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ABSTRACT 

A consistent framework is developed for studying hadronic form factors of 

heavy mesons using QCD sum rules in the heavy quark effective theory, including 

the-next-to-leading order renormalization group improvement. Sum rules are de- 

rived for the asymptotic value of the meson decay constant jp and for the universal 

Isgur-Wise form factor. It is shown that renormalization group effects considerably 

enhance the prediction for jp and bring its asymptotic value in accordance with 

recent lattice results. Including finite mass corrections, the dependence of the phys- 

ical decay constants on the meson mass is investigated. We obtain fD N 170 f 30 

MeV and Jo 21 190 f 50 MeV. The origin of the break-down of the heavy quark 

expansion for fD is analyzed. In the case of heavy meson transition form factors, 

both the QCD and l/m~ corrections are moderate and under control. A sum rule 

for the renormalized Isgur-Wise function is derived and evaluated. The theoretical 

result is compared to experimental data. 
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1. Introduction 

There is recently intense interest in the hadronic form factors of particles con- 

taining a heavy quark. The reason is that, in the limit of infinite quark mass, 

QCD reveals a spin-flavour symmetry that is not explicit in its Lagrangian [l-6]. 

It implies that the spin and mass of a heavy quark decouple from the hadronic 

dynamics. This symmetry becomes manifest to lowest order of an effective field 

;_theory describing the strong interactions of heavy quarks [7-91. In this effective 

theory, Green’s functions are expanded in powers of l/m~, with rn~ being the 

renormalization-group invariant “physical” pole mass of the heavy quark. 

The simplest type of a form factor is that describing the current-induced gener- 

ation of a heavy meson out of the vacuum. Consider, for instance, the coupling of 

a pseudo scalar meson P = (Q &- with momentum p to the axial vector current 

VI ~w5Q P(P)) = C~PP, . (14 

- 
The decay constant jp is a measure of the strength of the quark-antiquark attrac- 

tion inside the bound state. It is, therefore, a hadronic quantity of primary theo- 

retical interest. Governing the strength of leptonic and nonleptonic weak decays of 

heavy mesons as well as phenomena like B - B mixing, which provide information 

on the mass of the top quark and on the CKM-matrix, decay constants are also of 

considerable phenomenological importance. Based on the non-relativistic constitu- 

ent quark model, it was known for a long time that, up to logarithmic corrections, 

jp obeys the asymptotic scaling law 

as mp + oo. In the framework of the heavy quark expansion, such a behaviour can 

be shown to be a general consequence of &CD. Furthermore, the leading and next- 

&leading logarithmic corrections to (1.2) h ave been calculated and summed to all 

orders in perturbation theory [4, lo- 121. Th e asymptotic dependence of jp on the 
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mass of the heavy meson is thus well-understood. A study of the mass-dependence 

of physical decay constants provides, therefore, an estimate of the corrections to the 

infinite quark mass limit. In the absence of experimental information, considerable 

attention has been devoted to the theoretical calculation of jp and its dependence 

on mp. Besides QCD-inspired potential models [13,14], the sum rule approach of 

Shifman, Vainshtein, and Zakharov [15] and lattice gauge theory are the tools that 

have been most extensively used for this purpose. While there is general agreement 

-(within th e intrinsic uncertainties of each method) on the value of fD, recent lattice 

results indicate an unexpectedly large value Jo > fD in vast contradiction to the 

scaling law (1.2) [16-191. Th’ h is as b een interpreted as a signal for a break-down of 

the l/mQ expansion for the case of charmed particles. QCD sum rule calculations, 

on the other hand, yield considerably smaller values for Jo [20 - 281. One of the 

purposes of this paper is to combine the sum rule technique with the heavy quark 

expansion, and to understand and resolve the discrepancy between sum rule and 

lattice calculations. 
- 

Probably the most fruitful application of the heavy quark spin-flavour symme- 

try is encountered in weak decays of heavy hadrons. Isgur and Wise have worked 

out the symmetry relations imposed on the various hadronic form factors describing 

current matrix elements between two heavy mesons or baryons [6]. For instance, 

they have shown that as mg, m, + 00, all the many form factors describing transi- 
- -* 

tions between any two of the mesons B, B , D, and D* become related to a single 

universal function [(TJ . 2)‘). This so-called Isgur-Wise form factor [6,29] is a uni- 

versal function of &CD, summarizing all long distance effects active in the weak 

transition. It only depends on the velocities of the heavy particles and is nor- 

malized at zero recoil, where 2, . o’ = 1. The reduction of form factors implies a 

significant simplification of the theoretical description of semileptonic weak decay 

processes, as has been extensively discussed in the recent literature [30-361. 

In this paper, we develop a consistent framework for studying hadronic form 
.-- 

factors of heavy mesons by combining QCD sum rule and renormalization group 

techniques with the effective theory for heavy quarks. The method is applied to 
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calculate the asymptotic value of jpe, and the Isgur-Wise form factor. In 

Sect. 2.1, we rewrite the standard Laplace sum rule for jp in a form which is 

suitable for a l/mQ expansion. We then present, in Sect. 2.2, a rederivation of 

the asymptotic form of this sum rule (valid for infinitely heavy mesons) by using 

the effective field theory formalism of Georgi [7]. One advantage of this second 

approach is that the sum rule in the effective theory only depends on low energy 

parameters, which are independent of the heavy quark mass. These parameters are 
I --- 

a priori not known in the standard approach. The most important advantage of 

the effective theory is, however, that a renormalization group improvement can be 

performed by summing the large logarithms (crs ln mQ)n and os (cys ln mQ)n to all 

orders in perturbation theory. In particular, the scale ambiguity associated with 

the leading QCD correction is resolved. These renormalization group effects, which 

have not been taken into account in previous calculations of the asymptotic value 

of fP&cpLq, t urn out to be very significant. They bring the sum rule result 

in accordance with lattice computations. In Sect. 2.3, the expressions derived in 

the effective theory are combined with the standard Laplace sum rule for fp to 

obtain an improved calculation of the physical decay constant as a function of the 

heavy meson mass. Deviations from the mQ + 00 limit and from the scaling law 

(1.2) are investigated in detail. 

The second part of the paper is devoted to the calculation of the universal 

Isgur-Wise form factor. After a short introduction into the effective field theory 

formalism, we derive the Laplace sum rule for [(v . v’) in Sect. 3.2, and discuss 

its renormalization group improvement in Sect. 3.3. This completes two recent 

calculations of the universal form factor, which have ignored renormalization ef- 

fects [36,38]. The Isgur-W ise function is given by the ratio of a sum rule for a 

three-point correlator and a sum rule for a two-point correlator. A Ward identity 

ensures its correct normalization at zero recoil. It is shown that, unlike the sit- 

uation encountered for jp, the sum rule calculation of [(u . w’) is not affected by 
._- 

unusually large QCD corrections, nor does one expect large l/mQ corrections to 

the infinite quark mass limit. Our theoretical prediction for the Isgur-Wise form 
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factor compares well with a recent extraction of this function from experimental 

data on B t D*(F~ decays [34]. Sect. 4 contains the conclusions. 

2. Decay Constants of Heavy Mesons 

2.1 LAPLACE SUM RULE FOR~P 

The QCD sum rules proposed by Shifman, Vainshtein, and Zakharov (SVZ) [15] 

;%ave proved to be a powerful phenomenological tool in the study of low energy 

parameters of hadrons, like their masses or couplings to currents. The idea is 

that hadronic properties may be studied in a self-consistent way by equating an 

integral over a physical spectral function to an approximation of the operator 

product expansion of the time-ordered product of two (or more) local currents. 

QCD sum rules for the pseudo scalar decay constant jp have been first considered 

in Refs. 20 and 23. One studies the two-current correlator 

- I15(q2) = i 
J 

d4x eiq” (0 I 7v5w7 A5(0)+) IO > w 

with A5 = imQ ‘us& = dp(?j7P7sQ) being the divergence of the axial vector current 

in the limit where the light quark is massless (m, = 0). Since this current is 

partially conserved, II5( q2) is a renormalization-group invariant quantity. 

According to the philosophy of SVZ, the correlator is evaluated in two ways. 

In the euclidean region q2 << 0, it can be calculated perturbatively because of 

asymptotic freedom of &CD. Short distance effects are taken care off by Wilson co- 

efficients, while long distance confinement effects are included as power corrections 

and are parametrized in terms of vacuum expectation values of local operators, the 

so-called condensates [15]. Hence 

H5(q2) = qer7 q2) + nyd(q2) . (q2 < 0) (2.2) 

On the other hand, the correlator can be expressed as an dispersion integral over a 

physical spectral function, which gets contributions from the ground state meson 
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P as well as from higher resonances. The residue of the pole is given by the decay 

constant jp. The resonance contributions are usually approximated by a dual 

perturbative continuum above a threshold sC. Using (1.1) one thus writes 

j2 m4 
II5(q2) = p p 

m$- 
+L ds 

q2-ic 7r J 
O” ZmBY’t(s) + subtractions. s-q2-iiE (2.3) 

SC 

‘-Equating the two expressions for I15(q2) yields the sum rule, from which fp can be 

determined. It is necessary, however, to improve the convergence by suppressing 

the continuum contribution to the spectral function. This is achieved by applying 

the Bore1 operator 

EM2 = lim 
n-+00 (2.4) 

-q2 -+ 00 

- &f2 = $ fixed 

to both sides of the sum rule. In particular, this also eliminates possible subtrac- 

tions required for the convergence of the dispersion integral in (2.3). The result is 

the so-called Laplace sum rule 

SC 
1 fSm4p e-m;/M2 _ 

M2 -- 
TM2 J ds Zm II~e’t(s) e-‘lM2 + EM2 I’Irnd , 

m29 

(2.5) 

where the perturbatively calculated spectral function has a cut starting at s = m$. 

Explicit expressions for the functions appearing on the right-hand side of (2.5) 

can be found in Ref. 23. In order to determine jp in a self-consistent way, one 

tries to optimize the value of the continuum threshold sC in such a way that the 

computed value of the decay constant is stable with respect to variation of the 

Bore1 parameter M2 in a region where the theoretical calculation of IIEert and IIynd 

is reliable. For too small values of M2 the power corrections blow up, while the 
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continuum contribution becomes dominant at large M2. One thus aims for stability 

in an intermediate region, where both the power and continuum contributions stay 

reasonably small. 

In its above form, the Laplace sum rule is not suited for an expansion in 

powers of l/m~, since the dependence of the parameters M2 and sC on the heavy 

quark mass is a priori not determined. It is convenient to introduce a set of new 

parameters by 
L -- 

mQTdf2, 

rnQWc~S,-rn~, (2.6) 

rnQfkrn&rn& 

In the following section we will show that the new variables T, wC, and i become 

constant low energy parameters in the rn~ + 00 limit. Substituting them into 

(2.5), th e a L pl ace sum rule takes the following form 

3 
,-x/T 

- 

3T3 
e/T 

=- 
879 J 

d; 

0 

-6l )crnQ) 

+mi!i (@l>(mQ) 1 _ 2T 
4T2 ( -) +***, mQ 

(2.7) 
where rni is defined as ratio of the so-called mixed condensate and the quark 

condensate, gs ( ?j gPI/Gfi” Q ) E mi( @ ). The ellipses stand for power corrections 

from higher-dimensional condensates (d > 6). Th ese are expected to be very small. 

Already the four-quark condensate is suppressed by a factor of 10m3 as compared 

to the quark condensate. 

‘- ‘--In (2.7) we have included the radiative corrections to the dispersion integral 

and to the contribution of the quark condensate. The first one has been calculated 
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in Ref. 39. In our notation, the function K(x) is given by 

it: lna: 
K(x) = 2Li2(-2) + lnz ln(l+ Z) - l+z + + ln( 1 + 2) - 1 

++(~+~)1”+0(23) 
P-8) 

with Liz(z) being the dilogarithm. The correction to the quark condensate contri- 

I+bution is new. In (2.7), mQ is the physical heavy quark mass defined as the pole 

of the renormalized propagator. This renormalization-group invariant quantity is 

related to the running mass of the MS subtraction scheme by [40,41] 

fiQ(P> = mQ ( ;;;;))dm { 1 - On;;Q)) ; drn = (33 :2nf) . (2.9) 

The running of the quark condensate is given by 

- 
(2.10) 

and is such that the product mQ (qq ) is renormalization-group invariant. In the 

sum rule (2.7), th e condensate is to be evaluated at the scale of the heavy quark. 

Eq. (2.7) is completely equivalent to the more familiar form (2.5) of the sum 

rule, which has been first investigated in Ref. 23. For its evaluation we use the 

standard values of the vacuum condensates [15,42] 

(ifq)(l GeV) = -(230 MeV)3 , 

(a,GG) = 0.038 GeV4 , 

rni = 0.8 GeV2 , 

as(ijq)2 = 6 x 10m5 GeV’ , 

(2.11) 

._- 
as well as the flavour-independent value x = 1 GeV, corresponding to the pole 

masses mc N 1.44 GeV and rnb 21 4.80 GeV. The effect of a variation of A is 
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discussed below. The only free parameter in (2.7) is the threshold energy wc. 

Evaluating the radiative corrections at the scale of the heavy quark, one finds 

good stability in the wide region 0.5 GeV < T < 2.0 GeV for wc N 2.4 GeV for 

fD and wc 1: 2.0 GeV for f~, corresponding to s: z 5.5 GeV and s! 21 33 GeV, 

respectively. Unlike the continuum thresholds, the optimal WC-values are rather 

insensitive to the mass of the heavy quark. In the stability region, the values 

of the decay constants are f~ 21 170 f 30 MeV and f~ N 140 f 30 MeV. They 

‘*agree with those obtained in Ref. 23. Variation of the QCD parameters within the 

standard limits does not significantly change these results. 

Under the premises that T, wc, and i are indeed low energy parameters, one 

can immediately perform the limit mQ -+ 00 in (2.7). This non-relativistic form 

of the sum rule has been investigated as early as 1982 in a paper by Shuryak [21]. 

Recently, it has been rederived and discussed in Ref. 37. At this point, it is worth 

noting that the right-hand side of (2.7) h s ows a logarithmic dependence on the 

heavy quark mass both in the radiative correction to the dispersion integral and in 

the running of the quark condensate. Eventually, one would like to separate this 

dependence from the sum rule, and sum the large logarithms (cys In mQ) n to all 

orders in perturbation theory. It is also obvious that the radiative correction to 

the dispersion integral is dangerously large, even if the strong coupling is evaluated 

at the scale of the heavy quark. However, it is not obvious that ~1 = mQ really is 

the appropriate scale to use. For this reason, a next-to-leading order calculation, 

which resolves the scale ambiguity problem, is most desireable. In the following 

section, we will derive the correct asymptotic form of the sum rule and perform 

the complete next-to-leading order renormalization group improvement. To this 

end, it is necessary to employ an effective theory for heavy quarks. 



2.2 SUM RULE IN THE EFFECTIVE THEORY 

A convenient framework for systematically analyzing both the QCD and the 

l/mQ corrections to the infinite quark mass limit is provided by the so-called heavy- 

quark effective theory developed by Georgi [7]. The basic observation is that as 

mQ + co, the velocity v of a heavy quark becomes a conserved quantity with 

respect to soft processes. It is then possible to remove the mass-dependent piece 

I *of the momentum operator by the velocity-dependent field redefinition 

hQ(V, 2) = eimQ~‘*” $Q(x) , (2.12) 

such that 

where P is the total momentum of the heavy quark, mQ is its physical pole mass, 

and .k denotes the residual “off-shell” momentum which is typically of order AQCD. - 
In terms of the new fields hQ( V, x), the effective Lagrangian consists of an infinite 

series of operators with increasing canonical dimension, multiplied by increasing 

powers of l/mQ. To lowest order in the l/mQ expansion, this Lagrangian explicitly 

exhibits the spin-flavour symmetry for heavy quarks [7-91. 

The axial vector current A, = ~y~~y5 Q can be expanded in terms of operators 

of the effective theory as follows 

A, N D1 (y) 77YpY5 hQ(u) - D2 (3 q7J,Ys hQ(“) 

where the index i labels operators of the same canonical dimension, and we have 

explicitly written down the two lowest-dimensional operators. The symbol “E” 

means that (2.14) is an equality for matrix elements only. In the full theory, matrix 

elements of the axial vector current depend on the mass of the heavy quark, but 
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are independent of the renormalization scale since the anomalous dimension of A, 

vanishes. Matrix elements of operators in the effective theory, on the other hand, 

are independent of the heavy quark mass. All reference to mQ is either in form of 

powers of l /mQ that multiply the higher-dimensional operators ,a!‘“), or in the 

short-distance coefficients Di (n). These functions appear since the properties of the 

effective theory under renormalization differ from QCD. In particular, the effective 

current operators have non-zero anomalous dimensions, such that matrix elements 
I *-. 

depend on the renormalization scale ~1. From the fact that the scale-dependence of 

matrix elements must exactly cancel against that of the short-distance coefficients, . 

one can derive the renormalization group equation for the functions Di (n). In order 

to solve this equation to first order in the physical coupling as(mQ), one needs the 

two-loop anomalous dimensions of the current operators in the effective theory. For 

the lowest-dimensional operators in (2.14) th e anomalous dimension is the same. It 

has recently been calculated in Refs. 11 and 12. For our purpose, we only need the 

sum. of the coefficients D1 and D2, the complete next-to-leading order expression 

for which is [43] 

where S is a scheme-dependent constant. In the MS subtraction scheme, SE = 2/3. 

The constant Znr is scheme-independent and reads 

- 
Znr 

381 - 
3 

153 
= 19rLf 30nf 

+ 28~~ 2 
- -- (33 2nf)2 36 (33 - 2nf) 3 ’ - 

(2.16) 

where nf is the number of light quark flavours. (The value for Znr quoted in Ref. 11 

%ers from our result by -2/3. The correct next-to-leading order correction is only 

half as large as stated in that paper.) 
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Matrix elements of operators in the effective theory respect the heavy quark 

symmetries and can be most concisely computed employing a compact trace for- 

malism [29,30]. For th e relevant matrix elements of the operators appearing in 

(2.14)~ one writes 

(0 1 Tjr hi If’(w)) = &!$ Tr { I P(V) } (2.17) 

with I being an arbitrary Dirac matrix. F(p) is a scale-dependent low energy 
L -- 

parameter independent of mQ, and 

(2.18) 

denotes the spin wave function of the pseudo scalar meson P. 

Substituting the expansion (2.14) into (1.1) and carrying out the traces in 

(2.17), we obtain the following relation between the physical decay constant fp 

and the low energy parameter F(p) 

- = CF (2.19) 

Since fp is a physical quantity, the right-hand side of this equation must be inde- 

pendent of the subtraction scale and of the renormalization scheme adopted for the 

calculation of CF. It is thus convenient to define the p-independent short-distance 

coefficient cF( mQ) and the renormalized constant F,,, by 

such that 

eF(mQ) = [%(mQ)] -dm’2 { 1 + as(7imQ) &} , 

Fmn = [as(P)ldmlz { 1 - * (Zn, + s)> F(p) , 

CF ( ~)F(P) = cF(mQ) Ken . 

(2.20) 

(2.21) 

These new quantities are renormalization-group invariant. F,,, is a universal low 
._- 

energy parameter of QCD. It can only be estimated using non-perturbative tech- 

niques. In (2.20), t t b i is o e understood that the number of active flavours, i.e. the 

12 



value of nf in Zn, and d,, changes as one scales down from mQ to p. Explicitly, 

one has 

&F(mc) = [CYs(mc)] -2’g { 1 + asrc’ z3) ? 1.22 , 

&F(W) = (@$~:i>“‘” [ws(mc)] -2’g (2.22) 

x 1 + dmd - dmc) z4 + 44 23 N 1.39 
L -- 7r n- 

for the D and B meson, respectively. For the numerical estimate, we have used 

mc = 1.45 GeV and rnb = 4.67 

second order. In the MS scheme, 

GeV [41]. The running coupling is accurate to 

as(mQ) = (33 -iFf) lnv 
(153 - 19nf) lnlnv 

’ - 6 (33 - 2nf)2 ~1 ; u = ($)2 . (2.23) 

We use AF = 0.2 GeV and adjust the nf-dependence of this parameter such that 

the-running coupling is a continuous function of mQ. - 
In order to compute the renormalized parameter F,,, using QCD sum rules in 

the effective theory, we investigate the correlator 

I’S(W) = i 
J 

cl42 eik’3: (0 1 ~{d~)(~),d$V)(O)+} ) 0) ; w f 2 k - 2, , (2.24) 

with A?) = - q ~5 hQ (0) being the effective pseudo scalar current. In the rest frame 

of the heavy quark, w is twice the external “off-shell energy”. The perturbative 

contribution to Is is obtained by evaluating the diagrams shown in Fig. la. The 

Feynman rules of the effective theory are given in the appendix. Using dimensional 

regularization and the MS subtraction scheme, we find 

, (2.25) 

where S is the same scheme-dependent constant that appears in (2.15)) i.e. Sm = 

2j3. Next we compute the nonperturbative power corrections to Is. The contribu- 

tions involving the quark and gluon condensate are depicted in Fig. lb and c, 

13 



respectively. The calculation is most easily performed in the coordinate 

xpAfl(x) = 0. Including all condensates with dimension d 5 6, the result is 

rp)(W) = (qq)(P) 
W 

{l+?(;+&)}, 

; -- 

riGG)(w) = 0 , 
r(quGq)(W) = -$ (q”p~Tyq) 

5 

rp)2(W) = fJ$ “‘2)’ , 

= m~(~d - 
2w3 ’ 

ww 

(2.26) 

where the factorization approximation has been used to reduce the four-quark 

condensates to (,q)2 [15]. N t o e, in particular, the vanishing of I’r”’ resulting 

from the explicit calculation of the diagrams shown in Fig. lc. This is in accordance 

with the fact that the contribution of the gluon condensate in (2.7) is associated 

with a factor l/mQ instead of l/T. 

Concerning the calculation of the pole contribution to the phenomenological 

side of the sum rule, we note that according to (2.12) the total external momentum 
- 

in (2.24) is P = mQw + k, such that the propagator of the heavy meson becomes 

(P2 - mg)-’ + [mQ(W - ii)]-’ with x as defined in (2.6). The hadronic matrix 

elements in the effective theory are readily evaluated using (2.17). Approximating 

higher resonance contributions by the perturbative continuum above a “threshold 

energy 7, wc, which is the analog of the continuum threshold sc, the phenomenolo- 

gical expression for the spectral function becomes 

I’ihe”(w) = X f”,(y i E + b Tdw’ Irn r”2(W’) + subtractions. 
w’-w-ie 

WC 

(2.27) 

The Laplace sum rule for F2(p) is obtained by applying the Bore1 operator 

with respect to w 

& = 

..- 
-w --+ 00 

T = 2 fixed 

(2.28) 
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and equating the different expressions for the correlator. The result is 

[ 
lnF+F+ 

27? 
--9--+6-lnz 

I) 

(2.29) 

We observe that the sum rule in the effective theory precisely corresponds to the 

leading term in the l/mQ expansion of (2.7), showing that the parameters T,wc, 

and i introduced in (2.6) are in fact properly chosen low energy parameters. The 

only difference is the replacement of the heavy quark mass mQ by the subtraction 

scale ,CL and the appearance of the scheme-dependent terms proportional to S. These 

terms cancel if one computes the renormalized quantity F,2,,. 

With the help of (2.20), one can readily perform the renormalization group 

improvement of (2.29). The logarithmic dependence on p can be summed to all 

orders to produce a factor (yS ’ 
H-9 

-dm 
a,T) - For the quark condensate this is already 

known from (2.10). Th e next-to-leading order corrections split into a contribution 

a*(z,, t 6) and a p-independent correction. For this latter, the running cou- 

pling is to be evaluated at a characteristic low energy scale of the effective theory. 

We choose i for this scale, since it provides a measure of the average off-shell 

energy w of the heavy quark in the meson. An alternative choice would be the 

Bore1 parameter T. The differences are formally of order o?j and hence beyond the 

accuracy of the present calculation. Because of the size of the order-as correction, 

the numerical results are not insensitive to this choice, however. We shall comment 

on this below. 

*‘ ‘-Putting everything together, we obtain the following renormalization-group 

improved sum rule for the renormalized parameter F,2,, defined in (2.20) 
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.- .  .  .  I  _  L  

F L z e  -x/T =  [as(T) ]4 ’g  { 1  _  & $ % z3}  

w h e r e  w e  h a v e  u s e d  th a t th e  n u m b e r  o f l ight q u a r k  flavours  in  th e  e ffect ive low 

e n e r g y  th e o r y  is nf =  3 . In  Fig. 2 , th e  fu n c tio n  F,,,(T) is s h o w n  fo r  A  =  1 .2 5  G e V  

a n d  var ious  va lues  o f th e  th resho ld  e n e r g y  wc. W e  fin d  g o o d  stabil i ty over  a  w ide  

r a n g e  o f th e  B o r e 1  p a r a m e te r  T. For  o th e r  va lues  o f i, th e  resul t ing curves look  

very sim ilar. T h e  va lues  o f wc a n d  T prov id ing  o p tim a l stabil i ty a p p r o x i m a tely 

sca le  with A . W e  o b ta in  

0 .3 4  f 0 .0 3  G e V 3 1 2  ; i =  1 .0  G e V  
.- Fren  N  0 .4 2  f 0 .0 4  G e V 3 j2 ; i =  1 .2 5  G e V  (2 .3 1 )  

0 .4 7  f 0 .0 5  G e V 3 1 2  ; i =  1 .5  G e V  

fo r  th e  renorma l i zed  low e n e r g y  p a r a m e te r . T h e  q u o te d  er rors  re flect th e  var ia t ion 

o f th e  resul ts wi th respect  to  c h a n g e s  in  wc a n d  in  th e  va lues  o f th e  v a c u u m  c o n d e n -  

sates. T h e  intr insic u n c e r tainty o f th e  s u m  ru le  ca lcu lat ion m ight  b e  cons iderab le  

larger ,  h o w e v e r . This  c a n  b e  in fer red f rom th e  fo l low ing  observa tio n . If th e  sca le  

i in  th e  n e x t-to - l ead ing  logar i thmic  correct ions is rep laced  by  T, th e  r u n n i n g  o f 

as(T)  l eads  to  a  suppress ion  o f Fren(  T) a t 1  a r  g  e  va lues  o f th e  B o r e 1  p a r a m e te r . 

This  e ffect, wh ich  is fo rmal ly  o f o r d e r  oz, is so  signif icant th a t it c h a n g e s  th e  

c o n tin u u m  th resho ld  p rov id ing  b e s t stabil i ty f rom wc N  2 .3  G e V  to  wc N  3 .0  G e V  

(for i =  1 .2 5  G e V ) . A  s a  c o n s e q u e n c e , th e  resul t  fo r  Fren  i nc reases  by  a lmos t 

2 0 % . This  is in  c o n flict wi th th e  S V Z  ph i losophy  th a t th e  stabil i ty o f th e  s u m  ru le  

shou ld  resul t  f rom a  b a l a n c e  b e tween  its p e r tu r b a tive  a n d  n o n p e r tu r b a tive  p a r ts. ..- 
In  o r d e r  to  avo id  th is e ffect, w e  eva lua te  th e  n e x t-to - l ead ing  o r d e r  correct ions a t 

th e  fixe d  scale  i. 
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Eq. (2.31) exhibits a rather strong dependence of F,,, on the mass difference 

i, which is a low energy parameter that can again in principle be determined using 

nonperturbative techniques like lattice gauge theory or QCD sum rules. While no 

lattice results are available today, an estimate of the pole mass of the b-quark can be 

obtained from a QCD sum rule analysis of the bottonium spectrum. The extracted 

values range from rnb = 4.80 f 0.03 GeV [44] to rnb = 4.67 f 0.10 GeV [41] and 

rnb = 4.55 f 0.05 GeV [26], corresponding to i(b) = 1.01 f 0.06 GeV, 1.30 f 0.20 
I -+- 

GeV, and 1.57 f 0.10 GeV, respectively. This is the range of values covered in 

(2.31)) and we shall assume that x(b) is not very different from the asymptotic 

value that A acquires in the infinite quark mass limit. 

From (2.31) and (2.22) one can compute the so-called static limit of the decay 

constant of the B meson, which is given by the first term on the right-hand side 

of (2.19). We find 

F,,, N 200 - 300 MeV. (2.32) 

These sum rule results can be compared to recent lattice calculations of the 

decay constants of heavy mesons, which use the static approximation of the heavy 

quark propagator [l]. In these computations, one determines the parameter F(p = 

a-l) in (2.19) in units of the inverse lattice spacing a-r. The numerical result can 

be converted into physical units by normalizing to the decay constant of a light 

pseudo scalar meson (fir or f~). Furthermore, a renormalization factor is required 

to relate the lattice result to the renormalized parameter F,,, defined in (2.20). In 

next-to-leading order, the relation is 

F,,, = [CL&-~)] dm’2 { 1 - $-l) (zn, t bm t “mt)} I;;,tt(a-I) , (2.33) 

where SE = 2/3 accounts for the matching between QCD and the effective theory 
._- 

for heavy quarks, while 61att provides the matching between the effective theory 

in the continuum and on the lattice. For Wilson fermions (with r = l), the value 
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of this constant is Slatt N 4.38 [45,46]. F or a lattice spacing corresponding to 

u-1 N 2 GeV, the relation (2.33) thus reads Fr,-, N 0.48 Fl,tt(a-l). We note that 

in next-to-leading order of renormalization-group improved perturbation theory, 

the correction factor in (2.33) is 209’ o smaller than that used in three recent lattice 

computations of fitat [16-181. Resealing the values obtained there, we find (The 

result of Ref. 16 increases to 0.43f0.07 if the lattice spacing is determined without 

reference to fT and fK.) 
I -- 

0.36 f 0.06 GeV3i2 ; Ref. 16 

F$it 141 

i 
0.50 f 0.08 GeV3/2 ; Ref. 17 (2.34) 

0.44 f 0.07 GeV3i2 ; Ref. 18 

corresponding to fitat = 218 f 36 MeV, 302 f 48 MeV, and 266 f 42 MeV, respec- 

tively. Comparison with (2.31) and (2.32) h s ows that the values obtained from our 

improved sum rule is completely consistent with the lattice results. 

Before proceeding, we would like to make a comment on the size of the QCD 

correction in (2.30). After the renormalization group improvement, the scale am- 

biguity associated with the next-to-leading corrections has been resolved. The 

radiative correction to the dispersion integral is proportional to the physical coup- 

ling as(A) in the low energy theory and is accompanied by the large coefficient 

13 4lr2 
yt9- 2 z-3 = g + ; lr2 N 10.43 ) (2.35) 

which (in Feynman gauge) is mainly due to the gluon exchange between the heavy 

and the light quark. With e N 0.1, th e radiative correction amounts to a 

100% enhancement of F,2,,, corresponding to a 50% enhancement of fp. We would 

like to stress that this is a purely perturbative result not specific for QCD sum 

rules. It is rather a general property of the two-current correlator I’s. The physical 

origin of this effect is likely to be the Coulomb interaction between the quarks. We 

believe that the size of the correction might indicate an interesting nonperturbative 

enhancement of the decay constants, which could ultimately limit any perturbative 
..- 

approach to calculate fp. This should be kept in mind when considering the 

significance of the sum rule results (2.31) and (2.32). 
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2.3 IMPROVED SUM RULEFOR fp 

After this caveat, we proceed by deriving an improved sum rule for fp, which 

allows for a quantitative estimate of finite-mass corrections to the infinite quark 

mass limit. To this end, we combine the renormalization-group improved sum rule 

(2.30) derived in the effective theory with the standard sum rule (2.7) by adding 

back those term that vanish in the mQ + 00 limit. Let us define the quantity 

IG(mQ) bY 

fp 6 (z) 3’2 - &(mQ) G(mQ) , 

mih$m G(mQ) = Ken . 

(2.36) 

This function is free of large logarithms and has as well-defined behaviour in the 

infinite quark mass limit. From (2.30) and (2.7)) we obtain the sum rule 

- G2 (mQ> e-x/T = [cx,(T)]~” { 1 - +z3} 

3T3 
e/T 

x 8r2 c J - dzl:F& [It~(~t~-ln.t~~~(,~))] 
0 

-(@NT) lt- [ 2a;;\’ (1-3$Tdn 

0 

_ bsGG) + 
12TmQ 

1 
‘*’ ’ 

(2.37) 

where we have neglected the tiny contribution of the four-quark condensate. To 

first order in (us, Eqs. (2.36) and (2.37) are equivalent to (2.7). In the improved sum 

rule, however, the large logarithms (a, ln mQ)n and ffs (as ln mQ)n are correctly 

summed to all orders in perturbation theory and factorized into the short distance 
. 

c&icient cF(mQ). The leading corrections not taken into account are of order 

0’: Or $(ashmQ)2, neither one of which becomes large as mQ -+ co. 
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In Table 1, we investigate the mg-dependence of G(~Q) and related quanti- 

ties for i = 1 GeV and 1.25 GeV. Shown are the values providing best stability 

only. The optimal value of wC is found to slightly increase as the heavy quark mass 

becomes smaller. This effect stabilizes the mass-dependence of G(vLQ). As a con- 

sequence, we find a moderate mass-dependence of this function even in the region 

of the charm quark. Typically, G(mb) and G(m,) are 5-10% and 15-20% smaller 

than the asymptotic value G(oo) = F,,,, respectively. The l /m~ corrections being 

‘2 the naively expected order of magnitude (- RQCD/~Q), we conclude that the 

heavy quark expansion works well for the quantity G(~Q). 

Table la: Mass-dependence of the sum rule results for x = 1 Ge V 

mQ [GeVl 772, = 1.44 3.0 mb = 4.80 20.0 ccl 

mp [GeVl mg = 1.87 3.46 mg = 5.28 20.5 00 

wc [GeV] 2.4 2.2 2.1 2.0 1.9 

sc [GeV2] 5.5 15.6 33.1 440 00 

- G(mQ) [GeV3j2] 0.286 0.310 0.317 0.335 0.340 

( 9)3’2G(mQ) mp [GeV312] 0.193 0.251 0.275 0.323 0.340 

fp NeVl 172 180 166 109 0 

Table 1 b: Mass-dependence of the sum rule results for 11 = 1.25 Ge V 

mQ LGeVl m, = 1.35 3.0 mb = 4.69 20.0 co 

w [GeV] mD = 1.87 3.57 mg = 5.28 20.6 03 

wc [GeV] 3.0 2.6 2.5 2.4 2.3 

sc [GeV2] 5.9 16.8 33.7 448 co 

G( mQ) [GeV3j2] 0.330 0.361 0.373 0.404 0.411 

(z)“‘“G(mQ) [GeV3j2] 0.203 0.278 0.312 0.386 0.411 

fP ww 179 196 189 130 0 

The situation changes if one considers the quantity (z)3’2G(mQ), which up 
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to the short-distance correction determines the size of fpfi. The additional 

mass ratio amounts to a further suppression of f~ by - 15% and fD by - 40%. 

Therefore, the decay constants themselves are subject to very large finite-mass 

corrections. It is important to remember, however, that the explicit appearance of 

quark masses is a specific feature of the pseudo scalar decay constants. Such an 

effect does not occur, e.g., in the case of heavy quark transition form factors. The 

fact that the decay constants are subject to very large scaling violations should 

“*therefore not be considered as an indication of a general failure of the heavy quark 

expansion for the case of the charm quark. 

Using the pole masses as given in Ref. 41, mb = 4.67 f 0.10 GeV and m, = 

1.45 f 0.05 GeV, our final results are fD N I70 f 30 MeV and fB N 190 f 50 

MeV, i.e., the decay constant of the B meson is indeed found to be larger than 

that of the D meson. The quoted errors mainly reflect the uncertainty in the value 

of A and in the scale used in the next-to-leading logarithmic corrections. Two 

effects are responsible for the large value of J”B ( as compared to the standard sum 

rule estimate at the end of Sect. 2.1), the most important one being that after 

renormalization group improvement the radiative corrections have to be evaluated 

at a low energy scale instead of at the scale of the heavy quark mass. A second 

increase is due to the different quark masses used and the strong sensitivity of fp 

to A z 2(mp - mQ). The decay constant of the D meson, on the other hand, 

agrees with our earlier estimate. 

3. Sum Rule Calculation of the Isgur-Wise Form Factor 

3.1 CURRENT MATRIX ELEMENTS IN THE EFFECTIVE THEORY 

We now turn to the study of the form factors describing current-induced tran- 

sitions between two heavy mesons Pr and P2. Specifically, consider transitions 

between any two of the ground-state pseudo scalar and vetor mesons D, D*, B, 

and B*. In general, the corresponding matrix elements involve a large set of 
..- 

d priori’ unrelated form factors. Exploiting the consequences of the spin-flavour 

symmetry for the heavy quarks, however, Isgur and Wise have shown that in the 
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lim it m b , m , +  o o  al l  th e s e  fo r m  factors b e c o m e  p r o p o r tio n a l  to  a  s ing le  un iver -  

sal  fu n c tio n  t(w . v’) [6 ]. T h  is so-ca l led  Isgur -Wise  fo r m  factor  is i n d e p e n d e n t o f 

th e  masses  o f th e  heavy  quarks.  It on ly  d e p e n d s  o n  th e  veloci ty- transfer a n d  is 

no rma l i zed  a t ze ro  recoi l .  

T h e  re la t ions a m o n g  fo r m  factors th a t th e  heavy  q u a r k  s y m m e tries g e n e r a te  

c a n  a g a i n  b e  m o s t concisely  w o r k e d  o u t by  us ing  th e  t race fo rma l i sm a l ready  

d iscussed in  S e c t. 2 .2 . In  th e  e ffect ive th e o r y , th e  m a trix e l e m e n t descr ib ing  th e  
I - -  

t ransi t ion o f a  heavy  m e s o n  P I wi th velocity v to  a  heavy  m e s o n  P 2  with velocity 

w ’ is g i ven  by  [2 9 ] 

( P 2 ( ~ ‘)1  ~Q~(v ' )  r  ~ ~ ~  (v) [P I(W ) )  =  -[(v . v’,p )  Tr  { % ( u ’) I’R(v)}  , ( 3 .1 )  

w h e r e  r  is a n  arb i t rary  Di rac m a trix, a n d  th e  s c a l e - d e p e n d e n t fu n c tio n  t(~  . u ’, p )  

is th e  a n a l o g  o f th e  low e n e r g y  p a r a m e te r  F(  ,Y )  in  (2 .1 7 ) . By  eva lua tin g  th e  current  

m a ttix e l e m e n t fo r  e q u a l  m e s o n s  o n e  c a n  readi ly  s h o w n  th a t th is  fu n c tio n  satisfies 
-  

th e  ze ro  recoi l  normal iza t ion  [( 1 , p )  =  1 . T h e  sp in  w a v e  fu n c tio n  P ( V )  o f a  p s e u d o  

scalar  m e s o n  h a s  b e e n  g iven  in  (2 .1 8 ) . F  o r  a  vector  m e s o n  with po lar iza t ion cP , 

o n e  h a s  ins tead 

P (w)= vh$y# . (3 .2 ) 

T h e  e ffect ive heavy  q u a r k  current  in  (3 .1 )  is re la ted  to  th e  co r respond ing  cur-  

r e n t G 2  I’Q r o f th e  ful l  th e o r y  by  a n  expans ion  sim i lar to  (2 .1 4 ) . In  th is  case,  

h o w e v e r , th e  assoc ia ted shor t -d is tance c o e fficie n ts C ; a r e  n o t on ly  fu n c tio n s  o f th e  

two heavy  q u a r k  masses  a n d  th e  renormal i za t ion  scale,  b u t a lso  o f th e  velocity- 

t ransfer  [2 9 ]. T h  e s e  c o e fficie n ts h a v e  r e c e n tly b e e n  ca lcu la ted in  n e x t-to - l ead ing  

o r d e r  o f renorma l i za t ion -g roup  i m p r o v e d  p e r tu r b a tio n  th e o r y  [4 3 ]. As  in  (2 .2 0 ) , 

th e y  c a n  b e  fac tor ized into s c a l e - i n d e p e n d e n t fu n c tio n s  k i (mQ,  , rn~~,  v . 2 )‘)  a n d  a  

p ;d e p e n d e n t f ac  t o r , wh ich  is i n d e p e n d e n t o f th e  heavy  q u a r k  masses  a n d  prec isely  
..- 

cance ls  th e  s c a l e - d e p e n d e n c e  o f m a trix e l e m e n ts in  th e  e ffect ive th e o r y . W ith  th e  

h e l p  o f th is  factor,  w e  d e fin e  th e  renorma l i zed  Isgur -Wise  fu n c tio n  in  a n a l o g y  to  
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the definition of F,,, in (2.20). Putting everything together, one obtains for the 

full QCD matrix element [43] 

(PzW 1 &2 r Ql IPl (4) 

= -&,,(Y) ~&(m~,,mg,,~) T~{%(+AW)} + Q(---&) , (3'3) 
i t 

;~yhere for abbreviation y = o.v’, and P; are Dirac matrices with the same canonical 

dimension as l?. For the vector current, e.g., it is convenient to choose I’1 = I? = 

yJ2 = -v~, and P3 = -$. The renormalized Isgur-Wise form factor is defined 

as 

&en(Y) = [as(r)] --.L(y){ 1 - * n,(Y)} t(Y,P) - (3.4) 

The velocity-dependent anomalous dimension am is given by [47,29] 

- ‘U(Y) = 33 sz, f [YT-(y) - l] ; 7-(y) = d-.-& ln(y + diGi) (3.5) 

with nf = 3 in the low energy theory. The next-to-leading order corretion Sz(y) in 

(3.4) is a complicated, scheme-dependent function [47,43]. In the MS renormaliza- 

tion scheme, one has 

c+@(y) 8(109 - 9r2) = 5nf - 729 (Y - 1) + S[(Y - u2] 9 P-6) 

which is a sufficient approximation for y < 1.5. Notice that both am and &z(y) 

vanish at y = 1. As a consequence, the renormalization prescription (3.4) preserves 

the normalization of the Isgur-Wise form factor at zero recoil, i.e., &,,( 1) = 1. 

The renormalized form factor is an observable, universal function of &CD, which 

contains all long distance dynamics active in the hadronic transition. 

-- ‘--The. l/m~ corrections in (3.3) can be systematically classified using the ef- 

fective field theory approach [48,49,35]. In particular, Luke has shown that there 
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a r e  n o  l ead ing  l /m~  correct ions to  (3 .3 )  a t ze ro  recoi l  [4 8 ]. This  is very dif fer- 

e n t f rom th e  case  o f th e  m e s o n  decay  constants,  w h e r e  n o  such  restr ict ion holds.  

As  a  c o n s e q u e n c e , th e  ~ / K - I Q  correct ions to  b  +  c t ransi t ions a r e  expec te d  to  b e  

smal l  fo r  basical ly  al l  va lues  o f v . V ’ th a t a r e  k i n e m a tical ly accessible.  This  is 

i n d e e d  c o n firm e d  by  m o d e l est imates [3 5 ], a n d  th e  heavy  q u a r k  s y m m e tries h a v e  

p r o v e d  to  b e  a  u s e fu l  too l  in  th e  th e o r e tica l  descr ip t ion o f w e a k  decays  o f heavy  

m e s o n s  [3 1 ,3 4 ,3 6 ]. 
; - -  

3 .2  L A P L A C E  S U M  R U L E  F O R  T H E  IS G U R - W IS E  F U N C T IO N  

In  o r d e r  to  calculate th e  un iversa l  fu n c tio n  t ren(u  . v’)  us ing  Q C D  s u m  rules,  

w e  stu d y  th e  fo l low ing  corre la tor  o f currents  in  th e  e ffect ive th e o r y  

i2  d 4 z  d 4 y  ei(k”Z-lc.y) (0  ] 7  { d ? ‘)(z), J’;“‘“‘)(O ), d f)(y)t} ] 0 )  

ZZ ,. z(u,u’, w . w ’) Tr  ~  -  E  . - -  $ + 1 $ + 1  2  2  1  ; J’) 2  j&‘)  J’)  )  
(3 .7 ) 

w h e r e  $ ““l =  h Q ( w ’) I h Q  (V )  a n d  as  prev ious ly  A ? )  =  Q y5 hi.  In  d e fin i n g  7  

th e  th r e e - p o i n t fu n c tio n  E :, w e  h a v e  fac to red  o u t th e  t race wh ich  d e te rm ines  its 

L o r e n tz structure in  th e  e ffect ive th e o r y . Ig n o r i n g  Q C D  correct ions,  th e  p e r tu r -  

b a tive  c o n tr ibut ion to  E  * is o b ta i n e d  by  eva lua tin g  th e  t r iang le  d i a g r a m  s h o w n  in  

Fig. 3 a . T h e  resul t  c a n  b e  wri t ten as  a  d o u b l e  d isper ion  in tegra l  

;pe l -Q,  LJ’, 2 )  . 2 )‘) =  
J  

p(W ,G ’, ? I * 2 1 ’) 
d G  cG ’ (w _  w  _  i e )  (;, _  w , _  i E )  +  s u b tractions. (3 .8 )  

S e ttin g  a g a i n  y =  2 )  . V ’, th e  spectra l  densi ty  is g i ven  by  [3 6 ,3 8 ] 

..- . 3  
p ( ;;;,i;;‘, y) =  -  

( W  +  2 ’) 

l& r2  (y +  1)  ,/m  
O (cj) O (lj’)  O (2y iX  -  w 2  -  ;;;‘a )  . ( 3 .9 )  
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For the nonperturbative power corrections to the correlator, we find 

w Z(Vq)(w,w’,y) = ---J , 

dw(q w’, y) = (c&G) 12~ (y - 1) IG(“hw’, d 7 

z(quGq)(w, w’, y) = m; (@I) 
2w”, 

(3.10) 

The diagram involving the quark condensate is shown in Fig. 3b. In contrast to the 

sum rule for the decay constant fp, we also find a non-vanishing contribution from 

the gluon condensate. It arises from the diagram depicted in Fig. 3c (in coordinate 

gauge) and is proportional to the parameter integral 

Co 
~,&d, W’, y) = J du 

1 + uz”+ 2y u 
3u(w + w’) 2(1 + u) 
(w + uw’)4 - (w + uw’)3 * 

(3.11) 

0 

The phenomenological side of the sum rule is as usually obtained by saturat- 

ing the correlator with the lowest intermediate pseudo scalar meson states and 

approximating the contributions of higher resonances by the perturbative continu- 

um. Using (2.17) and (3.1), this gives 

Z+yw, w’, y) = 

+ 

5(Y7 P> F2(P> 
(X-u-ic)(;i-d-it) 
00 oc) 

JJ 
/$+‘YY) 

(3.12) 

dZ dG’ (; _ w _ i c) (w, _ w, _ i c) + subtractions. 

WC WC 

To obtain the Laplace sum rule for the Isgur-Wise function, one equates the 

above expressions after applying the Bore1 operator with respect to both w and 
..- 

W’. In particular, this greatly simplifies the contribution proportional to the gluon 

condensate. Since the correlator is symmetric in w and w’, we set the associated 
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B o r e 1  p a r a m e ters  7  a n d  7 ’ e q u a l , 

7 = 7 '= 2 T . (3 .1 3 )  

T h e  factor  2  is c h o s e n  fo r  later  conven ience . T h e  resul t ing s u m  ru le  r e a d s  

U Y , P L )  F 2 W  s Q T  =  3  
T 3  

Ic 
8 n 2  (y +  1)  & -- 
e /T e /T 

X  J J dz  dz’ (’ +  “) e -;(z+ Z ’) @ (ay zz’ _  z2 -  
2  

z’~ ) 
0  0  

-(q q ) l- C 2 y + l) 
{  3  g }+( ;;f;) (2)  * 

(3 .1 4 )  

L e t us  eva lua te  th is e q u a tio n  in  th e  ze ro  recoi l  lim it y =  V . w ’ t 1 . B e c a u s e  o f th e  

normal iza t ion  o f th e  Isgur -Wise  fu n c tio n , it th e n  b e c o m e s  a  s u m  ru le  fo r  F2 (p )  

wh ich  m u s t a g r e e  with th a t de r i ved  in  S e c t. 2 .2 . As  y - +  1 , th e  O -funct ion in  th e  -  
d ispers ion  in tegra l  reduces  to  d m  (Z +  z’) S (  z -  z’), a n d  it is read i ly  s e e n  th a t, 

a p a r t f rom Q C D  correct ions,  o n e  i n d e e d  recovers  (2 .2 9 ) . This  is a  c o n s e q u e n c e  

o f a  W a r d  i d e n tity th a t re la tes th e  th r e e - p o i n t fu n c tio n  E  to  th e  der ivat ive o f th e  

two-poin t  corre la tor  r5  [5 0 ]. It was  fo r  th is  r e a s o n  th a t w e  in t roduced  th e  factor  2  

in  (3 .1 3 ) . T h  e  e m p irical obse rva tio n  th a t th e  B o r e 1  p a r a m e te r  o f a  th r e e - p o i n t s u m  

ru le  shou ld  b e  c h o s e n  a p p r o x i m a tely twice as  l a rge  as  th a t o f th e  co r respond ing  

two-poin t  s u m  ru le  h a s  b e e n  first m a d e  in  R e f. 5 1 . In  th e  inf ini te q u a r k  mass  lim it 

a n d  fo r  v . V ’ =  1 , th is  re la t ion b e c o m e s  exact. 

It is c lear  f rom th e  a b o v e  d iscuss ion th a t if o n e  d iv ides th e  s u m  ru le  (3 .1 4 )  by  

(2 .2 9 ) , o n e  o b ta ins  a n  express ion  fo r  th e  Isgur -Wise  fu n c tio n  wh ich  explicit ly obeys  

th e  normal iza t ion  cond i t ion  t( 1 , II) =  1 , i n d e p e n d e n t o f th e  va lue  o f T. T h e  resul t -  

i ng  e q u a tio n  is fu r th e r m o r e  i n d e p e n d e n t o f x a n d  F 2 ( ~ ) . This  is w e l c o m e  s ince th e  

var ia t ion o f th e  decay  constants with 1 2  was  ra th e r  s t rong (see  T a b l e  l), a n d  F2(p )  

was  assoc ia ted with th e  factor  (z)3, wh ich  i n d u c e d  la rge  l /m~  correct ions.  In  

a d d i tio n , w e  shal l  s e e  in  th e  fo l low ing  sect ion th a t a lso  th e  u n c o m fo r tab ly  l a rge  
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QCD corrections to F2(p) d o not affect the final expression for the Isgur-Wise 

function. 

Before proceeding, however, it is necessary to modify the sum rule (3.14) in two 

respects. The first one concerns the simulation of higher resonance contributions. 

The integration domain for the dispersion integral is the “kite-like” area shown in 

Fig. 4. The separation between the pole and the continuum contribution appears 

to be rather crude and to a large extent arbitrary. Performing the integral over 
I *- 

the region specified in (3.14), one can shown that the derivative of the Isgur-Wise 

form factor with respect to V. w’ diverges at zero recoil, a result which is certainly 

unphysical. One should, therefore, change the integration domain. To this end, it 

is convenient to introduce new variables 2 = (z + 2’)/2 and q = z - z’ and integrate 

over a symmetric triangle (see Fig. 4), such that the q-integration becomes trivial. 

Instead of the double integral in (3.14), we then obtain 

- we/T we/T 
J J dz dz’ . . . -+4 ($)‘/2 I(o(~)$) , 

0 0 
z 

I(z) = dzz2 e-” J = 2 - (2 + 22 + z2) em’ . 

0 

According to Fig. 4, any choice for a(y) in the range 

;( y+l-Jy2--1)<a(y)<l 

(3.15) 

(3.16) 

is reasonable. Note, however, that a(l) = 1 in any case. A finite slope of the 

Isgur-Wise function is obtained, e.g., for a(y) = %$. The arbitrariness of a(y) 

yields to a significant uncertainty of the sum rule prediction for the universal form 

factor, as will be discussed in Sect. 3.3 below. Facing the lack of information on 

the structure of higher resonance contributions to the spectral function E:, this 

uncertainty is unavoidable. 
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A second modification is required to improve the large-recoil behaviour of the 

sum rule (3.14). F or ar 1 g e values of y = v. v’ (corresponding to large negative values 

of q2) the Isgur-Wise function should tend to zero, whereas the nonperturbative 

contributions in (3.14) stay constant or even increase with y. Hence higher-order 

power corrections must compensate the contributions of the lowest-dimensional 

ones. In order to model this cancellation and to simulate the effect of higher- 

order corrections, one approximates the non-local quark condensate by a Gaussian 
I -- 

distribution in Euclidean space-time [52-541 

(Q(z)q(O)) 21 (Tjq)e-12/X2 ; X2 = $ . (3.17) 

The damping length X is chosen to be consistent with the short-distance expansion 

(3.18) 

The standard value m$ N 0.8 GeV2 corresponds to X N 1 fm. For the simple 

Gaussian ansatz (3.17), th e contribution of the diagram shown in Fig. 3b can be 

calculated in closed form. Denoting the “double-borelized” correlator by g, the 

result is 

4~2 33 = -(Tjq) exp - { gq~)}. (3.19) 

In contrast to the old result, the contribution of the non-local condensate becomes 

exponentially small at large recoil. Comparison with (3.14) shows that part of 

the contribution of the mixed condensate is taken into account by (3.19). In the 

following, we shall assume that all nonperturbative contributions have the same 

exponential damping factor at large values of y. It must be noted that for physical 
..- 

values of y = 2, . v’ relevant for B + DC*) d ecays, the numerical effect of the 

exponentiation is less than 3%. 
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Putting everything together, we obtain the following expression for the univer- 

sal form factor [36,38] 

<(Y,P) = 
f$ (&)2+(~)T) +W,Y) 

$ I($) + C(T, 1) 
7 (3.20) 

I xhere the condensate contributions are given by (the scale in the quark condensate 

is chosen for later convenience) 

x exp 
1 

m?l -- 
4T2 

(3.21) 

This result explicitly obeys the normalization condition ((1, p) = 1. Since, up to 

now-, QCD corrections have been ignored, our theoretical expression does not yet 

reproduce the proper scale-dependence of t(y, p). The calculation of the renorma- 

lized form factor defined in (3.4) is subject of the next section. 

3.3 CALCULATION OF THE RENORMALIZED ISGUR-WISE FORM FACTOR 

In order to calculate the renormalized Isgur-Wise function, one has to include 

the QCD corrections to both the numerator and denominator of (3.20). The correc- 

tions to the denominator have been calculated in Sect. 2.2 and are given in (2.29). 

The corrections to the three-point correlator Z involve loop integrals in the effective 

theory with two heavy quarks, which depend on w, w’, and o-v’. As an example, we 

have calculated the radiative corrections to the contribution involving the quark 

condensate (see Fig. 3b). After applying the double Bore1 transformation, we find 

using the formulas given in the appendix 

S(?jq) _ kd(P> 
-- 4T2 {‘+2( 1 + 36 + 2 [v(y)- l] lnf + c(y) , (3.22) ._- . 

where Sm = 2/3, and c(y) is a scheme-dependent function, which vanishes at zero 

29 



- 

.-. ._. (I _ ,. 

recoil. In the MS scheme, 

c&&Y) = [Y r(Y) - 11 [W Y + 1) - RE] - (Y - 1) r(Y) + 2 

- & [4(1- YZ) -  Lap- Yi, + J52(1 -  Y+> -  La@- Y-)] 

=-  “3 ( ln4 -  YE -  TJ  (Y -  1) + O [(Y -  l)2] , 

(3.23) 

‘%here yk  = y  f dm, 7~ N 0.5772, and r (y)  has been defined in (3.5). The 

important observations are: 

l At zero recoil, the radiative correction is  precisely  that encountered in (2.29) 

in the calculation of the correlator l?5. The equivalence of the sum rules at 

zero recoil is  preserved by renormalization. 

l The logarithmic dependence on /.L in (3.22) can be summed to y ield 

[y T(Y) -  l] In T)  --+ (qq)(T) (~)-n’giniir) . 

(3.24) ~ I 
The factor ,““& P-0 

-419 

denominator 0; (3.20) 

also appears in the renormalization-group improved 

and drops out of the ratio. The remaining p-dependent 

anomalous scaling factor is  precisely  cancelled if one computes the renorma- 

lized Isgur-W ise form factor from (3.4). 

l The functions c(y)  and &z(y) from (3.4) combine to give a scheme-indepen- 

dent result 

; c (y)  -  Sz(y)  N -1.42 (y  -  1) + O [(y -  1)2] . (3.25) 

As a consequence of the restriction that it must vanish at y  = 1, this velocity- 

dependent next-to-leading order correction stays small for all relevant values 

of y  = v  . v’. W e shall neglect it from now on. 
._- 

’ The-radiative corrections to the triangle diagram of F ig. 3a involve two-loop 

diagrams and are hard to calculate. However, they must exhibit the same structures 
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as encountered above. The logarithmic dependence on p/T must be of the same 

form as in (3.24), and the correction must reduce to that given in (2.29) at zero 

recoil. There is thus no need to calculate the two-loop diagrams as long as one 

neglects next-to-leading order corrections which vanish at y = 1. In view of the 

uncertainties associated with the simulation of higher resonance contributions to 

the perturbative part of the sum rule, this is a safe approximation. In total, we 

obtain from (3.4) and (3.14) for the renormalized Isgur-Wise function 
I -- 

&en(y) = [as(T)]-uL(y) 
(326) 

where 

(3.27) 

is essentially the difference of the QCD corrections to the dispersion integral and 

to the quark condensate, and we have introduced the new function 

F(z)=jdrr’e-“{I-*Inr). 

0 
(3.28) 

Our final result (3.26) for th e universal form factor has an appealing structure. 

The normalization condition [ren(l) = 1 is explicitly fulfilled. In contrast to the 

sum rule for the decay constant fp discussed in Sect. 2.2, the large QCD corrections 

to the perturbative contribution cancel in the ratio, since they are y-independent. 

The only remnant of this correction is the QCD factror qQkD N 0.6, which leads 

to a significant suppression of the nonperturbative contributions. This is still a 

large correction, but it only affects the small power corrections to the leading 

perturbative contribution, which therefore determines the shape of the universal 

form factor. The corresponding y-dependence is approximately of the form (&) 2, 
..- 

correspdnding to a double pole at q2 = (mb + m,)2. Corrections to a pure pole 

behaviour arise, however, from the function a(y). 
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As mentioned previously, the final result for the heavy quark form factor would 

be unaffected from mass factors of the type 2 even if l/mQ corrections were in- 

cluded. In the framework of QCD sum rules, we therefore do not expect these 

corrections to be unusually large. This is very different from the situation encoun- 

tered for fp. 

For the numerical evaluation of (3.26), we vary the continuum threshold wc 

between 1.9 and 2.5 GeV, and the Bore1 parameter T between 1.0 and 2.5 GeV, 
I *- 

corresponding to the range of values providing stability of the two-point sum rule 

investigated in Sect. 2.2. The radiative corrections in (3.27) and (3.28) are evalu- 

ated at the scale x = 1.25 GeV. For the function a(y) in the dispersion integral 

we consider the two extreme choices gmin y ( ) = i(y + 1 - dm) and gmaz = 1 

[cf. (3.16)], as well as co(y) = ?$, which for all y > 1 lies in between these limits. 

The latter ansatz gives results very similar to those obtained evaluating the origi- 

nal form of the dispersion integral in (3.14) but, as discussed earlier, yields a finite 

slope of the universal form factor at zero recoil. The results are summarized in 

Fig. 5. The three bands correspond to the three choices for a(y). The width of the 

bands arises from the variation of the sum rule parameters wc and T in the limits 

specified above. Obviously the dependence on these parameters is very weak. Also 

a variation of (~QCD - 1) by f50!?& changes the results by less than 4%, indicating 

that the QCD corrections are under control. The main uncertainty is due to the 

arbitrariness of the choice of g(y). We consider the band obtained using aa as a 

reasonable estimate, whereas the results obtained using a,;,(y) and omaz should 

be regarded as very conservative lower and upper limits, respectively. 

Also shown in Fig. 5 are “data” for the universal form factor tren(v * v’) 

that have been extracted from an experimental measurement of the differential 

branching ratio for the semileptonic decay B” --+ D*+e~p by the CLEO and AR- 

GUS collaboration [55], accounting for the leading QCD and l/mQ corrections to 

the infinite quark mass limit [34]. Th e normalization of the data corresponds to 

]-cc; I rgb = 0.044 x 1.18 ps. It is seen that the sum rule result obtained using go(y) 

nicely compares to the data. Defining the slope parameter e by tk,,( 1) = -p2, 

32 



we obtain the prediction Q~.~. = 1.13 f 0.11. This is in accordance with previous 

estimates of this parameter like e = 1.20 f 0.17 in Ref. 31 and e = 1.13 f 0.23 in 

Ref. 34. A simple parametrization of the sum rule result in terms of a pole-type 

function is 

y;(y) = (&)p(y) ; P(y) 21 2 + y . (3.29) 

It exhibits dipole behaviour at large recoil. 
I -- 

4. Conclusions 

We have presented a consistent framework for the calculation of hadronic form 

factors of heavy mesons using QCD sum rules in the effective theory for heavy 

quarks. Since the effective currents have non-vanishing anomalous dimensions, a 

renormalization of the form factors is required. We have included the complete 

next-to-leading order renormalization group improvement, thereby summing the 

large logarithms (a, ln mQ)n and crs (a, In mQ)n to all orders in perturbation the- 

ory. This procedure resolves the scale ambiguity problem associated with the 

order-crYs corrections. We have applied this technique to derive sum rules for the 

asymptotic value of the scaled meson decay constant fpJnzp and of the universal 

Isgur-Wise form factor, which describes current matrix elements between two heavy 

mesons in the infinite quark mass limit. 

In the case of fp, the renormalization group improvement turns out to be 

most important and resolves the discrepancy between previous sum rule and lat- 

tice calculations. Against naive expectation, the large radiative correction to the 

correlator of two axial currents has to be evaluated at a low energy scale rather 

than at the scale of the heavy quark. While this effect is unimportant for the 

decay constant of the D meson, it considerably enhances previous estimates of the 

value of f~. In the static approximation (i.e. neglecting l/mb corrections), we find 

fgat ~200 - 300 MeV in agreement with recent lattice results. 
.- ‘--Conlb. ming the renormalization-group improved sum rule derived in the effec- 

tive theory with the standard Laplace sum rule for fp, we have investigated the 
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effect of finite heavy quark masses. The appearance of an explicit factor (2)” 

in front of the sum rule is found to be the origin of unnaturally large finite-mass 

corrections to the decay constant of the D meson. This effect is, however, specific 

for decay constants of pseudo scalar particles and should not be considered as an 

indication for a general break-down of the heavy quark expansion for charm. Tak- 

ing into account the full dependence on mQ, we find the physical decay constants 

fD N 170 f 30 MeV and fB N 190 f 50 MeV. For large values of mQ, the decay 
I -- 

constants depend rather strongly on the mass difference x N 2(mp - mQ). The 

quoted value for fB refers to rnb = 4.67 f 0.10 GeV. 

The sum rule for the renormalized Isgur- Wise form factor &.,, (u VU’) is obtained 

from the study of a three-current correlation function in the effective theory. At 

zero recoil, a Ward identity relates this function to the two-current correlator from 

which one derives the sum rule for fp. As a consequence, the Isgur-Wise function 

can be expressed a the ratio of two sum rules in such a way that its normalization 

at zero recoil is explicitly obeyed. This ratio is independent of the parameter i 

and, after renormalization group improvement, is not affected by uncomfortably 

large QCD corrections. The main uncertainty arises from the way in which higher 

resonance contributions to the perturbative part of the sum rule are approximated. 

We have given a prescription that ensures a finite slope of the universal form factor 

at zero recoil, and discussed conservative lower and upper limits for tren(u . 21’). 

Our final result compares nicely to data on the form factor extracted from the 

differential decay rate for B -+ D*l~l decays. 
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APPENDIX 

The Feynman rules of the heavy quark effective theory can be readily obtained 

from the effective Lagrangian derived by Georgi [7]. The momentum of the heavy 

quark is split into an on-shell and an off-shell piece, P = mQv + k, where Ic acts 

as an infrared cutoff and is of order AQCD. In momentum space, the propagator 
&l of the heavy quark is then given by & 2 . The heavy quark-gluon coupling is 

I _ig,vPita. Master integrals for the calculation of one and two-loop integrals involving 

only a single heavy quark are given in Ref. 12. The master one-loop integral for 

diagrams involving two heavy quarks with velocities V, V’ and off-shell energies 

w = 2w . Ic, w’ = 2~’ . k’ is (in D space-time dimensions) 

l&(W, w’, 2) * w’) = 
JdD+$(w+:,,)“(,,:,.,) 

00 

= irDi2 I(cr, ,O, 7) J du 
uY-l w ( > 

0-2~~ 
-- 

o [R(u)]p+y V(u) 

with (.u . o’ E cash 0) 

O(u) = w + uw’ ) 

V(u) = (1 + 2uv. V’ + u~)~‘~ = (u + e’)r”(u + e-e)1’2 , 

and coefficients 

qa, A 7) = rpa + p + y - D) rp/2 - a) 
r(Q) w r(Y) * 

It is convenient to apply the double Bore1 transformation with respect to w and w’ 

before performing the integral over the Feynman parameter u. Useful formulas are 

&E, --$ [-n(u)]-” = r(CY ;l) TT, { +‘;; - u, + y-,;y} . 
Additional powers of w’ or w = O(u) - uw’ in the numerator can be generated by 

derivatives with respect to the Feynman parameter u. 
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FIGURE CAPTIONS 

1) Feynman diagrams for the two-current correlator I’s(w): (a) perturbative 

contributions, (b) power corrections involving the quark condensate, (c) cor- 

rections involving the gluon condensate. The heavy quark propagators are 

represented by double lines 

2) Numerical evaluation of the sum rule (2.30) for i = 1.25 GeV and various 

I -- values of the threshold parameter w, 

3) Lowest-order diagrams for the three-current correlator Z(w, w’, u . v’): (a) 

perturbative contribution, (b) correction involving the quark condensate, (c) 

correction involving the gluon condensate. In (c) only the diagram yielding 

a non-vanishing contribution (in coordinate gauge) is shown 

4) Integration domain for the double integral in (3.14). The original “kite- 

like” region is replaced by a symmetric triangle. The small (shaded) triangle 

corresponds to the lower bound for o(y) in (3.16), the large (lined) one to 

*’ a(y) = 1 

-5) s urn rule result for the renormalized Isgur-Wise form factor. The three bands 

correspond, from top to bottom, to a(y) = 1, as(y), and amin( respectively. 

The data points are taken from Ref. 34 
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