SLAC - PUB - 5722December 1991 E

RECENT RESULTS ON K ω AND $\pi\pi$ SYSTEMS FROM LASS^{*}

D. Aston,¹N. Awaji,²T. Bienz,¹ F. Bird,¹ J. D'Amore,³ W. DUNWOODIE,¹ R. ENDORF,³ K. FUJII,² H. HAYASHII,² S. IWATA,² W. DUNWOODIE,² R. ENDORF,⁶ K. FUJII,² H. HAYASHII,² S. IWATA,⁵
W.B. JOHNSON,¹ R. KAJIKAWA,² P. KUNZ,¹ Y. KWON,¹ D.W.G.S. LEITH,¹
L. LEVINSON,¹ J. MARTINEZ,³ T. MATSUI,² B.T. MEADOWS,³ A. MIYAMOTO,²
M. NUSSBAUM,³ H. OZAKI,² C.O. PAK,² B.N. RATCLIFF,¹ P. RENSING,¹
D. SCHULTZ,¹ S. SHAPIRO,¹ T. SHIMOMURA,² P. K. SINERVO,¹ A. SUGIYAMA,²
S. SUZUKI,² G. TARNOPOLSKY,¹ T. TAUCHI,² N. TOGE,¹ K. UKAI,⁴
A. WAITE,¹ S. WILLIAMS¹

¹Stanford Linear Accelerator Center, Stanford University, CA 94309, USA ²Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464, JAPAN ³Department of Physics, University of Cincinnati, Cincinnati, OH 45221, USA ⁴Inst. for Nuclear Study, University of Tokyo, 3-2-1 Midori-cho, Tanashi-shi, Tokyo 188, JAPAN

ABSTRACT

Preliminary results from ongoing analyses of the $K^-\omega$ and the hypercharge exchange produced $\pi^-\pi^+$ systems are presented. The data described are taken from a 4.1 event/nb exposure of the LASS spectrometer to an 11 GeV/c K^- beam.

INTRODUCTION

The LASS facility at SLAC^[1] is a general purpose spectrometer designed to have ~ 4π acceptance with good resolution and particle identification. The analyses described below are derived from experiment E-135, a ~113 million event exposure of LASS to an 11 GeV/c K⁻⁻ beam with a total sensitivity of 4.1 events/nb. The trigger was almost unbiased for events with charged particles in the final state, making E-135 equivalent to an "electronic Bubble Chamber" experiment.

THE $K^-\omega$ SYSTEM

A sample of ~ $10^5 K^- \omega p$ events have been extracted from the reaction $K^- p \rightarrow$ $K^{-}\pi^{+}\pi^{-}\pi^{\circ}p$. The analysis, more details of which can be found elsewhere,^[2] is performed using joint decay spherical harmonic moments in the $K^-\omega$ Gottfried-Jackson frame and in the ω rest frame (using the normal to the decay plane as the analyser). Each moment is background subtracted using the ω sidebands with a negative weight and acceptance corrected, after which the $K^-\omega$ partial waves can be determined.

The low mass region is dominated by 1^+ waves and there is a prominent bump in the mass spectrum (not shown) at ~ 1.75 GeV/c² which is dominantly 2⁻. Figure 1 shows the behaviour of the three most significant 2^- waves. The solid curves are the result of a fit to a single resonance, the dotted curves allow a second resonance

^{*} Work supported in part by the Department of Energy under contract No. DE-AC03-76SF00515; the National Science Foundation under grant Nos. PHY82-09144, PHY85-13808, and the Japan U.S. Cooperative Research Project on High Energy Physics.

Fig. 1. The significant $K^-\omega$ 2⁻ waves, the curves are described in the text.

with the same width, but different relative intensities and phases in each wave. The single resonance fit gives $M = 1.728 \pm 0.008 \text{ GeV/c}^2$ and $\Gamma = 0.220 \pm 0.015 \text{ GeV/c}^2$, while the two resonance fit gives $M = 1.715 \pm 0.011$ and $1.787 \pm 0.010 \text{ GeV/c}^2$ with $\Gamma = 0.212 \pm 0.023 \text{ GeV/c}^2$; the errors quoted are statistical only. The two resonance fit is significantly better, and it is tempting to assign these two states to the 2⁻⁻ and 2⁻⁺ states required by the quark model in this mass region.

Although the 1⁺ and 2⁻ waves are dominant, some of the underlying waves can be extracted reliably in terms of their total J^P contribution. In particular, resonant 2⁺ and 3⁻ signals are also seen and can be compared with other channels in the same

experiment. Figure 2 shows a joint fit to the D_+ waves from $\overline{K}^{\circ}\pi^{-[3]}$ and $\overline{K}^{-}\omega$ which gives a measurement of the ratio of branching fractions of the $K_{2}^{*}(1430) : K\omega/K\pi =$ $3.7 \pm 1.5\%$. Similarly, Fig. 3 shows a joint fit to the F₊ waves from $K^{-}\eta_{,}^{[4]}\overline{K}^{\circ}\pi^{-}$ and $K^-\omega$ which gives for the $K_3^*(1780): K\omega/K\pi = 14.3 \pm$ 2.3%. In both cases, these are the first real measurements of the $K\omega$ branching fractions. The ratios are determined from the solid curves, where the K^* 's are constrained to have the same mass and width in each channel; the dotted curves show the effect of removing this constraint.

Fig. 2. The D₊ waves from the $\overline{K}^{\circ}\pi^{-}$ and $\overline{K}^{-}\omega$ channels. The curves are described in the text.

Fig. 3. The F₊ waves from the $K^-\eta$, $\overline{K}^{\circ}\pi^-$ and $K^-\omega$ channels. The curves are described in the text.

THE $\pi^-\pi^+$ SYSTEM

Figure 4 shows the mass spectrum of the forward $\pi^-\pi^+$ system in a sample of ~ 26k events of the reaction $K^-p \to \pi^-\pi^+\Lambda$. There are two clear resonance-like bumps where the $\rho(770)$ and $f_2(1270)$ might be expected. An amplitude analysis of these data confirms this, but also gives clear evidence for the existence of a 1⁻ state at ~ 1.3 GeV/c^{2[5]} The significance of this state is discussed elsewhere at this conference,^[6,7] but here I will describe the results of the LASS analysis.

The spherical harmonic moments are calculated from the data in the $\pi^-\pi^+$ Gottfried-Jackson frame and corrected in the usual way by Monte Carlo. The acceptance is slowly varying, and only the need to remove overlap from Σ^{*+} production before performing the amplitude analysis causes any serious distortion of the angular distributions.

The P₊ amplitude (shown in Fig. 5 of Ref. 6) shows a striking $\rho - \omega$ interference effect as well as the $\rho'(1300)$. Figure 5 below demonstrates that the $\rho'(1300)$ is present in the raw data, and is not an artifact of the analysis. The quantity σ_{+-}^P —a simple linear combination of moments equivalent, in the absence of F waves, to $(|P_+|^2 - |P_-|^2)$ —is plotted in Fig. 5(a) for the raw data. Figures 5(b), (c) and (d) show the cumulative effects of acceptance correction, removal of Σ^{*+} overlap and the final data after correction for the removal respectively. The $\rho'(1300)$ is present at each step; the solid curve on Fig. 5(d), corresponding to the $\rho'(1300)$ and the tail of the $\rho(770)$, shows good agreement with the data; the dotted curve shows the tail of the $\rho(770)$.

3

.

Fig. 4. The $\pi^-\pi^+$ mass spectrum of events from the reaction $K^-p \to \pi^-\pi^+\Lambda$ with $|t'| \leq 2(\text{GeV/c})^2$.

Fig. 5. The σ_{+-}^{P} projection of the $\pi^{-}\pi^{+}$ data at different stages of the analysis. Details are given in the text.

REFERENCES

- 1. D. Aston et al., The LASS Spectrometer, SLAC Report 298 (1986).
- 2. D. Aston et al., SLAC-PUB-5634(1991).
- 3. P. F. Bird, Ph.D. Thesis, SLAC Report 332 (1988).
- 4. D. Aston et al., Phys. Lett. 201B(1988) 169.
- 5. D. Aston et al., SLAC-PUB-5606(1991) to be published; SLAC-PUB-5657(1991).
- 6. D. Aston et al., invited talk in the 1⁻⁻ Radial Excitation Panel of this conference, SLAC-PUB-5721(1991).
- 7. A. Donnachie, invited talk in the 1^{--} Radial Excitation Panel of this conference.

4