RECENT RESULTS ON K ω AND $\pi \pi$ SYSTEMS FROM LASS*

D. Aston, ${ }^{1}$ N. Awaji, ${ }^{2}$ T. Bienz, ${ }^{1}$ F. Bird, ${ }^{1}$ J. D'Amore, ${ }^{3}$
W. Dunwoodie, ${ }^{1}$ R. Endorf, ${ }^{3}$ K. Fujir, ${ }^{2}$ H. Hayashir, ${ }^{2}$ S. Iwata, ${ }^{2}$ W.B. Johnson, ${ }^{1}$ R. Kajikawa, ${ }^{2}$ P. Kunz, ${ }^{1}$ Y. Kwon, ${ }^{1}$ D.W.G.S. Leith, ${ }^{1}$ L. Levinson, ${ }^{1}$ J. Martinez, ${ }^{3}$ T. Matsui, ${ }^{2}$ B.T. Meadows, ${ }^{3}$ A. Miyamoto, ${ }^{2}$ M. Nussbaum, ${ }^{3}$ H. Ozaki, ${ }^{2}$ C.O. Pak, ${ }^{2}$ B.N. Ratcliff, ${ }^{1}$ P. Rensing, ${ }^{1}$ D. Schultz, ${ }^{1}$ S. Shapiro, ${ }^{1}$ T. Shimomura, ${ }^{2}$ P. K. Sinervo, ${ }^{1}$ A. Sugiyama, ${ }^{2}$ S. Suzuki, ${ }^{2}$ G. Tarnopolsky, ${ }^{1}$ T. Tauchi, ${ }^{2}$ N. Toge, ${ }^{1}$ K. Ukai, ${ }^{4}$ A. Waite, ${ }^{1}$ S. Williams ${ }^{1}$
${ }^{1}$ Stanford Linear Accelerator Center, Stanford University, CA 94309, USA
${ }^{2}$ Department of Physics, Nagoya University,Furo-cho,Chikusa-ku, Nagoya 464, JAPAN
${ }^{3}$ Department of Physics, University of Cincinnati, Cincinnati, OH 45221, USA
${ }^{4}$ Inst. for Nuclear Study, University of Tokyo, 3-2-1 Midori-cho, Tanashi-shi, Tokyo 188, JAPAN

ABSTRACT

Preliminary results from ongoing analyses of the $K^{-} \omega$ and the hypercharge exchange produced $\pi^{-} \pi^{+}$systems are presented. The data described are taken from a 4.1 event/nb exposure of the LASS spectrometer to an $11 \mathrm{GeV} / \mathrm{c} \mathrm{K} \mathrm{K}^{-}$beam.

INTRODUCTION

The LASS facility at SLAC ${ }^{[1]}$ is a general purpose spectrometer designed to have $\sim 4 \pi$ acceptance with good resolution and particle identification. The analyses described below are derived from experiment E-135, a ~ 113 million event exposure of LASS to an $11 \mathrm{GeV} / \mathrm{c} \mathrm{K} \mathrm{K}^{-}$beam with a total sensitivity of 4.1 events/nb. The trigger was almost unbiased for events with charged particles in the final state, making E-135 equivalent to an "electronic Bubble Chamber" experiment.

THE K ${ }^{-} \omega$ SYSTEM

A sample of $\sim 10^{5} K^{-} \omega p$ events have been extracted from the reaction $K^{-} p \rightarrow$ $K^{-} \pi^{+} \pi^{-} \pi^{\circ} p$. The analysis, more details of which can be found elsewhere ${ }^{[2]}$ is performed using joint decay spherical harmonic moments in the $K^{-} \omega$ Gottfried-Jackson frame and in the ω rest frame (using the normal to the decay plane as the analyser). Each moment is background subtracted using the ω sidebands with a negative weight and acceptance corrected, after which the $K^{-} \omega$ partial waves can be determined.

- The low mass region is dominated by 1^{+}waves and there is a prominent bump in the mass spectrum (not shown) at $\sim 1.75 \mathrm{GeV} / \mathrm{c}^{2}$ which is dominantly 2^{-}. Figure 1 shows the behaviour of the three most significant 2^{-}waves. The solid curves are the result of a fit to a single resonance, the dotted curves allow a second resonance

[^0]

Fig. 1. The significant $K^{-} \omega 2^{-}$waves, the curves are described in the text.
with the same width, but different relative intensities and phases in each wave. The single resonance fit gives $M=1.728 \pm 0.008 \mathrm{GeV} / \mathrm{c}^{2}$ and $\Gamma=0.220 \pm 0.015 \mathrm{GeV} / \mathrm{c}^{2}$, while the two resonance fit gives $M=1.715 \pm 0.011$ and $1.787 \pm 0.010 \mathrm{GeV} / \mathrm{c}^{2}$ with $\Gamma=0.212 \pm 0.023 \mathrm{GeV} / \mathrm{c}^{2}$; the errors quoted are statistical only. The two resonance fit is significantly better, and it is tempting to assign these two states to the 2^{--}and 2^{-+}states required by the quark model in this mass region.

Although the 1^{+}and 2^{-}waves are dominant, some of the underlying waves can be extracted reliably in terms of their total J^{P} contribution. In particular, resonant 2^{+}and 3^{-}signals are also seen and can be compared with other channels in the same experiment. Figure 2 shows a joint fit to the D_{+}waves from $\bar{K}^{\circ} \pi^{-[3]}$ and $K^{-} \omega$ which gives a measurement of the ratio of branching fractions of the $K_{2}^{*}(1430): K \omega / K \pi=$ $3.7 \pm 1.5 \%$. Similarly, Fig. 3 shows a joint fit to the F_{+} waves from $K^{-} \eta,{ }^{[4]} \bar{K}^{\circ} \pi^{-}$and $K^{-} \omega$ which gives for the $K_{3}^{*}(1780): K \omega / K \pi=14.3 \pm$ 2.3%. In both cases, these - are the first real measurements of the $K \omega$ branching fractions. The ratios are determined from the solid curves, where the K^{*} 's are constrained to have the same mass and width in each channel; the dotted curves show the effect of removing this constraint.

Fig. 2. The D_{+}waves from the $\bar{K}^{\circ} \pi^{-}$and $K^{-} \omega$ channels. The curves are described in the text.

Fig. 3. The F_{+}waves from the $K^{-} \eta, \bar{K}^{\circ} \pi^{-}$and $K^{-} \omega$ channels. The curves are described in the text.

THE $\pi^{-} \pi^{+}$SYSTEM

Figure 4 shows the mass spectrum of the forward $\pi^{-} \pi^{+}$system in a sample of $\sim 26 \mathrm{k}$ events of the reaction $K^{-} p \rightarrow \pi^{-} \pi^{+} \Lambda$. There are two clear resonance-like bumps where the $\rho(770)$ and $f_{2}(1270)$ might be expected. An amplitude analysis of these data confirms this, but also gives clear evidence for the existence of a 1^{-} state at $\sim 1.3 \mathrm{GeV} / \mathrm{c}^{2}{ }^{[5]}$ The significance of this state is discussed elsewhere at this conference ${ }^{[6,7]}$ but here I will describe the results of the LASS analysis.

The spherical harmonic moments are calculated from the data in the $\pi^{-} \pi^{+}$ Gottfried-Jackson frame and corrected in the usual way by Monte Carlo. The acceptance is slowly varying, and only the need to remove overlap from Σ^{*+} production before performing the amplitude analysis causes any serious distortion of the angular distributions.

- The P_{+}amplitude (shown in Fig. 5 of Ref. 6) shows a striking $\rho-\omega$ interference effect as well as the $\rho^{\prime}(1300)$. Figure 5 below demonstrates that the $\rho^{\prime}(1300)$ is present in the raw data, and is not an artifact of the analysis. The quantity $\sigma_{+-}^{P}-\mathrm{a}$ simple linear combination of moments equivalent, in the absence of F waves, to $\left(\left|P_{+}\right|^{2}-\left|P_{-}\right|^{2}\right)$-is plotted in Fig. 5(a) for the raw data. Figures 5(b), (c) and (d) show the cumulative effects of acceptance correction, removal of Σ^{*+} overlap and the final data after correction for the removal respectively. The $\rho^{\prime}(1300)$ is present at each step; the solid curve on Fig. $5(\mathrm{~d})$, corresponding to the $\rho^{\prime}(1300)$ and the tail of the $\rho(770)$, shows good agreement with the data; the dotted curve shows the tail of the $\rho(770)$.

Fig. 4. The $\pi^{-} \pi^{+}$mass spectrum of events from the reaction $K^{-} p \rightarrow \pi^{-} \pi^{+} \Lambda$ with $\left|t^{\prime}\right| \leq 2(\mathrm{GeV} / \mathrm{c})^{2}$.

Fig. 5. The σ_{+-}^{P} projection of the $\pi^{-} \pi^{+}$data at different stages of the analysis. Details are given in the text.

REFERENCES

1. D. Aston et al., The LASS Spectrometer, SLAC Report 298 (1986).
2. D. Aston et al., SLAC-PUB-5634(1991).
3. P. F. Bird, Ph.D. Thesis, SLAC Report 332 (1988).
4. D. Aston et al., Phys. Lett. 201B(1988) 169.
5. D. Aston et al., SLAC-PUB-5606(1991) to be published; SLAC-PUB-5657(1991).
6. D. Aston et al., invited talk in the 1^{--}Radial Excitation Panel of this conference, SLAC-PUB-5721(1991).
7. A. Donnachie, invited talk in the 1^{--}Radial Excitation Panel of this conference.

[^0]: \star Work supported in part by the Department of Energy under contract No. DE-AC03-76SF00515; the National Science Foundation under grant Nos. PHY82-09144, PHY85-13808, and the Japan U.S. Cooperative Research Project on High Energy Physics.

