0 + PU I-’ 

..- 
-_ 

Consequently the tolerance \\:ith respect to single glit,chcs is on t,Iie order of l/Q+. 
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Figure 6 shows the permissible glitch amplit,ude as a function of !/ = poll; for 

various values of cu+ as the area. between the solid curves. The curves only have a 

finite length in y, because for a given cy + stable fixed points only exist for y = polli 

given by Eq. 15. For increasing a+ t,he permissible ra,nge becomes sma,ller. However, 

values of y slightly bigger t,han 1 are fa,vora.ble, beca.use t,here the ra,nge of permissible 

glitches to smaller values & is bigger. 

L c- 

VI. JITTER TOLERANCES 

We now investiga,te the effect, of ra,ndom ga.ussian inknsit,,y fluct uat,ions in t,he 

scavenger intensity, pa,ra.metrized by S in po( 1 + hP), ^ \vhere P is a gaussian noise 

source with zero mean and unit va.riance. The introduction of t,he noise term modifies 

Eq. 2 to 

We then iterate this equation with the start va.lue 11/l; = 1.001 for a matched 

configuration (pO = I;) f or 100 000 iterations, a.ncl check ivliet her the mot,ion remains 

stable. The jitter magnitude 5,,,, for which for a, given 0+ i,lie motion barely stays 

stable is plotted in Fig. 7. We see tha,t the curve ca,n bc nicel!- fitted by a. hyperbola of 

the form 0.17/a+. Therefore, we ca.11 write for t,he (a.pprosiniat~e) limit in the gaussian 

injection jitter 

We conclude that the jitter tolerance is about six times t.ighter tha,n the t,olerance 

.--against single glitches. For values of (I+ around klr. t,he ,jit t,er t,olera,nce is on t,he . 

order of 1 to 2%. 
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Figure 7. The mazim’um permissible guussian jitter amplitude I&,,, as 

a fumztiov~ of ck+ that su~~civerl 100 000 itelmtions of Eq. 20 with 110 = I;. 

VII. CONCLUSION 

- A simple model for t,hc posit,ron syst,em of t,he SI,(-’ \\‘a,s const.ruct,ed, a,nd it, 

was shown that this model ca,n be described by the logistic equation. Limits for the 

sta,ble opera,tion with respect t,o Txria.tions of the incoming sca,venger bunch intensity 

were deduced. Variations on diRerent, time scales were in\.est igakcl. 

It could be shown tha,t a. permanent, misma.tch bet \~een t,he sca,venger bunch 

intensity po and the intensity for which beam loading is adjusted using 1ina.c klystron 

phases has to be within a, few percent. The proper va.lue depends on t,he value of the 

nonlinear “feedba.ck” para,meter cx+ and is shown in Fig. .5. 

The tolerance with respect t,o single glitches in the sca.\renger inknsity was 

shown to be considera,bly larger, namely in t,he 10% t~ange. as shown in Fig. 6. 

..- -_ 
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The system is particulxly susceptible to a. permzmeut sc’a.venger inknsit’y jitter, 

which has to be controlled to t,he 1 to 2’5% level. 

All effects depend crucially on the “feedbxk” para,meter o+. Increasing the 

energy acceptance of the extraction line, and thereby lowering a+, ha,s improved the 

situation. 

The model certainly c,an be expa.nded in ma,ny ways. One important aspect’ is 

the appearance of interleaved generations at 120 Hz running. 111 this case, t,wo bunches 

are stored in the positron’s damping ring, and the sca.venger bunch experiences the 

beam loading from the positron bunch two pulses earlier. \,‘ia the possible interactioil 

of two bunches in t,he da,mping ring. the genera.tions can couple. Another importa.nt8 

aspect is the inclusion of the other elect,ron bunch, whicll wa.s neglected so far. 

Furthermore, the recent, installation of a feed-forwasd mecha.nism [:3] that’ measures 

the currents of all bunches in the cla,mping rings and ac1just.s 1iiia.c lilJrStrOII phases: 

in order to compensate for the scavenger energy jitt.er in the cAraction line, couples 

all bunches and makes the interxtion much more convolukd. On t.he ot,her hand. 

feed-forward allevia,tes the problems described in this report, significa.ntly. 
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IX. APPENDIX: GLOBAL STABILITY OF THE 

PERIOD-l FIXED POINT 

In this appendix, we investiga.te how big the ba,sin of a.ttraction of the stable 

period-l fixed point of the logistic ma,p is: in other words. how far a.way from the fixed 

point we may start and still iterate towards it,. To answer this quest,ion, we attempt 

a global stability analysis (as opposed to the local a,nalysis of the previous section), 
I c- 

and again consider the distance to the fixed point’ 

-%+1 - .1:, = .f(m,) - .f‘(n:,) 

(22) 

= -C(n:,, + x,Z)(R..,i - .rs ) 

The fixed point, is globally st’able for those point,s .V that fulfil IC( I’,,, + x,,)] < 1, 

‘bkcause then the distance will a.lwa_vs get sma.ller. Inserting z,, from Eq. 10, we 

obtain 

(23) 

This border is the only one tha.t lea.ds to a. purely cont,racting ma,pping towards t,he 

fixed point. However, starting va.lues of x bigger t,haa t,he upper bound given by- 

Eq. 23 can be found to iterate t,owards t,he fked point. ‘I’liese a.clclitional starting 

points have the fea.ture that the); jump on their first, itkratioll int,o the interva.l given 

by Eq. 23. Consequently, these points 1c have to fulfil 

/iTiC+ -diTG?+ 3 - < I- c1X2 < ..- -_ 2C g(-’ . 



Solving for z leads to the following set of inequalities 

Since the lower bound in Eq. 25 is lower thm the upper bound in E,q. 23 a, sufficient 

condition for global stability is given by the bigger mlues of the borders of Eqs. 23 

and 25, which are the lower bound for Eq. 23 a,nd the upper bound for Eq. 25. 
; -- 

..- -_ . 
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