
SLAC-PUB-5704 
KEK-TX-I-284 
DTP/91/78 
Tu-397 
KEK preprint 91-6 
UT-594 
March 1992 
@O 

Top Quark Pair Production Near Threshold* 

Y. Suminol, K. fijii*, K. Hagiwara2n3, H. Murayama4, C.-K; Ng5 

iDepartment of Physics, University of Tokyo, Tokyo, 113 Japan 
KEK, Tsukuba, Ibaraki, 305 Japan 

3Department of Physics, University of Durham, DHl 3LE, U.K. 
4Department of Physics, Tohoku University, Sendai, 980 Japan 
5Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 USA 

Abstract 

We present a novel formalism to calculate the total and the differen- 
tial cross sections for heavy unstable top-quark pair production near thresh- 
old. Within the context of the non-relativistic quark model, we introduce 
the runmng toponium width, I’e.(E, p), in the Schrcdinger equation for the 
three-point Green’s function that governs the tt contribution to the e+e- 
annihilation process. The effect of the running of the width is found to be 
significant in two aspects: (i) it takes account of the phase space volume for 
the decay process tf + bW+&W-, and provides a consistent framework fol 
calculating the differential cross sections; and (ii) it reduces the widths of 
the low-lying resonances to considerably less than 21’t(mf). Furthermore, the 
running of the width causes the total cross section to decrease significantly 
at c.m. energies below the first “resonance” enhancement, whereas it makes 
the “peak” cross section more distinct than is obtained in the fixed toponium 
width approximation. We use the two-loop improved QCD potential in our 
calculation, and the crr(mz)m dependences of the total and differential cross 
sections are studied quantitatively. We find that the correlations in the Q, and 
mt measurements are opposite in the total and differential cross sections, and 
that simultaneous measurements would lead to an accurate determination of 
both parameters. 
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1 Introduction 

The threshold region of heavy quark production has always been an ideal laboratory 
for onium spectroscopy. As the experimental lower limit on the top mass continued to 
increase, however, physicists started worrying about the effect of the top quark decay 
width, which grows like rnf for mt > mb + MW [l]. A large width would smear out res- 
onance structures [2,3,4] and might conceal most of the informations otherwise available. 
This seemingly unwelcome feature of a heavy top quark, on the contrary, turned out to 
be advantageous in many ways, as was first pointed out by Fadin and Khoze in their 
pioneering papers [5]. The key observation is the fact that the large top quark width 
should act as an infrared cutoff, or a physical “smearing” [6] of the total cross section 
which prevents the non-perturbative regime of QCD affecting the threshold cross section. 
Thus, the threshold region for heavy top pair production provides us with a very clean 
test of perturbative QCD. Moreover, since the QCD contribution is now predictable over 
the whole threshold region, we may even hope to extract the effect of Higgs exchange [7,8] 
from the precision measurement of the threshold cross section. These new possibilities 
triggered the recent works by several authors [9,10,11,12]. 

In this paper, we attempt to construct a basis for the quantitative study of the 
process, which can be an ideal place to measure the top quark mass, its width, as well 
as the strong coupling constant. The Green’s function method introduced by Fadin and 
Khoze [5] and later refined by Strassler and Peskin [9] provides us with a handy tool 
to calculate the total cross section, without the need for summing over many resonance 
states [8,10,13]. At first sight, it seems to be possible to apply their Green’s function 
approach to the calculation of differential cross sections, simply by allowing the decaying 
top quark to follow the Breit-Wigner resonance shape. Unfortunately, when we naively 
do this and carry out the phase space integration, we immediately run into a trouble: the 
optical theorem does not hold, or the integral of the differential cross section does not 
reproduce the total cross section as calculated from the imaginary part of the relevant 
Green’s function. We find that this lack of unitarity necessitates the introduction of the 
running toponium width, which is smaller than twice the on-shell top quark width when 
the available energy is small, or when the constituent top quark kinetic energy is large 
under the influence of an attractive potential. After the effect is appropriately taken into 
account, the differential cross sections become consistent with unitarity and they provide 
us with additional useful information on the physics of the tf threshold. In particular, 
we%nd that the correlation between the a, and m, measurements for the differential 
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cross sections is opposite to that expected for the total cross section, which gives us an 
opportunity to determine the two parameters accurately. 

This is, however, not the whole story. The most essential effect of the running 
toponium width is found in the resonance structures, i.e. in the energy dependence of 
the total tf production cross section. The running of the top quark width alters, in a 
non-trivial way, the positions of the poles of the Green’s function on the complex energy 
plane. For example, the rise of the total cross section at the threshold is made significantly 
steeper than the prediction based on the fixed toponium width approximation. We will 
discuss the physical significance of the running toponium width in detail, and, we compare 
its running behavior to that suggested by the electroweak gauge invariance. 

Our paper is organized as follows. In section 2, we start with an intuitive illustration 
of what should happen to a tf pair produced in the threshold region, which subsequently 
decays into a pair of bW under the influence of non-perturbative QCD interactions. Then, 
in section 3, we present the theoretical framework based on the non-relativistic formalism, 
thereby introducing a three-point Green’s function to describe the production and the 
decay of the toponium. Section 4 gives a concrete definition of the running toponium width 
and demonstrates how it restores the unitarity relation and how it affects the prediction 
for the threshold cross section, by using a simple Coulombic potential for illustration. 
In section 5, we introduce our QCD potential, and other previously proposed potentials, 
to be used in the following sections. Observables that are derived from the total and 
differential cross sections are closely examined in section 6. We find that simultaneous 
measurements of the total and differential cross sections allow an efficient determination 
of the basic parameters, Q, and m L, in the threshold region. In section 7, we give a brief 
discussion regarding the basis of our non-relativistic formulation in terms of a relativistic 
field theoretical approach. We summarize our findings in section 8. Technical details, 
including a fairly detailed description of our calculational procedure, are explained in 
appendices. 

2 Physical Pitt ure 

In this section, we present an intuitive picture of the physics in the tf threshold 
region. We emphasize that this process can be reliably described by perturbative QCD, 
due to the large mass and width of the top quark. 

We are concerned with the process where t and ? are pair created and subsequently 



decay into bW’s (see Fig. 1); 

e+e- ---) 7,Z + tf(“@“) ---) (bW+)(&W-). (2.1) 

Re-annihilation of the tf pair is found to be negligible for mt 2 100 GeV [8,13]. We would 
like to treat the production and decays of tt’ in the lowest order of the electroweak theory 
while keeping the QCD interactions between the tt’ state. This is achieved formally by 
splitting the Lagrangean into two parts 

z=&+LEW, (2.2) 

where & contains the strong interaction, and by treating the electroweak interactions 
&w perturbatively. The S matrix element for the process (2.1) is then expressed as 

Sfi = < bW+&W-jTeiSd4”‘EW le+e- >, (2.3) 

and the lowest-order contribution appears at the fourth-order of the electroweak interac- 
tion: 

Sfi = 

X 

X 

X 

X 

J d4xd4yd”z&w 

E<;[n,7P,k$!]ae;w+ ei(Pb+Pw+ )*T 
Jz 

SWVls(7Y~~]~el,-e’(“+‘W-)‘Y 
Jz 

(0 I T ta(x)tb(y) : &Wa(4 : IO > c b:7’ + d~7~751r6 
v=-y,z 

(0 1 T Vp(z)V~(w) IO) ti,+(1~;7~ + o;7”75)u~-e-i(p~-+p~+)‘w. (2.4) 

Here gw = esin 8~ is the sum gauge coupling, v$ and a; are the vector and axial- 
vector couplings of the fermion f and the neutral vector boson V (=7 or Z), and l& is 
the KM matrix element. We note that the repeated indices p, v, p and Q are four-vector 
indices (in the Bjorken-Drell metric) whereas a, ,6,7 and 6 are four-spinor indices. The 
vector boson propagators are expressed in the lowest-order of &w as 

< OIT V,(z)V~(w)lO >= J $$eBiP*(zmw)p2 -igpq 
- m$ + tmvrv w 

for V = 7 and 2, in the Feynman gauge. In the amplitude (2.4), we treat the b and & 
quarks as free particles and ignore their strong interactions (141. 

f 
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The non-trivial and interesting part of the process is contained in the three-point 
Green’s function 

0, Y 9 4cwm = (0 I T&(x) &j(y) : f&)ta(z> : IO), P-6) 

which expresses the amplitude where a tf pair is created at a space-time point z and the 
t (0 quark decays at another point x (y), see Fig. 1. This three-point function contains 

the effect of full QCD interactions, in the absence of which it reduces to the product of 
t and t’ free propagators. Since the created t and t’ will have small velocities near the 
threshold, the system related to this Green’s function is regarded as a non-relativistic t 

and 5 system which is bounded by the static potential V(Irl-r2 I) to form the toponium 
resonances. We can then use the non-relativistic Schr6dinger equation to estimate the 
effect of the non-perturbative strong interactions. It is expected that the process probes 
the short distance behavior of the potential due to the large t-quark mass. 

The main contribution to the potential V(r) comes from the QCD interaction. At 
short distances r < II&~, the perturbative picture of one-gluon exchange becomes valid, 
and hence V(r) behaves like the Coulomb potential near the origin: 

V(r) N -CJF:, (3.7) 

with the color factor CF = 4/3. We note therefore that there are 3 typical time scales in 

this system, namely 

r,’ toponium lifetime, 

a0 = (wQ1 Bohr radius, 

aOI% (Coulomb level)-‘. 

(2.8) 

P-9) 
(2.10) 

Let us first examine the time evolution of the system in the case where r,* >> 
so/o, >> ao. Suppose that at t = 0, a tf pair is created at the space point x = 0 (see 
Fig. 2). At this moment, the wave packet of the tf system is like a b function (with the 
size of - l/mt) at the origin, which is the superposition of all plane waves with an equal 
weight: 

tic 11 X t 
= 

ON J3(x) = J $f eip’x-iEtIt 
= 

o. (2.11) 

All the plane waves quickly spread outwards from the origin x = 0. Each plane wave 
spieads until it reaches the potential barrier at a distance of the Bohr radius. It is then 
bounced back and starts oscillating within the potential ‘wall. The fastest wave (we are 
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concerned with the group velocity here) will reach the barrier at the time t = as (]p] = 00). 
Lower momentum waves will reach there successively. It is from the time t hr uo/cyS, when 
the typical waves related to the bound states reach the barrier, that the concept of various 
resonance states becomes meaningful. We may then say that the toponium is formed. The 
velocity of the typical wave is equal to Q,, which is a familiar picture for the Coulomb 
potential problem. These resonance states will remain until the t or t quark decays at 
the time scale I’, r. The waves that have momentum less than I’e/a, will never reach the 
potential wall. 

In the realistic case, mt N 100 to 200GeV, the lifetime of toponium and the time 
scale for resonance formation are of the same order of magnitude, 

r,’ - aoh. (2.12) 

It is then expected from the above picture that this system will probe the QCD potential 
since 

I-,’ >> ao, 

so that the waves oscillate a considerable number 
before the decay occurs. Also, because 

r,’ s A&, 

(2.13) 

of times within the potential barrier 

(2.14) 

t and f quarks decay via the electroweak interaction before the hadronization effect be- 
comes significant [2,4]. Lower momentum waves with ]p] 5 I’o/a, do not feel the QCD 
potential. Thus, we are free from the uncertainties coming from non-perturbative QCD at 
long distances. We have confirmed the observation [9) that indeed the total cross section 
is quite insensitive to the long distance behavior of V(r) near the threshold. 

The characteristic features may be summarized as follows. High momentum waves 
with ]p] > I&, N l/as reach the potential wall before the top decay, and the tt 
production cross section will be affected by the toponium resonance formation. On the 
other hand, the lower momentum waves with ]p] < I’o/cr, do not reach the potential 
wall, and the details of the multiple resonance structure that is predicted for the stable 
top quark will be smeared out. We are no longer able to resort to the spectroscopy to 
determine the form of V(r). It is necessary therefore to consider the interplay among the 
various resonance states. 
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3 Non-Relativistic Formulation 

In this section, we study the non-relativistic approximation to the non-perturbative 
binding effects between t and t in the threshold region. We derive formulas for the differ- 

ential and total cross sections in terms of Green’s functions of the Schr6dinger equation. 
It is known [15] that near the threshold of heavy quark anti-quark pair creation, 

the QCD interaction between the pair is approximately described by the non-relativistic 
Hamiltonian with a spin-independent instantaneous potential 

R= t 4 1 mt-$Jh+d(ml-$$ti2 
+; /~~x’IcI:~~v(Ix-x~I)~l~; (3.1) 

with t+$ = $;(~,t), 4: = $i(X’,t). $1 and $s denote t and f fields, respectively. They are 

2 component spinors satisfying 

1 +r” 
y-41 = +1, (3.2) 
1 - y” 

y-42 = $2. (3.3) 

It is easy to find the propagators of this system for the one-particle and the two- 
particle states. For the one-particle states, since t or ? has no partner to interact with, 
the propagator is given by that of a free particle as 

. - 
I(l(xO,x; YO,Y) = / ~ po _ ~ e-i~~,~~ + in’ 

t- t 
(34 

Note that we chose the boundary condition such that Ki vanishes for x0 < y”. For the 
two particle states, we may split the propagator into two parts as 

J(2(5°,xY,x2;Yo,Y1,Y2) = ICG(XO, xc; YO, YG) %(x0, xr; y”, Yr) W) 

where Ko and I(, represent the propagators in the c.m. coordinate and in the relative 

coordinate, respectively, with 

Xl + x2 Yl + Y2 
xc = 2 9 yc= 2 7 (3.6) 

x, = x1 - x2, Yr = Yl - Y2. w 

I(c is a free propagator given by 

I~G(x”,x;Yo,Y) = / 

i e-iP*(l-Y) 

$f po _ 2m 
t - p2/4mt + ie’ 

- . 
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while K, may be identified with the kernel for the time-dependent SchrGdinger equation 

1 
-$+V(lxl)-i& 

1 
K,(xO, x; y”, y) = -i 64(x - y) (3.9) 

with the boundary condition I&, K, z 0 for x0 c y”. 
We are now ready to express the three-point function K(x, y, z) in (2.6) in terms of 

the propagators Kr and K2, see Fig. 1. Out of 6 different time orderings of the operators 
in I’, only two orderings are relevant in the non-relativistic approximation, namely 

K(x, Y, 4orm = (0 I %(x) f@(Y) : f&)6(z) : IO) 

= (wJs>, [/ d3r Kl(z’, x; y”, r) K2(y”, r, y; z”, z, z) 

+ /d% Icl(y”,y; x0, r) K2(x”, r, x; z”, z, z) 1 . (3.10) 

Note that, due to the boundary condition of the propagators, the first term on the right 
hand side (r.h.s.) ofth e second equation survives only at x0 > y” > z”, whereas the second . 
term is non-vanishing only at y? > x0 > z O. The first term represents the case where a 
t5 pair is created at time t = z”, propagates while forming the toponium resonance until 
t = y”, when the anti-top quark decays via the electroweak (EW) interaction, and the 
remaining top quark propagates freely until it decays at t = x0. The top quark decays 
before the anti-top quark in the latter term. It can be checked that the eq.(3.10) gives 
the correct non-relativistic limit of the relativistic three-point function for V(r) = 0. 

By taking the Fourier transform of (3.10), we obtain the three-point function in 
momentum space as 

@Pr , PT)q,6P = (%qJG),, QP; El [m4 + m4l (3.11) 

where D(p) represents the non-relativistic propagator 

ill(p) = 
i 

PO - mt - p2/2mt + X,/2’ 
(3.12) 

We set the 4-momentum of t and f, respectively, as p1 = (p”,p), pr = ($‘, -p) with 

PO-@ = 2mt + E. Here, we introduced the top quark width in place of the ic prescription 
in eq. (3.4). The G reen’s function G( p; E) is defined as the Fourier transform of the 
toponium Green’s function G(x; E), which satisfies the time-independent inhomogeneous 
Schrodinger equation: 

-A + V(r) - (E + i?)} G(x; E) = h”(x), 
mt 

G(p; E) = / d3x e-iP*x G(x; E). 

(3.13) 

(3.14) 

- . 
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Here we introduced in the Schrcdinger equation I’o, the decay width of the toponium, to 
implement its unstableness (161. The width re of the two-particle state is, in general, a 
function of momentum: 

re = wE,p). (3.15) 

We give an extensive discussion on the effect of ro in the next section. 
We note that by using the three-point function (3.11), we can compute the helicity 

amplitudes for the process e+e’ --$ bW+&V-: the T-matrix element in momentum space 
is written explicitly as 

T,i = 

X 

X c bt7P + a:7P751r6 
1 

G+ M7P -I- &7,75)%-, 
v=-y,z Q2 - rn$ t irnvFv 

(3.16) 

which is obtained by inserting (2.5), (2.6) and (3.11) into (2.4). It is also straightforward 
[17] to include the subsequent W decays in realistic applications [12]. Correlations among 
the decay products that are expected for heavy top quark decays (2,181 can hence be 
incorporated naturally along .with the enhancement factor due to the Green’s function 
&(p;E). It should be noted that the QCD correction factor e(p; E) not only depends on 
the total energy fi = 2mt+E but also on the three momentum p of the bW system in the 
collision c.m. frame. In this paper, only the S-wave component of the Green’s function is 
evaluated exactly since the P-wave amplitudes from the top quark axial-vector coupling 
is absent for the non-relativistic t and i wave functions in (3.11). A detailed study of the 
QCD corrections to the P-wave amplitudes (191 will be reported elsewhere [20]. 

The differential cross section is obtained from the above T matrix elements as 

da = ;E 17’,i12dQ4(bW+6W-), (3.17) 

* 

where y denotes summing over final particle helicities and the color degrees of freedom 
and averaging over initial e* helicities, and d@4(bW+hV-) denotes the Lorentz invariant 
4-body phase space factor. Integration over the final state phase space of the differential 

.z cross section (3.17) g ives the total cross section at a given c.m. energy, fi = 2ml t E. 

’ On the other hand, the non-relativistic Hamiltonian formalism enables us to derive the 
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total cross section directly from the Green’s function. The optical theorem relates the top 
quark contribution to the total cross section and the photon vacuum polarization tensor 
IIf” as (see Fig. 3) 

47m 
at,l(e+e- -b tf) = - g (-d 1r-n I-r%d~ 

where we have included only the photon (V = 7) as an intermediate vector boson for 

brevity. Its four-momentum is set as q = (2mt+E, 0) in the c.m. frame. It is straight- 
forward to obtain II:“(q) by following steps similar to those that lead to the three-point 
function i?(p*,~~) in terms of G(p;E) in (3.11). We find 

= F (q”q”/s -g”“) G(x=O; E). 

Inserting (3.19) into (3.18), we obtain 

(3.19) 

a,,,(e+e’ + tf) = 
1’28nW 
_ 3s2 

Im G(x=O; E). (3.20) 

Therefore, the total cross section is obtained from the imaginary part of the Green’s 
function at the origin (5,9], ImG(x = O;E), as well as by integrating over the differential 
cross section (3.17) which is enhanced by the square of its Fourier transform G(p; E). 
Their equality should be guaranteed by the unitarity of the toponium Green’s function, 
which is the subject of the following section. 

4 Effect of the Running Decay Width 

We try to clarify the effect of the running of the toponium width I’e in this section. 
In fact, it gives a considerable effect to the observable cross sections in the threshold 
region. We first explain, in subsection 4.a, the motivation for including the running of 
the decay widths in our calculation. The off-shell behavior of the top quark running 
width It@:), which is intimately related to the toponium running width I’o(E, p), is 
discussed in subsection 4.b from the viewpoint of the electroweak gauge invariance. The 
toponium width Io is determined in subsection 4.c, followed by the discussion on its 
physical implications in subsection 4.d. We present our numerical method to evaluate 
the Green’s function in the presence of the running width in the Appendices. All the 
examples presented in this section adopt a purely Coulombic potential with a fixed strong 
co@ing constant so that they can be compared with the known analytic results whenevei 
available. A‘more realistic QCD potential will be introduced in the next section. 
. . 
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4.a Need for the Inclusion of the Running Effect 

By using the formulas derived in the previous section, one can check the unitarity 
relation between the differential cross section and the total cross section. It turns out, 
however, that there would be a considerable discrepancy in the unitarity relation had we 
used twice the constant on-shell decay width I’* = 2I’&$), for the toponium width, in 
evaluating the Green’s function. 

In Fig. 4, we show the total tt’ pair production cross section as a function of the 
binding energy E = 4 - 2mt , for the purely Coulombic potential (V = -CFcr,/r) with 
a fixed coupling constant cy, [2l] for ml = 150 GeV. We switched off the 2 contribution in 
the e+e’ annihilation channel for simplicity. The dashed line is obtained directly from the 
total cross section formula (3.20) w h ereas the dotted line is obtained by integrating over 
the differential cross section formula (3.17), both with the constant top-quark on-shell 
width. The discrepancy is at the level of 7-10% at E 2 0, 12% at the peak of the cross 
section, and it exceeds the 50% level at E 5 - 5 GeV. The integral of the differential 
cross section is smaller. than the naive prediction of the optical theorem (3.20), partly 

_ because of the small available phase space at E 5 0 and partly because of the broadness 
of the top-quark Breit-Wigner resonance shape. We find that the discrepancy between 
the two results is even larger for smaller mt values. We should properly take into account 
the running of the decay widths to restore unitarity [22]. 

In the framework of our non-relativistic approximation, we find that unitarity is 
restored only when order p2/mf corrections to the width Io are included. This may be 
seen from the unitarity relation between the Green’s functions defined by eqs. (3.13) and 
(3.14) in the last section: 

2ImG(x = WI = J&s I~(P;E)I~ &I, (4*1) 

which can be shown directly by using the definition 

and the operator identity 

-1 -1 -1 
21m 

E - H t ire/2 = E _ H - ire/2 ’ re ’ E - H + ire/2 * (4.3 1 

The relation (4.1) then follows by taking the x = x’ = 0 matrix element and by inserting 
ty complete set of the momentum eigenstates. It should be noted that the identity (4.1) 
holds exactly even when ro depends on E and p = -iv: We see the explicit appearance 

-  I  
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of the ‘toponium’ width I’o on the r.h.s. of (4.1), rather than just in the denominator 
of G(p; E). Th is is related to the phase space volume in the differential cross section 
formula eq. (3.17). It is, therefore, important to keep the order p2/m: terms in I’o in the 
evaluation of Im G(0; E) to preserve unitarity. After all, I?o is the only physical quantity 
carrying the information of the tf decay process when we apply the optical theorem (3.20) 
to evaluate the total cross section. 

4.b Determination of the Top-Quark Running Width I’t($) 

In this subsection, we study the running width of the top-quark rt(p:) whose off- 
shell behavior is found to determine essentially the physical toponium width in the next 
subsection. We discuss the general problem of determining the off-shell top quark width 
in view of its dependence on the electroweak gauge parameter. 

The running width is obtained in the unitary gauge by replacing rnf by pf = st in 
the on-shell decay width formula: 

m2w 2 Wt)lunitory = 0(&-m&) $$ (st + 2mb)(l - --) . (4.4) 

Throughout this section we assume a massless b quark-and a stable W. 
There is the subtlety here that the running of the effective top-quark width as defined 

from the imaginary part of the top-quark self-energy depends on our gauge choice in the 
electroweak sector. For example in the ‘t Hooft-Feynman gauge (tw = l), the running 
width behaves as [24] 

rt(st)lt,=l = 8(st - ml,)$g(mf t 27-n&)(1 - +2. (4.5) 

The large st behavior of the top quark running width is now proportional to s:‘~ rather 
than s:‘20f eq. (4.4), which may be regarded as representing the prediction of the longitu- 
dinal W Nambu-Goldstone boson equivalence theorem [25] in the limit s1 N rn: >> mf+,. 

For instance, in the limit of vanishing gauge coupling gw --) 0, the top quark decay 
width should be approximated by its decay into the b-quark and the charged Nambu- 
Goldstone boson, whose off-shell behavior may most naturally be expressed by eq. (4.5) 
with mw = 0. 

Qualitatively, both running widths decrease for top quark invariant mass s( < mf. 

The large discrepancy in the unitarity relation can be traced back to this off-shell behavior; 
&en t and t are bound to form the toponium state, the invariant mass of each particle 

.- 
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is typically off-shell (st < mf) and the effective width becomes smaller than the on-shell 
width I’&$). 

However, quantitatively, the above gauge dependence of the running top-quark width 
is relevant in our non-relativistic approximation, since we should consistently take account 
of the order p2/m: corrections to the widths for the sake of unitarity. We will find in the 
next subsection that the shift in the invariant mass squared of the bW system, st - mf, 

is indeed of this order. Hence, what is relevant to our approximation is the coefficient 
r;(m:) of the expansion 

wd = W-4) + r:(m:)(st - m:) + O((S~ - mf)2). w-9 

The two expressions (4.4) and (4.5) for the relativistic running width then give 

rj(mf) = - lzys' - $)(3 t 3% t 6%) in the unitary gauge, (4.7) 

= $il - %)(I + 5% + 6%) in the Feynman gauge, (4.8) 

which differ by a factor of three in the relevant limit of mb/rnf ---) 0. The running of the 
effective width around the pole st = rn: is hence a factor of three larger in the unitary 
gauge than what is naively expected by the equivalence theorem in this limit. 

The important point is that we are concerned with the determination of the physical 
quantities-l?,, the widths of the resonances. The running top-quark width I’*(st) is needed 
for the determination of the running toponium width I’o(E,p) and hence of the In’s, 
because of our approximation (‘the spectator quark model’ [26)) that it is determined 
by the free decays of the constituent off-shell top quarks inside the toponium. Had we 
known the wave function of the toponium in an arbitrary gauge, its decay width should 
be obtained independent of the gauge. 

In our non-relativistic formalism, we make the following substitutions for the off-shell 
top quark wave functions 

Ct& = m(7’ + l), 

CVtV* = mt(7’ - 1)) (4.9) 

as can be seen from the two-particle propagator (3.11). In the next subsection, we find 
that the resulting invariant mass distribution of the bW system is consistent with the 
*sired ‘Feynman gauge’ behavior. 
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4.c Determination of I’0 

In this subsection, we determine the decay width of toponium I’o by performing the 
&body (M’+&V-) ph ase space integral of the differential cross section explicity. We find 

that the toponium width as defined by this method is essentially twice the running top 
quark width evaluated at a specific off-shell point. 

We start with the unitarity relation shown diagramatically in Fig. 5; 

’ diPd(bW+ZW-) I Tfi I’ s 2ImTii=EJ 

We assume that the spin average of 
1.h.s. is given in terms of the photon 
as 

the initial e+e’ state is taken on both sides. The 
vacuum polarization, and is immediately evaluated 

2 In Tii = 
256rr2cu2 

3s Im G(0; E). (4.11) 

(4.10) 

On the r.h.s., the Fourier transfrom of the three-point function (3.11) appears in the T- 

matrix element eq. (3.16). We keep the relativistic kinematics in the intermediate steps, 
and at the end of the calculation we drop higher order terms in p2/mf. 

We first split the final 4-body phase space as 

d’4(‘W+‘W-) = (2x)4 &)4 d4p *(2n)464(p + fj - q)dQ2(bW+)dQ2(iW-), (4.12) 

where d192 denotes the 2-body phase space with the momentum constraint pb + pwt = 

P and pz + PW- = p. Then we perform the two a-body bW phase space integrations 
J dQ,(bW+)dO,(iW-). W e note that the running width It(st) appears as a result of the 
integration of IT,i12s In fact, the spinor structure associated with the process t --t blY+ 
after the bW phase space integration reads 

a($*) = I dfD2(bW+) c M(t + bW+)M(t d bW+)+ (4.13) 
bW+spin 

= y ?b(l - 75), (4.14) 

where the truncated transition spinor M(t + bW+) is defined as 

M(t --) bW+) = 
l-75 t 

c;(pw+) cb(pb) 7’ 2 1 . 

It should be noted that the running top-quark width that appears in eq. (4.14) by using 
tke above free tbW coupling and the physical W wave function is the unitary gauge width 
(4.4). 

..- 
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Substituting cr( $) and ~(8 in ITjil’ and taking the trace of the y-matrices, we find 

X/d@,(bW+ZW-) I Tfi I2 

(4.16) 

The function F reflects the spin structure of t& and is given by 

F(n, ii) = n”iio + ]n]]ii] cos’8. (4.17) 

Here, 9 represents the polar angle of the top quark in the c.m. frame. For non-relativistic 
t and t; F($&) N 1. The integrand on the r.h.s. of (4.16) shows the momentum 
distributions of t and t inside the toponium. 

At this stage, we find that the invariant mass distribution’s of t and f are of the 
Breit-Wigner type, and the off-shell distribution is essentially governed by the factor 

I&)/& which b h e aves as s: at st >> mf. This should be compared with that of the free 
relativistic calculation without strong interactions for the corresponding diagram, whose 
off-shell behavior is governed by the factor firt(st), which behaves as s:: the off-shell 
behavior becomes smoother, as N st, only after adding other diagrams which contribute 
as the non-resonant background continuum. By using the non-relativistic form of the top 
quark-wavefunctions (4.9), we find that the contribution of the t and ? intermediate states 
(see Fig. 1) gives the off-shell behavior consistent with the naive expectation from the 
equivalence theorem [25] in the limit of sl, rnf >> m&. 

We now perform the time component integration J $$$$(27r)~5@’ + $’ - q9 in 
eq. (4.16). One can verify that the factor ID(p) + D(p)]’ in the integrand on the r.h.s. 
exhibits sharp peaks when either t or i becomes on-shell, i.e. p2 = rnf or jj2 = mf, and 
essentially vanishes elsewhere. Meanwhile other factors behave quite mildly when p”(p”) 

varies within the peak regions. Thus, we obtain a very good approximation of the integral 
by first evaluating the integrand when p”(p”) is at either of the peaks, then by fixing all 
factors but ID(p)t as constants. Using 

we find 

% 
C 

J f$$$(2r)‘(Po + 9 - q”) ID(P) + ‘@)I2 = r,(tf) 7 

/ d’4(bW+JW-) I Tij I’= 12ys202 J $16(p; E)12re~(E, p), 

(4.18) 

(4.19) 
* 
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where we defined the effective width Feff as 

Feff(E,P) E 2 
J- 
% r,(g) F($, *) * 

1 

(4.20) 

When t (0 is on-shell, f(t) becomes off-shell due to the momentum conservation; kz de- 
notes the four-momentum of the one which is on-shell whereas ICI denotes that of the 
off-shell particle for given E and p. Namely, 

k;=dij-$, k;=2mt+E-k;, kz=-kt=p. (4.21) 

Comparing (4.19) with (4.11), we find that Feff is identified with the toponium 

width Fo via the unitarity relation of the Green’s function (4.1). This allows us to 
express analytically the running decay width of toponium. By retaining only the terms 
up to the order E/mt and p2/m: in (4.20), we find after the angular average 

GF m; 
Fe(E,P) =ez 4n (4.22) 

with 

71 = (1 - 3w2 + 220~) + (3 + 3w2 - 6ui3)5 (4.23) 

26 
72 = ; + 7w2 - -w3, 

3 

and 

m2w w=-. 
n-4 

(4.24) 

(4.25) 

This approximates (4.20) to the few percent level in the region of (E, p) that is relevant to 
our calculation (IEI 5 10 GeV, Ipj 5 30 GeV). The momentum dependence of the running 
toponium width is shown in Fig. 6 at three reference energies, E = -2, 0, $2 GeV. At 
(E, IpI) = (0, 0) and (2, 17.3) GeV, both t and t can be on-shell and Fo N 2Ft(mf) [37]. 
At each energy E, the toponium width Fo is found to decrease with increasing internal 
momentum lpl. 

Let us examine the physical meaning of Fo(E,p) as shown above. At first, one 
might be tempted to identify I’o(E,p) with Fr(pf) + Fl(pf), as the decay width of Fo is 
almost saturated by the weak decays of 1 and f. However, the Schrodinger equation (3.13) 
implies that Fo should depend only on E and p in order for the toponium to be regarded 
as% non-relativistic resonance state composed of t and f, while these variables do not 

. . 
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determine p: and pf completely. In a sense, the toponium width l?o should be averaged 
over the various configurations of t and t inside the toponium. We find that the dominant 
configuration is such that either one of the constituents is on-shell. After the appropriate 
averaging, we obtained (4.22). More intuitively, we may interpret the essential result 

&(E, p) N 2= 
J- 

k2 W) 
1 

(4.26) 

as the sum of the decay width of the constituent which decays first, since typically the 
off-shell constituent would decay faster than the on-shell constituent. 

4.d Physical Implications 

In this subsection, we discuss physical consequences of the running of I’* which we 
have evaluated in detail above. 

We start by reminding the readers of the relevant physical quantities in our problem. . . 
One of most concern is the determination of the positions of the poles of the Green’s 
function G(x; E) in the complex E-plane: 

G(x;E) z _ c lCln(x)+z(o) 
n E- E,,+ir,/2’ 

(4.27) 

Here tin(x) represents the wave function of the n-th resonance state. The position of the 
poles, E,, -X,/-2, are physical quantities, which may manifest themselves as the positions 
and the widths of the resonance peaks. In particular the widths of the resonances are 
relevant to the peak shapes, and are affected by our introduction of the running of I’e. 
We would like to know its effect and its physical implications. 

Let us first consider the case where the potential is switched off, V(r) = 0, at 
energies above the threshold, E > 0. In this case, the momentum distribution of tE will 
have a peak when both t and f become on-shell. The magnitude of their momenta IpI 
is then typically fixed at this configuration once E is given (IpI N &Q) so that the 
running width I’e(E, p) is essentially determined there. Since both t and i are on-shell, 

k: = rnf and ki = mf, this gives re(E, p) z 2ri(mf). N ow e us switch on the attractive 1 t 
potential V(r) < 0. The kinetic energy of the tf system is now increased compared to 
that of the V(r) = 0 case, due to the binding energy; see Fig. 7. The relative momentum . 
21~1 between t and ? should hence be increased. Consequently, the invariant mass of the 
top-quark would be typically smaller than its on-shell mass under the influence of an 
a&active potential. 
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For our case with V(r) < 0, we notice a considerable reduction of l?o as compared 
to 21’t(n:) in the region of (E,p) where lG(p; E)I 2 is large, as can be seen from Fig. 6 
and Fig. 8. Shown in Fig. 8 are the momentum distribution 4*p21G(p;E)12 of the final 
bW system for mt = 150 GeV at the three energies E = -2, 0, +2 GeV just as in Fig. 6. 
Also shown by the dashed line is the momentum distribution at E = 2 GeV in the zero 
binding limit. We can see clearly that the peak of p’@(p; E)12 is shifted to larger IpI as 
compared with the V(r) = 0 case. For instance at E = +2 GeV, IpI = 17.3 GeV if both 
t-quarks are on-shell. However, for V(r) c 0, the peak occurs at a considerably higher 
momentum, IpI N 20 GeV, and hence one of the top quarks should be typically off-shell 
even above the threshold; 

kf 5 rnf and ki = rnf . (4.28) 

The reduction of the toponium width is expected to be even more significant for E < 0, 
where one of the top quarks is forced to become off-shell kinematically; see the E = 
-2 GeV curve in Fig. 6. The toponium width lYn is hence expected to be smaller than 
2I’t(m:) at all energies where our non-relativistic approximation is valid. 

-For clarity, let-us again emphasize the main physical implications of introducing 
the running toponium width. If we regard the toponium formed as a dynamical system 
composed of t and f, its kinetic energy is increased by an amount equal to the binding 
energy. The invariant masses of t and 5 decrease correspondingly. This effect renders the 
widths of the resonances, r,,, smaller than 2&(m:) due to the running of It. Moreover, 
the amount of the increase in the kinetic energy differs for various resonance states, as 
their wave functions have different shapes in the potential V(r). Hence, the I’,‘s will have 
different values for different n. We may incorporate these effects into the Green’s function 
G(x; E) by solving the Schrijdinger equation (3.13) with the running width re(E, p). 

We can now return to Fig. 4 and explain it fully. The overall feature is that the 
cross section calculated with the running widths (cry) has a sharp peak compared. to those 
with constant widths (aci and 0~2). This reflects the reduction of the resonance width. 
More concrete aspects can be understood by referring to the expression 

UTOT = 64T2a2 J $+ I&; E)12 re(E, p). 
3s2 

(4.29) 

From the derivation of ro, we find that each curve corresponds to a different set of 

choices whether we use the running width l?o = l?e(E,p) or the constant width ro = 
2I’&z~) in evaluating e(p; E) and I?o, which is summarized in Table 1. The widths of 

theresonance states, I’,, are relevant in e(p; E) only at E N E,,, since it is the Fourier 
. . 
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transform of G(x; E) g iven by (4.27). This explains why uc2 approximates OR below 
the first resonance, where the running width effect is important only in the l?e term of 
eq. (4.29) which represents appropriate phase space suppression. At the peak of the total 
cross section, acr and 6~2 both fall short of oR, because the peak height is proportional 
to I’;? CYC~ is smallest since it incorporates the phase space suppression correctly by 
per-forming the final state integration explicitly while neglecting the enhancement due to 
the smaller toponium width. 0~1 gives a better result simply because the double errors 
in this approximation tend to cancel. In the continuum region which consists of many 
resonances, QR is larger than arcs since r, enters the denominator of G(p; E). The original 
constant width approximation crcl [5] turns out to give a reasonable approximation in this 
region (E > 0) simply because of cancellation. These qualitative trends are cornmon for 
the realistic confining potential and the non-confining Coulombic potential studied in this 
section even though the latter has a continuum wave function above the threshold. 

It is useful here to compare our result with the traditional heavy quarkonium pro- 
duction cross section formula [8,13]: 

uToT = C 12T($)(s _ MZf:$yM n n 
r )2 + UC*NT. n n (4.30) 

where UCONT represents typically the one-loop corrected heavy quark pair production 
cross section in perturbative QCD [28]. It has been shown [lo] that 
by summation over many resonance states above the tf threshold. 
the total cross section as 

OTOT = ~ld$ts - 
n 

,?f;;‘;, r >2, 
73 n n 

we can replace QC*NT 
We can hence express 

(4.31) 

where the summation over the resonances is taken at all energies. Now, for simplicity, we 
restrict ourselves to the photon exchange contribution only and find 

r ee = 16xa2e~]$,(0)]2/A4~. 

Substituting eq. (4.32) into eq. (4.31), we obtain 
96w2a2e2 

CTOT 2 
L/2 

232 ’ l$ (E _ j-342 + (rn/2)21/)n(0)+~(oJ~ 

where we used the non-relativistic approximation s - Mz N 2fi(E - 

M, - 277~~. Eq. (4.33) can be cast into the form 

96n2cr2e2 
CTOT = 

S2 
9 a Im 

1 

c -A(“)lCIZ(0) 
n E - En + ir,/2 I 

96n2a2e2 
= 

s2 
’ - Im G(0; E), 
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(4.33) 

En) with E, = 

(4.34) 



which is essentially the expression as proposed by Fadin and Khoze [5]. Now if we take 
the resonance width to be P, = 2&(m:), which is common to all the resonance states, 
and if +n(x) is the solution of the Schrsdinger equation 

W*(x) = I 1 $ + V(r) A(x) = &A(x), (4.35) 

then G(x; E) is a solution of 

[E - H + Xt(m:)]Gc(x; E) = -b”(x). (4.36) 

This is exactly the defining equation of the Green’s function as proposed by Strassler 
and Peskin (9). Th ere ore, f the traditional approach [8,13] of calculating each Schrcdinger 
wave-function from eq. (4.35) and the Green’s function method [5,9] that solves eq. (4.36) 
give exactly the same results when the widths are taken to be constant and common to 
all the resonances. Here, the Green’s function method is merely a handy tool to sum over 
many resonance contributions. 

Now, when the running of the onium width is taken into account, eq. (4.36) gets 
modified to 

[E - H + ilYe(E,p)/2]GR(x; E) = -b3(x), (4.37) 

which is the definition of our Green’s function, eq. (3.13). In this case, we can no longer 
express the Green’s function GR(x; E) as a summation over the resonances whose wave 
functions satisfy the SchrGdinger equation (4.35) since l?o depends, in general, on both E 

and p. 
Nevertheless, if we directly solve eq. (4.37), the Green’s function GR(x; E) is ex- 

pected to inherit the pole structure of Gc(x; E), though the exact pole positions have to 
be modified by the introduction of the running width. It should be noted that, if we use 
the constant width, the residues, ]&(O)]‘, and the real parts of the pole positions, Ad*,, 
are exactly the same as those obtained in the rl + 0 limit, since ]$,.,(O)]’ and M, are 
determined by the Schrodinger equation (4.35) which contains no width at all. There- 
fore, the width effect gives nontrivial physical consequences other than the smearing of 
multiple-resonance contributions when we take into account the running of the top-quark 
width. 

5 The Potential 

The non-relativistic QCD potential V(r) d escribing.the tf system can be written as 

tl& sum of a short-distance part and a long-distance part. The form of the short-distance 

.* 
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part is given by perturbation theory due to the asymptotic freedom of QCD, while the 
long-distance part has to be determined phenomenologically. We incorporate the two-loop 
perturbative QCD effects in our short-distance part of the potential. The overall formof 
the potential is determined by fitting to charmonium and bottomonium data. 

The short-distance potential I+(r) is calculated reliably in the perturbative QCD. 
In the next-to-leading order, the interquark potential can be written as [29,30,31] 

Vi+> = -~cb(rl)~ (54 
where the coupling, cy,, is renormalized by the modified minimal subtraction (m) scheme 
and where we have made a choice of the renormalization scale [32] 

CL1 = 

with 

bo 
11 =- 6 CA - $+‘F, 

A(r) = bo7~ + EcA + ~TF ~(TE + log(m,r) - Ei(-e’i’m,r)]. 
9=1 

(5.2) 

(5.3) 

(5.4) 

Here ye = 0.5772... is Euler’s constant; TF = l/2, CF = 4/3 and CA = 3 are color factors; 
nf is the number of quark flavors and Ei(-z) is the exponential integral 

Ei(-z) = - zw Gem’, J (5.5) 
which parametrizes accurately the quark mass dependence of the perturbative potential 
[31]. In the massless quark limit, the next-to-leading order correction factor A(r) reduces 
to the well-known result [30,33] 

4.) + bow + ;cA - ;n,TF (as m9r + 0). (5.6) 

It should be stressed, however, that the charm and bottom quark masses cannot be 
neglected at distances 

rm,wl. (5.7) 

The running coupling constant o,(p) is fixed by the p-independent QCD scale parameter 

‘r_ A$’ = P exp 
I 

R 
- +%[;(&+g]} boa,(p) b; (5.~) 

-.I . ., 
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with 

bI = - +nlTF - &z~TF, (5.9) 

which can easily be solved iteratively. 

The contribution of a heavy top quark loop to the toponium potential can always 
be neglected due to the asymptotic freedom of QCD [34] and the decoupling theorem [35], 

because the top quark mass is much larger than the inverse of the toponium size of order 
crImt for cr, < 1. In the zero width approximation for toponium, the bottom quark loop 
contribution to the quarkonium potential can also be neglected for mt s 100 GeV [8]. 
Therefore, the effective four flavor (nj = 4) theory with m, = md = m, = 0 and m, = 1.5 
GeV (fixed) can give a good description of the short distance potential for a wide range 
of inter-quark distance (r 2 l/m*). When the top quark is heavier and the decay width 
of the tt system is & high as a few GeV, the short distance potential should be more 
accurately described by the effective five flavor (n, = 5) theory. Thus, we fix nj = 5 for 
the QCD potential throughout the paper and retain the charm and bottom quark finite 
masses. The next-to-leading order correction factor A(r) in eq. (5.4) is then 

A(r) = HUE + gC.4 + ~TF -P + 7~ + log(m,r) - Ei(-e5/6m,r) 

+YE + log(mbr) - Ei( -e5/6mbr)] (5.10) 

which is obtained by setting nf = 5 in bo and m, = md = m, = 0. We set m, = 1.5 GeV 
and mb = 5 GeV, whose values are fixed throughout the paper irrespective of the values 
of m, and mb that appear in the fitting of the charmonium and bottomonium data. 

The p-independent QCD scale parameter A$’ for nj = 4 and nj = 5 theories are 
related through the matching condition [36] 

4% = mb)m = ar)(p = mb)m- (5.11) 

Since we work in the nj = 5 theory, the perturbative QCD potential is completely deter- 
mined once A# is fixed. Since the definition of the A$) parameters are somewhat arbi- 
trary [37], we use the magnitude of the MS coupling constant at p = rnz (=91.17 GeV), 
crJrnz)m, to parametrize the strength of the QCD interactions. The value of AK in 

our definition is then obtained directly from eq. (5.8). The corresponding hk value is 
ob@ined from the matching condition (5.11) at mb = 5 GeV. The values of 12% and A2 
fofo,(mz)$ = 0.10 to 0.14 are given in Table 2. 
-7 
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While it is justified to neglect dynamical quark mass effects in the potential at small 
distances (rm9 << l), they have to be taken into account at larger distances (rm9 N 1). 
In Fig. 9, we show distributions of -CF/rV,‘,(r) = l/cy,(pr)m as functions of r for the 
massive nf = 5 theory and the corresponding n/ = 5 and nj = 4 massless quark theories 
for ctJrnz)m = 0.10 and 0.12. For r < l/mb, the effective nf = 5 (solid lines) and 
the massless nf = 5 (dashed lines) th eories agree with each other perfectly, showing that 
quark mass effects can be neglected at those distances (rs0.05 GeV-‘). At these short 
distances r < 0.05 GeV-*, the nj = 4 theory deviates appreciably from the nf = 5 theory 
and hence the nf = 5 theory should be used in this region. On the other hand, for r 2 0.2 

GeV-’ where most of the interesting charmonium and bottomonium data are sensitive, 
the nf = 5 mad% theory (m, = mb = 0) is incorrect since there the finite charm 
and bottom quark masses are non-negligible. Thus, in order to describe as accurately as 
possible the short distance potential for a wide range of inter-quark distance, we adopt 
the effective nf = 5 theory with finite charm and bottom quark masses. 

At intermediate and long distances, non-perturbative effects of QCD become more 
important. The inter heavy quark potential in the region 

0.5 GeV-’ s r s 5 GeV” (5.12) 

is known (331 to be constrained well by the charmonium and bottomonium data, which 
is roughly consistent with the logarithmic potential of Quigg and Rosner [39]. At long 
distances, the potential may rise linearly reflecting the quark confinement. We therefore 
parametrize our phenomenological potential as follows: 

V(r) = b(r) at r<ro, 
= Q + cl In $e-rjrl + ar at r>ro. (5.13) 

We require that the potential V(r) and its first derivative V’(r) be continuous at r = ro: 

co= --ar0 + Vp(r0), (5.14) 

Cl = rOeroirl [-a + VL(ro)]. (5.15) 

The above two conditions fix ~0 and cl in terms of the remaining three free parameters 
ro, rl and a, for a given os(rnz)m value. The derivative of the perturbative potential is 
given exactly by using the two-loop renormalization group equation as 

Vi(r) = 

x[bo + bl ~~h)m](l + 2 - exp(-e5i6m,r) - exp( -e”4n~r) 
7r 3bo 11, (5.16) 
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where the scale pr(r) is given by eq. (5.2). It is worth noting here that the term multiplying 
the two-loop beta function factor [bs + b ,] ti is unity at short distances m,r, mbr << 1, 
whereas in the long distance limit m,r, mbr >> 1, it reduces to the factor 

b+%* 
bo 

(5.17) 

This is nothing but the ratio of the coefficient (5.3) of the effective three flavor theory, 
b&z, = 3) = bo(n/ = 5) + $1 and that of our effective five flavor theory, exhibiting the 
decoupling of heavy quarks at long distances [40). 

By varying the free parameters ro, rl and a together with the constituent charm 
and bottom quark masses, m, and mb, this potential gives a good description of the 
properties of the bottomonium and charmonium data (381 for a range of fixed ct,(mz)m 
values. Note that the dynamical charm and bottom quark masses in the short distance 
part of the potential are fixed at m, = 1.5 GeV and mb = 5 GeV, respectively (see 
eq. (5.10)). Th e results of the x2 fit to data for a range of Q,(rnz)m values are listed 
in Table 2. The overall x2 is found- to be very stable to changes in as(rnz)m for the 
range 0.10 s a,(mz)m < 0.14. In fact, because of the steady changes of parameters with 

respect to cx,(mz)m, the parameters of the QCD potential can be very well parametrized 
by a polynomial in as(rnz)m in this range. The fitted values of the constituent charm 
and bottom quark masses are slightly low at cr,(rnz)m = 0.10 while they are a little 
too large at cr,(rnz)m = 0.14. The mass difference mb - m, is almost independent of 
cr,(mZ)m.. We note here, however, that a relatively small value a,(mz)m - 0.105 is 
inferred from the recent studies of the charmonium and bottomonium spectra in Lattice 
QCD [43]. 

In Fig. 10, we show by solid lines our resulting QCD motivated potential for crs(mz)Ti;i-S 
= 0.10, 0.11, 0.12 and 0.13. The optimal potential as obtained by our parametrization is 
found to be purely perturbative at r s-O.2 GeV-’ (rO N 0.2 GeV-’ in Table 2), iogarith- 
mic in the region 0.3 GeV-’ g r s 4 GeV-‘, and starts linearly rising at longer distances. 
As anticipated [39,33], the slopes of the logarithmic parts are common (cl = 0.875~tO.010) 
to all a,(mz)m . In order to show the degree of constraints coming from the onium data, 
we show in Fig. 10 by dashed and dotted lines the region allowed by the five standard 
deviation shifts of the parameters ro and u, respectively, from their best fit values that 
are listed in Table 2. The one-sigma ranges obtained by the MINUIT program are 

-t r0 = 0.235 f 0.010, 
a = 0.357 f 0.025, (5.18) 



for o,(mz)m = 0.12. 

In Fig. 11, we compare our QCD potential with other phenomenological potentials 
which all successfully describe the charmonium and bottomonium data. We give brief 
descriptions of the Martin, the Cornell and the Richardson potentials below: 

1. Martin potential [44]: 

V(r) = A + Br” (5.19) 

with 

A= -7.43, B = 7.32, u = 0.094, 

m, = 1.18, mb = 4.62 

in GeV units, which gives a total x2 of 190 [42,8]. 

2. Cornell potentialj451: 

V(r) = -r+ar 

(5.20) 

(5.21) 

(5.22) 

with I( = 0.47, a = 0.19 GeV2, m, = 1.32 GeV and mb = 4.75 GeV, which gives a 
total x2 of 28 [42]. 

3. Richardson potential [46]: 

3(q2) 
= -- 

; 33 12;n, $ log( 1 +lq2,A2 ) - 
R 

(5.23) 

with 

AR = 0.375 GeV, m, = 1.50 GeV, mb = 4.91 GeV. (5.24) 

for nf = 4, which leads to a total x2 of 18 [42,8]. 

All the data used in the fit and the predictions of the various phenomenological potentials 
above are listed in Table 3. Contribution of each data point to x2 and the sum are also 
given. 

All the potentials in Fig. 11 have a common slope in the region (5.12), consistent 
4th the observation of Buchmiiler and Tye [33]. We note that the x2 value of the Martin 

potential is relatively large because it is too flat at the short distance limit of this region. 
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This can be seen from Table 3, where the majority of the large x2 of the Martin potential 
comes from its inability to reproduce the bottomonium mass difference m(P) - m(lS), 
which is sensitive to the potential in the region around r N 1 GeV-‘. The Cornell 
potential is the most singular at small r because of its Coulombic nature with a constant 
coupling, while the QCD motivated potential is softened by the running of the coupling 
constant at small r. The QCD short distance behavior starts showing up only in the 
region of 

r s 0.2 GeV” (5.25) 

which can be probed by the heavy tf system. The Richardson potential reproduces the 
QCD short distance behavior in the leading one-loop order, and it behaves similarly at 
very short distances to the two-loop improved perturbative potential VP(r) with A# w 
2AR - 0.75 GeV, or cr,(mz)m N 0.14. Hence it may be regarded as an example of a 
successful QCD potential with a relatively large higher order corrections even at short 
distances around r - 0.2 GeV-‘. Although most potential models can account for the 
charmonium and bottomonium data reasonably well, they differ significantly at short 
distanceswhere perturbative QCD gives quantitative predictions. Therefore we can expect 
that the detailed study of the tf production process will provide us with a good test of 

QCD. 

6 -- Cross Sections 

Using the techniques developed so far, we calculate both total cross sections and 
differential cross sections. In subsection 6.a, we discuss the dependence of the total cross 
sections on the physical parameters of the standard model, nt, and cr,(mz)m. In subsec- 
tion 6.b, we study the differential cross sections and compare various phenomenological 
potentials. It reveals that simultaneous measurements of total and differential cross sec- 
tions will lead to an efficient determination of od and ml, since their dependences on these 
parameters are anti-correlated. This is discussed in subsection 6.~. We note that all fig- 
ures presented in this section are based on the calculation of essentially the one-diagram 
evaluation (see Fig. 1). Other diagrams which contribute to the process e+e’ --) bW+&‘- 
may be added later as small backgrounds. We give a brief discussion on this point in sec- 
tion 7. In order to make our theoretical predictions clear, we do not take account of initial 
s&&e radiation effects. Studies including both initial state radiation and beamstrahlung 

effects have been presented elsewhere [47]. 



6.a Total Cross Section 

In this subsection, we discuss the total cross section calculated with the two-loop 
improved QCD potential presented in the previous section. The Z” contribution is now 
included at the tree level, where the terms proportional to the top-quark axial vector 
coupling are neglected for the consistency of our S-wave approximation. Also included is 
the normalization correction due to the hard gluon exchange at the vector tt’ vertex 

1 - 8cr,/3~, (64 

which has been conventionally included in the calculation of quarkonium resonances [9, 
10,33,48]. In this factor, cr, is evaluated at p = mi in the MS scheme. 

Total production cross sections are calculated directly from the formula (3.20) 

q,,(e+e- + tt’ + bW+6W-) = g6~202(l-~)2[~-s~~~u~~)+(~+~~2~] 

xImG(x=O;E=&-imt), (6.2) 

where the above vertex correction and the Z” contributions are shown explicitly. The 
coupling factors are u, = (-f i2s2)/2sc, ut = (3 - is2)/2sc, a, = -1/4sc with s = sin 8~ 
andc= cos 8w, and Qt = 213. We set cr = l/128, sin’ 6~ = 0.23, rnz = 91.17 GeV and 
mw = 80 GeV in our numerical examples. The imaginary part of the Green’s function at 
the origin has been calculated by using the formula given in Appendix C for each potential: 
eq. (C.26) for the Coulomb-like potential, and eq. (C.28) for the two-loop improved QCD 
potential. We note here again that we have neglected the contribution proportional to 
the top quark axial vector coupling at, which is small around the threshold [3] but can 
receive non-trivial [19] QCD corrections. This effect is presently under investigation [20]. 

In Figs. 12(a), (b), ( c are shown the total cross sections near threshold for mt = ) 
100, 150, 200 GeV, respectively, for three values of cr,(mz)m; 0.11, 0.12, and 0.13. As ml 

increases, the resonance structure is smeared out, since the top quark width It increases 
rapidly. (It = 0.095,0.90,2.5 GeV, respectively for ml = 100,150,200 GeV). Also, the 
peak height decreases as it is proportional to I’; ‘. In each figure, we find that the resonance 
peaks shift to lower energies and its height is increased for larger Q,. This is because the 
resonance levels are lowered by the larger binding energy, and the wave functions of the 
resonance states at the origin, $,,(O), grow at the same time. 

In order to examine the sensitivity of the threshold cross section to the short distance 
Eart of the potential, we show in Fig. 13(a) the total cross section for ml = 150 GeV with 
our QCD potential at cr,(rnz)m = 0.12 by a solid line. Also shown by dashed and dotted 

- , 

27 



lines are the predictions of the potentials with the same short distance behavior but with 
their intermediate distance part modified by shifting the parameter ro by five standard 
deviations away from its optimal value; see the dashed lines in Fig. 10 which shows 
the range of the potential covered by the above change of the parameter rs. The three 
potentials differ significantly at r 2 0.5GeV -l. The near degeneracy of the two curves 
demonstrates well that the short distant part of the potential essentially determines the 
threshold cross section. This is exactly what has been predicted by Fadin and Khoze [5], 
as a consequence of the large top quark decay width. 

In order to study the effect of the top quark decay width, we show in Fig. 13(b) the 
same total cross section curves for mt = 150 GeV, but with an artificially reduced top 
quark decay width (rt = 0.1 GeV) by setting ]I&]’ = 0.11. The predictions of the three 
potentials with a common short distance behavior still agree well for the lowest resonance 
structure but they start deviating significantly for higher levels. This sensitivity to the 
long distance physics is lost in the realistic case with IYl = 0,SGeV shown in Fig. 13(a), 
where the effect from the region r . lYr N > 1 of the phenomenological potential V(r) is cut 
off by the smearing effect. [6]; see Fig. 10. 

6.b Differential Cross Section 

Differential cross sections are calculated by using the formula 

da(e+e’. + tf + bW+&W-) = (1 - 2)‘;~ J d@,(bW+bW-)ITji/2 , 

where the matrix element Tfi of eq. (3.16) with both 7 and 2 contributions are calculated 
by HELAS [17]. The G reen’s function in momentum space G(p; E) is evaluated numer- 
ically for each potential as explained in detail in Appendices A to C. By integrating out 
the above differential cross section formula, the numerical program is found to reproduce 
accurately (at the level of l-2 %) the results obtained from the total cross section formula 
eq. (6.2). 

We should make one technical comment here: we used the relativistic form of the 
free top-quark propagator 

D(n) --) 2mtA&) = 2mt 
P: - rnf + imJl (6.4 > 

in place of its non-relativistic expression (3.12). Although our non-relativistic formalism 
is not valid for highly off-shell top quarks where the difference is significant, we find that 
c&tributions from such highly off-shell top quarks are negligibly small. We also note that 
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the non-perturbative QCD enhancement factor G(p; E) decreases for highly off-shell top 
quarks. 

After integrating out the final bW+ and &W- decay angular distributions and inte- 
grating over the virtual top quark production angle about the e+e’ beam direction, we 
find the double invariant mass distribution for the bW+ and ‘;W- system: 

(6.5) 

where p(a, b) = (1 - 2(a + b) + (a - b)2]1/2 is the two-body phase space factor. The c.m. 
momentum of the bW system p is then expressed as 

lpl fi- P2F2 =- 2B y9-y l 

( 1 

(6.6) 

We first identify the quantity which is most sensitive to the QCD interaction in the 
differential cross sections. We note that all the information on QCD binding effects in the 
tt’ system are contained in the Green’s function &(p; E) that appears in the three-point 
function in (3.11). Writing 

qp; q =_ c MM(O) 
n E - E,, + X,/2 ’ (64 

where +,,(x)- is the wave function of, the.n-th resonance state, and &(p) is its Fourier 
transform, we see that the energy (E) dependence of G(p; E) is essentially the same as 
for the total cross section, which is proportional to Im G(0; E). On the other hand, its 
p-dependence is given by r&(p), the wave functions of the resonance states in momentum 
space. Thus, the scale of the E-dependence of e(p; E) is set by AE N azrn, and rt, while 
that of the p-dependence is set by AlpI N cr,mt. Therefore, it is best to look directly 
at the p-dependence of e(p; E), since this provides us with information independent of 
that from the total cross section, and also because its dependence on the strong binding 
effects extends over a wide range of the momentum N a,mt. As the differential cross 
section is proportional to @ ‘(p; E)I’, ‘t ’ p I 1s ossible to observe directly the IpI dependence 
of @(p; E)12 at a fixed energy fi = 2mt + E: the leading lpl dependence of the cross 
section is easily obtained from (6.5) as 

‘I 
a 

da 

dlpl= 
!y(l- 32 [$ _ s;sQ;u;;) + (+&f 

z Z 

x4xp21~(p; E)12 re(E, p). (6.8) 
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Fig. 14 shows the Ipl-dependence of IG(p; E)12 multiplied by the phase space factor 
4?rp2 for the QCD potential with mt = 150 GeV and E = 0. The peak shifts to larger 
IpI as CT, increases. This is due to the increase of the binding energy, which contributes 
to the kinetic energy of the tt’ system. Also the peak height increases with growing a,, 
because of the increase of Itin as in the case of the total cross section. 

In Fig. 15, we show the Ipl-dependence of 4np2(e(p;E)j2 at several energies for 
the QCD potential. The distributions are given at four energies E = ,/ii - 2mt = 

-6, -3,O, $3 GeV for mt = 150 GeV and cr,(mz)m = 0.12. There is no resonance 
enhancement at E = -6 GeV, and the factor 47rp’@(p,E)I is essentially flat there. A 
clear broad peak appears in the distribution at larger energies. The peak position shifts 
to larger lpl as the energy increases. 

Fig. 16(a) compares the lpi-dependence of 4np21e(p; E)12 for the various types of 
potentials, V(r), which are listed in the previous section. The cross section for the Martin 
potential, which is finite at the origin, is thesmallest in magnitude among these potentials. 
Other .potentials are singular at the origin, and their cross sections are relatively large. 
For the Cornell potential which has a fixedstrong coupling constant, IG(p; E)12 is larger 
than that for the QCD potential, as this coupling constant was fitted at the bottomonium 
and the charmonium energy scale; see Fig. 11 for the potential forms. 

If we can distinguish the momentum distribution for the one-gluon exchange QCD 
potential from that for the Martin potential, we may confirm the QCD interaction for 
the binding -of tf . If we can distinguish’ it from the Cornell potential, we may confirm 
the running of the strong coupling constant cr,. We find that it is not an easy task to 
distinguish the Richardson potential from the two-loop improved QCD potential, mainly 
because the slopes of the potential are similar. In particular, our QCD potential for 
as(mz)m = 0.12 and the best-fit Richardson potential are virtually indistinguishable at 
r > 0.3 GeV-‘. Only around the r N 0.1 GeV-’ range is there a sizable difference in the 

slope (see Fig. 11). 
In order to examine the shape of the distribution quantitatively, we show in Fig. 16(b) 

the same 47rp21G(p; E)12 distributions which are all resealed to unity at the peak. Now 
the differences in the large lpl region clearly reflect the short distance behavior of the 
potentials. The Martin potential gives the smallest large IpI tail because of the absence 
of the short distance singularity, and the Cornell potential gives the hardest large lpl tail 
reflecting its strong Coulombic singularity. The Richardson potential gives the second 
hardest spectrum, in accordance with its short distance behavior in Fig. 11. A similar 
observation can be made in the comparison of different q(rnZ)m cases within the QCD 
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potential (see Fig. 14). 

6.c Dependence of Cross Sections on CK~ and mf 

One of the most important tasks of future e+e’ collider experiments is to measure 

both cr, and mt in the threshold region. 
Even though one may hope that the value of the strong coupling constant ct,(rnz)m 

will be well determined by the time of the e+e’ collider experiments, the present situation 
[38,43] suggests that there are large higher order corrections to some quantities. Since 
the short distance potential is, in principle, the best place to measure the effective short 
distance coupling of &CD, it is desirable to have it independently determined in the top 
quark threshold production process. It has been known [11,12,47], however, that there is 
a strong correlation between the measurement of mt and that of CL,. In this subsection, 
we explain that the two parameters are efficiently.determined.-by measuring both total 
and differential cross sections simultaneously. 

For the total cross section, if we increase cu, at fixed mt, we find in Figs. 12(a)-(c) 
that the resonance peaks shifts to the left due to larger binding energies and at the same 
time the peak heights are increased. On the other hand, if we decrease mt while keeping 
a, fixed, we find that the peaks shift to the left as the threshold 2m, is lowered. At the 
same time the peak heights are raised due to the swift reduction of resonance widths. 
Therefore, the threshold behavior of the total cross section scarcely changes when both 
mt and CY, values are simultaneously raised (decreased) appropriately. 

Now, in the case of the differential cross section, we find that the momentum distri- 
bution of 47rp2j&; E)I* h s ows the peak at the momentum scale IpI w cr,mt. The peak 
position moves towards the right in Fig. 14 as we raise cr, at fixed mt. Essentially the 
same effect is found when we raise mt at fixed Q,. The differential distribution remains 
almost the same when ml and Q, values are changed in the opposite direction such that 
their product a,mi remains constant. 

Therefore, the correlations in the cr, and ml measurements are opposite in the total 
and differential cross sections. This will in principle allow an eficient determination 
of the two parameters from the measurements in the threshold region. An accurate 

measurement of the IpI distribution would require a low beamstrahlung collider, a high 
resolution detector, and a good theoretical understanding of jet physics. This is certainly 
a challenge which is a worthy endeavor. 
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7 Discussion 

In this section, we give a brief discussion on the unsatisfactory aspects of our non- 
relativistic formalism. One is that we have restricted our attention to the leading S-wave 
production of the tt’ pair, and that the P-wave contribution, the effect of the top quark 
axial vector coupling to the 2 boson, has been neglected. Another more fundamental 
problem is that our non-relativistic formalism does not give a consistent prescription to 
deal with off-shell top quarks, whose effect has been found to be very important in the 
threshold region via the running of the effective toponium width. 

In the electroweak theory, the off-shell top quark wave function depends on our 
choice of the gauge, and the correct bW distribution is obtained only after summing 
over all the electroweak amplitudes in a given order of the perturbation theory. In our 
problem, we should identify the off-shell top quark wave function in the presence of 
the non-perturbative QCD interactions. The problem may be illustrated by the one-loop 
QCD corrected diagrams in Fig. 17 for the process e+e’ i &IV+. In perturbation theory, 
the physical bW+ spectrum is obtained only after summing all the amplitudes in Fig. 17. 
The leading Coulombic singularity, however, resides only in diagram (a), where the gluons 
exchanged in the t-channel can be summed to infinite orders [9) when the top-quark wave 
function has the non-relativistic form, eq. (4.9). I n an attempt to develop an approach 
based on relativistic field theory, we find that the diagram Fig. 17(b) contributes to the 
threshold cross section in the non-leading order, which is formally of the same order 
as the known hard gluon exchange correction (6.1) as well as the P-wave axial vector 
contribution. Investigation in this direction is currently under way [20]. 

In the present paper, we identify only the leading contribution and the known con- 
ventional hard gluon exchange correction (6.1). I n a simulation of e+e- collider events 
[11,12,47], however, we would like to have a realistic top quark angular distribution and 
the 4-body bW+&V- distributions. This can be achieved approximately by adding to the 
QCD corrected non-relativistic quark model amplitude T,yR of eq. (3.16) the tree-level 
electroweak amplitude without QCD correction TjirCe) for the process e+e- + bW+i;W- 

T’i = T;‘” + Tjiree) _ $WNR). (7.1) 

Here, in order to avoid double counting, the non-relativistic part T~~ee’NR) of the ampli- 
tude with both 1 and t’propagators should be subtracted. This is equivalent to replacing 
in the tree-level electroweak amplitude T~~ree), the product. of 2 and i propagators by the 
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following factor 

I?4 + mdcv [h- mth 
P: - rnf $ imJt p! - rnt + imJt 

mt[rO + G-f mt[7’ - 116~3 
Pi - rnf + imJt pi - rnf + imtl?t ’ (7.2) 

Since it is seen in sect. 4.c that the amplitude proportional to the product of the non- 
relativistic top-quark propagators gives a mild off-shell behavior consistent with the Wr, 
Nambu-Goldston boson equivalence theorem [25] in the gw + 0 limit, the sum of the rest 
of the tree diagrams should also give the mild behavior. The electroweak angular asym- 
metries are reproduced at the tree level, which is subject to non-leading QCD corrections 

[19,20]. 

8 Conclusion 

In this paper, we presented a novel formalism to calculate the total and differential 
cross sections for heavy unstable top-quark pair production near threshold. 

After givi.ng an intuitive picture of top-quark pair production and their decay in the 
attractive QCD potential in section 2, we presented in sections 3 and 4 the non-relativistic 
formuration to calculate the cross sections near the tt threshold by incorporating the 
QCD binding effect. Our formalism allows us to calculate reliably not only the total 
cross sections but also the differential cross sections. We demonstrated the importance 
of using the running toponium width I’o(E,p), instead of the commonly used constant 
width Ie = 2l?&f). Th e use of the running width is necessary to keep the unitarity 
relation between the total cross section obtained from summing the final states and that 
calculated by using the optical theorem; see Fig. 5. The introduction of the running 
toponium width I’o(E, p) h as b een found to give a considerable effect in the determination 
of the Schr6dinger Green’s function G(x; E) and its Fourier transform e(p; E), which 
dictate the overall spectral structure of reionances as well as the distributions of ti inside 
the toponium. I’o(E,p) is determined by the electroweak interaction, whereas the non- 
perturbative strong interaction governs the Green’s function G(p; E) which gives the 
momentum distribution of tr. Their interplay determines the decay widths of the physical 
resonance states, I’,, to be considerably smaller than twice the on-shell top quark width 
2I’&$). This reflects the increase of the kinetic energies of f and t inside the toponium 
due to the binding energy, as well as lack of phase space for deeply bound states. 

In section 5, we determined our phenomenological potential with the two-loop im- 
proved QCD behavior at short distances. It was argued that the masses of bottom and 

F 
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charm quarks inside the exchanged gluon cannot be neglected for the determination of 
the short distance potential in the region relevant to the toponium resonances. 

In section 6, we showed the total and differential cross sections for various values of 
mt and cy,. We found that the correlation in the mt and Q, measurements are opposite 
in the differential distribution compared to the correlation in the total cross section. 
Therefore studies of the differential distributions will lead to an efficient determination 
of the two parameters. The investigation of differential cross sections will provide us 
with information independent of that extracted from the total cross sections, since we 
may directly observe the wave function of toponium states in momentum space. We also 
compared the differential cross sections for various phenomenological potentials. 

In section 7, we gave a brief discussion on the limitation of the present non-relativistic 
formalism. The P-wave contributions and the off-shell top quark wave functions were 
not taken into account in our framework, and we presented a simple prescription to 
incorporate these effects at the tree-level of the electroweak theory, in the zero binding 
limit. A consistent treatment of these effects based directly on relativistic field theory is 
currently under-way [20], 

In Appendices A-C, we show technical details of solving the SchrGdinger equa- 
tion (3.13) for the Green’s function G(x; E) with the running toponium width I’o(p, E). 
Boundary conditions for Coulomb-like and QCD potentials are explicitly solved in Ap- 
pendix C. 
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Appendix A: Evaluation of the Green’s Function 

In this appendix, we present details of our calculation of the Green’s function G(x; E) 
which satisfies the time-independent inhomogeneous SchrGdinger equation (3.13) 

{-d + V(r) - (I3 + i?)} G(x; E) = a”(x), 
mt 

(A4 

with the running width of toponium I’o(E,p) given by (4.22). 
Let us rewrite I’*(& p) in the form 

(A-2) 

with 

GF m: 
r. = --3, 

GF m: 

Jz 47r Ic = 3. iP2* 
(A4 

Inserting (A.2) and p2 = -A into (A.l), we are led to solve the Schrijdinger equation 

[-” + V(r) - (E + i$)] G(x; E) = b”(x) 
P 

with the complex effective mass defined as 

(A4 

mt P .=1+ (A.5) 

Since the above equation has the same structure as the Schrodinger equation with 
a “constant” width, it may seem that we can directly apply the general method for 
evaluating G(x; E) and Im G(0; E). W  e need, however, to be careful on one specific 
point for the evaluation of ImG(0; E). T o see the problem clearly, again we use the 
unitarity relation between the Green’s functions: 

2 Im G(O; E) = / f&$ @ (P; EN2 WW. (A-6) 

If we look at the large IpI behavior of the integrand on the r.h.s., we find that this integral 
is linearly divergent at IpI ---) 00. In fact, the large momentum part of G(p; E) is solely 
determined by the short distance behavior of the potential V(r) and, for the Coulomb-like 
potential, it behaves like the free propagator as G(p;E) --$ cl/p2 for lpl >> cr,mt, while 

jk --t -rc(p2/mt). Hence, we suffer from divergence in evaluating Im G(0; 151). 

~ Nevertheless we find that this divergence is unphysical. The quadratic divergence 
of I’o as lpj + 00 stems from our approximation of neglecting the higher order terms in 

.” 
35 



(4.22). In fact we notice that I’o(E,p) disappears for the kinematical configuration of tf 
where ki ,< m& due to the appearance of rt(kf) in (4.20). This leads to a cut-off in the 
momentum[l9] at 

A*= l 
4(2mt + E)* K3mt + E)’ - m$] [(mt + E)2 - mk]. (A.7) 

For p2 > AZ, there would be no allowed tt configuration such that ki = rnf and kf 1 mb. 

Thus we should cut off our phase space integration on the r.h.s. of (A.6), and obtain 

2 Im W; 4P’<A3= J,,*, $5 lb a* rem P). (A4 

This is the very quantity we need for obtaining the total cross section, which correctly 
incorporates the cut-off in the running width I’o(E, p) [49). (In the actual calculation we 
have cut off the integration at p2 = A$, where the I’o(E, p) given by (4.22) becomes zero.) 
Fig. 18 shows the ]pj-dependence of the integrand in the above equation multiplied by 
the phase space factor 47rp 2. We see that it becomes a negative constant for ]p] >> a,ml. 

We may now transform the r.h.s. of (A.8) to the x-space representation: 

J pl<~l $k I& aI2 re(E, p) = 2 Jd3x~x; A) Im G(x; E) 

+ 2 Jd3xd3yq X-Y; A) V(l4) Im P(x; W*(Y; E)l (A.9) 
where we have introduced the cut-off function 

8(x; A) E /,z<As $$ eiP’x = & [sin( Ar) - Ar cos( Ar)] (A.lO) 

with r = Ix]. We present the technical proof of eq. (A.9) in Appendix B. The cut-off 
function 8(x; A) reduces to J3(x) as A -+ 00. If we look at the first term on the r.h.s. 
of (A.9), we see that Im G(x; E) is smeared out around x = 0 over a size N A-‘. As 
this term reduces to Im G(0; E) w h en we move the cut-off to infinity, it is expected to 

be the main term related to Im G(0; E). Th e second term vanishes as A -+ 00 since the 
integrand becomes real. 

We refer the reader to ref. [9] for the details of the method for finding G(x; E) by 
numerically solving the Schrcdinger equation (A.4). There it is shown systematically that 
the S-wave contribution to G(x; E) is given in terms of the solution to the one-dimensional 
homogeneous SchrGdinger equation as 

(A.ll) 

(A.12) 



with the boundary condition 

;i 9>(4 = 1, 

Jiz g>(r) = 0. 

Specifically, for the Coulombic potential 

V(r) :: =-- 

(A.13) 

(A.14) 

(A.15) 

with a constnat a,, the solution g,(r) may be determined to be a linear combination 
of the two solutions go(r) and g*(r) of the same homogeneous equation (A.12) whose 
analytical behaviors near the origin are given by 

90(r) = r + O(r*), (A.16) 

91(r) = 1 - /3r log(r/ro) + O(r* log r), (A.17) 

with p c $cY#~L. We may then solve (A.12) numerically to obtain gc and gi starting from 

r = 0. .If we write 

9,(r) = 91(r) + B90(r), (A.18) 

the constant B is determined from the asymptotic behavior of go(r) and gl(r). The 
boundary condition (A.14) implies 

91(r) B = - lim - 
7-00 90(r)’ 

(A.19) 

Thus we obtain G(x;E) from (A.11). The G reen’s function in momentum space is given 

bY 

with p = lpl. 

G(p; E) = f /,” dr g,(r) sin pr (A.20) 

It is easier to evaluate In G(0; E)Ip~..A 1 from which we can calculate the total cross 
section. By substituting the Green’s function (A.ll) to (A.9), we find 

2 Im G(0; E)i 
P2<A’ 

: + B + P(~E - 1 + log(Arc))}] - $ + (A.21) 

for the Coulombic potential; see Appendix C for the proof and the corresponding formula 
for the QCD potential. Nere 7~ = 0.5772... denotes Euler’s constant. Therefore, by first 
fixing some ro and determining B, one obtains Im G(0, E)lp2<~2. It can be shown that 
(A.21) is independent of the choice of r 0. The above formula matches well with the correct 
val:e given by evaluating eq. (A.8) directly, as shown in Fig. 19. 
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Appendix B 

In this appendix, we derive eq. (A.9): 

J p2<A2 & P(P; EN* rem PI = 2 J d3x 8(x; A) Im G(x; E) 

+ 2 J d3x#y a( X-Y; A) W I) Im [W; WYY; JW W ) 

Let us first define the operator Q representing the denominator of the Green’s func- 
tion: 

Q=H-(E+i?) P.2) 
where the Hamiltonian and the running width 

H= red,-2X, 

are the Hermite operators. I’o can be expressed in 

re = i(Q - &+I, 

mt. 
terms of Q as 

and the Green’s functions can be expressed as 

G(x;E) =.(xIQ-l Ix'=O), 
e(p;E) = (pIQ-‘Ix’=O). 

P.3) 

W ) 

P.5) 
P-6) 

These relations enable us to rewrite the 1.h.s. of (B.l) as follows: 

J p2<*2 f$ laPi Ju* WE, P> 

= J p2<A2&(~‘=01(Q+)-11P)(PI~eQ-11x~=~) 
=t ‘J p2<A2 6% b’ =Ol(Q+)-‘Ip) -(x’= 0 1 (&+)-‘I P > (P I &+&-‘I x’= O)] * 

P-7) 

In the last line, we want to move Q+ to the left of I p)(p I so that it annihilates with 
(Q+)-‘. All operators which are diagonal in p can be moved. Thus we find 

(Q+)-’ I P 1 (P I Q+ = IPHPI + (Q+)-‘IPHPIW - (Q’)-‘WIP)(PI. (B-8) 
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Inserting (B.8) into (B.7), and using the completeness relation / d3x I x )(x I = 1, we can 
express the integral in terms of the Green’s functions: 

jd<b2 & I&P; EN* ME, P) 

=i12<*27s 1 (x’=Ol(Q+)-‘Ip) - (pIQ-llx’= O)l 
+ijp2<A21s 1 Ix’=0 I (Q’)-‘V(r) I p) (P I &“I x’=O) 

- (x’=O 1 (&‘)“I p) (p I V(r)Q”lx’= O)l (B-9) 
= i J P”12,A2 & [eiPqXG*(x; E) - e-iP.xG(x; E)] 

+i Jd3x J@yjp’<*’ ~~V(IXI) 
X [ G’(x; E)G(y; E)eiP‘(X-Y) +G(x; E)G’(y; E)e-‘P*(X-J’)] (B.10) 

Now we define the cut-off function 8(x; A) as 

.8(x; A) = /,2,n2 & eip’x = & [ sin(Ar) - Ar cos(Ar)] (B.ll) 

with r = 1x1. It is then straightforward to show that (B.lO) reduces to the r.h.s. of (B.1). 
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Appendix C: Formula for ImG(0; E) 

In this appendix we present analytic expressions for the total rate 

2ImG(O;E)i p’<A2 = /,<*. & I&; E)l* b(E, p) w > 
= 2 J d3x 6(x; A) Im G(x; E) 

+ 2 J d3xd3y b(x - y; A) V(lxl) Im [G(x; E)G’(y; E)] , (C.2) 

by expanding G(x; E)lp2<A 2 in terms of A. We show the results for the case where the 

short distance behavior of the potential V(r) is either Coulomb-like (I), or QCD-like (II) 
with the asymptotically free running coupling constant. 

(I) Coulomb-like potential 
We consider the potential that behaves as 

v(r) - -cFF for r ---) 0 (C.3) 

with constant cr,. 
With this asymptotic form of the potential, one may determine g,(r), the solution 

to’ the homogeneous SchrZidinger equation 

[ 

8 
dr2 + p(E +.iro/2 - V(r)) 1 g,(r) = 0, 

with the boundary conditions 

!;,mo9>w = 1, 

$ix g,(r) = 0. 

(C.4) 

w> 
(C-6) 

We first determine the two solutions, go(r) and g*(r), to the same Schrodinger equation 
with the boundary conditions 

go(r) = r + . . . F.7) 

g,(r) = 1 + . . . F.8) 

and 

‘t 

. . . 

d90 
dr 

= 1 + . . . 

d91 
dr = -p [log(r/rc) + 11 + . . . 

F.9) 
(C.10) 
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with /3 = CFCV,~. 
g>(r) is obtained: 

BY fixing some fc, we may solve for go(r) and gr(r), in terms of which 

9> (4 = 91(r) + B90(r), 

B= 

(C.11) 

(C.12) 

Then the Green’s function is given by 

G(x;E) = 5 +. (C.13) 

To evaluate 2 Im G(x; E) 1 plcAs, let us first use the x-space representation (C.2), 
and neglect all terms that vanish as A + 00. In this limit the second term disappears, so 
that the contribution only comes from the first term. We may rewrite the integral in the 
first term using g> (r) as 

J d3xG(x;E)8(z;A) = -&~codrg>(r)~ (F) 

(C.14) 

Since $(x; A) reduces to a”(x) as A + 00, we need to consider only the components of 
G(x;E) that are non-vanishing as x + 0 in the above equation. This corresponds to 
keeping terms up to the order r1 in g>(r) as 

g>(r) = l.- Pr log(r/ro) + Br, (C.15) 

or equivalently 

d9> (4 - = - p [log(r/ro) + 11 + B. 
dr 

(C.16) 

Inserting this into (C.14), we have 

J d3xG(x; E) 8(x; A) = E {y + B + /?(TE- 1 + log Are)} 

+ (terms that vanish as A + 00). (Cl?) 

We further consider the order l/h corrections to the above expression. For this 
purpose we may use the momentum-space representation (C.1). The asymptotic behavior 
of &‘(p;E) as p -+ 00 is determined from the short distance behavior of the potential 
V(r), and for E, I’s N a,2mt, it may be expanded as 

-t (C.18) 

-  I  
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with Co = 1 and other ,C,,‘s of the order of unity. Note that e(p; E) reduces to the free 
propagator for IpI > cr,nt. Substituting (C.18) into (C.l), we may find the order l/h 
terms. If we neglect the term that is suppressed by the coefficient K given in (A.3), the 
only term of this order is found to be 

IPI2 ro --- 
2s A l 

(C.19) 

Thus, we obtain the imaginary part of the Green’s function with the cut off in 

momentum space as 

2hG(O;E)l 
p’<A’ 

y t B t @(7,9-l t log ho)}] - 5 ? (c.20) 

neglecting terms of order l/h’. 

(1I)The QCD potential 
The short distance behavior of the QCD potential which incorporates the running 

of the strong coupling constant a, is given by 

V(r) N - 2 r/ho 
r *og(rQcdr) + (hlbi) log *og(rQcD/r) 

TcF 1 bl log log(rQcdr) -- 
bo r *og(rQcdr) - g r{*og(rQcdr)12 ’ 1 

Here, rQCD is related to the QCD scale parameter as 

rQCD 

(C.21) 

(C.23) 

The solution to the homogeneous Schr6dimger equation g>(r) may be determined in terms 

of go(r) and a(r), whose asymptotic behaviors near the origin are given by 

go(r) = r + . . . (C.23) 

91(r) = 1 + . . . (C.24) 

and 

. 
d90 
dr 

= 1 + . . . (C.25) 

r d91 
dr 

= j log(A log(rQco/r)) t + log~~~Q~D~)) + ’ 1 t . . . . (C.2G) 
0 .- 
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where A is an arbitrary constant, and j = (?rcF/b~) p. By fixing A to some value, we 

may solve for go(r) and gl(r), then g>( r is expressed by their linear combination as in ) 

(C.11) and (C.12). We find that the derivative of g>(r) is given by 

+ = B log(AlOg(QcD/r)) + $ log z;;QyD$; + ' 1 + B t . . . (C.27) 
0 

near the origin. 
Following the same steps as we did for the Coulomb-like potential, we obtain 

=2Im [${~tB+B~OgAt~~(Aroco)+~~2(“rQcD~)}] - 52 

(C.2S) 

with 

fi(X) = z/,‘“” T sint loglog(s/t), 

f2(S) = f /,‘“” t sin t log zg!y/) + ’ , 

(C.29) 

(C.30) 

where the infrared singularity is regularized by cutting off the integral region at t,,, = 
xe-l. 
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Tables 

Symbol G(p; E) lTe 
constant width (atot) UC1 constant constant 
constant width (Jdo) UC2 constant running 
running width mz running running 

Table 1 

Notation for the total fT production cross section calculated by various approxima- 
tions. When the running of the width is consistently taken into account in both 
e(p; E) and I’o, the total cross section as calculated by using the optical theorem 
(0~) agrees with the integral of the differential cross_section. 

“s(mz)m 11 0.10 1 0.11 1 0.12 1 0.13 I 0.14 ] 

$& Aq (GeV) (GeV) 
0.064 0.131 0.237 0.390 0.598 
0.104 0.198 0.339 0.533 0.783 

m, (GeV) 1.105 1.298 1.550 1.898 2.375’ 

Table 2 

Parameters of the QCD motivated potential fitted to the charmonium and bottomo- 
nium data, together with the corresponding minimal x2. The Ag values are fixed 
by the definition (5.8) with rnz = 91.17 GeV, and the corresponding Ak values 
are calculated by the matching condition (5.11) at mb = 5 GeV. The remaining five 
parameters m,, ma, ro, rl and a have been fitted to the data which are listed in 
Table 3. 

e 
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Figure Captions 

Fig. 1 The diagram for the tt pair production process and their subsequent decays into 
bW’s. The box with the dashed line shows the three-point function K(z, y, r) that 
carries the information of the toponium resonance. 

Fig. 2 A figure that shows the time evolution of the non-relativistic tt system. 

Fig. 3 Diagram representing IIf”( 

Fig. 4 The energy-dependence of the total cross sections for the Coulombic potential V = 

-C&r calculated with the constant widths and the running widths, where m, = 

150GeV and cr, = 0.16. No 2’ contribution is included. The energy is measured 
from the threshold: E = fi - 2mt. The dashed curve (a,r) shows the total cross 
section calculated via theoptical theorem with the constant widths; the dotted curve 
(gcz) shows the total cross section calculated from integrating over the differential 
cross section formula with the constant widths; and the solid curve (0~) shows the 
total cross section with the running widths. The notation is summarized in Table 
1. 

Fig. 5 The unitarity relation between the diagrams related to the tt pair production pro- 
cess. 

Fig. 6 The ratio of the running toponium width T’e(E, p) to twice the on-shell top quark 
width 2rt(mf) for mt = 150GeV versus the top (anti-top) quark momentum IpI. 
I’e(E,p) = (Gpmf/4&)[ql - 72(p*/m:)] from eq. (4.22). The three curves are 
for E = -2,O, +2 GeV. 

Fig. 7 A figure showing the increase in the kinetic energy of the ti- system due to the 
binding energy, as compared with the V(r) = 0 case. 

Fig. 8 The momentum distribution, IG’(p; E)]*, of t or i with the phase space factor 47rp* 
for the Coulombic potential V(r) = -Cpzt,/r with ml = 150 GeV and a, = 0.16. 
The three solid curves are for E = -2,O, +2 GeV. The dashed curve denotes the 
distribution at E = +2GeV in the zero binding limit (V(r) = 0). 

Fig. 9 -CF/rVp(r) = l/o,(pr)m versus r. The solid lines are for nj = 5, m, = md = 
-%. 

m, = 0, m, = 1.5 GeV, and ?nb = 5 GeV; the dashed lines are for the nJ = 5 
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massless theory; and the dotted lines are for the nf = 4 massless theory. The upper 
and lower sets are for aa( = 0.10 and 0.12, respectively. 

Fig. 10 The solid lines are our phenonenological QCD potential V(r) for crs(mz)m = 
O.lO,O.11,0.12 and 0.13. The dashed (dotted) lines show the range of the potential 
accepted by the 5a variation of the parameter ro (a) form its best fit value in Table 2 
at a,(mz)m = 0.12. 

Fig. 11 A comparison of different potentials. The solid lines show the QCD potentials 

for a(mz)m = 0.10,0.11,0.12, and 0.13, where 0.10 is the uppermost solid line. 
The dotdashed, dashed, and dotted lines show the Cornell, Richardson, and Martin 
potentials, respectively. 

Fig. 12 (a) The total cross sections versus energy for our QCD potential with ml = 100 GeV 
(I’, = 0.095 GeV). cr,(mz)m = 0.11, 0.12, and 0.13 for the dotdashed, solid, and 
dashed lines.,The energy is measured from the threshold: E = ,/i - 2mt. 

(b) The same as (a) but for mt = 150 GeV (I’, = 0.90 GeV). 
(c) The same as (a) but for mi = 200GeV (I’, = 2.5 GeV). 

Fig. 13 (a) The total cross section versus energy E = 6 - 2mt at ml = 150 GeV and 

+-4&g = 0.12. The solid line is the prediction of our QCD potential with 
the best fit-parameters in Table 2, The dotted and dashed lines are obtained by 
shifting the parameter rg from its best fit value by five standard deviations upwards 
and downwards, respectively. The three curvs are almost degenerate in the figure. 
rt = 0.90 GeV for lvb1* = 1. 
(b) The same as (a) but for rt = 0.1 GeV, or Ivtbj2 = 0.11. The three curves are 
now distinguished clearly for higher resonances. 

Fig. 14 4sp*@(p; E)l* versus lpl for our QCD potential with nzt = 15OGeV and E = 
Ji- 2mt = 0. a,(mz)m = 0.11, 0.12, and 0.13 for the dotdashed, solid, and 
dashed lines, respectively. 

Fig. 15 47rp*@(p; E)I* versus IpI for our QCD potential with mt = 150 GeV and aa( = 

0.12. E = &-2mt = -6, -3,O, and +3 GeV for the dotdashed, solid, dashed, and 
dotted lines, respectively. 

Fig. I$ (a) 4?rp*Ie(p; E)I* versus lpj for the various potentials with ml = 150GeV and 
-~ E=fi-2mt = 0. The solid line shows the QCD potential with a,(mz)m = 0.12. 

- , . . 
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The dotdashed, dashed, and dotted lines show Cornell, Richardson, and Martin 
potentials, respectively. 
(b) The same as (a) but the normalization of each curve is adjusted so that the peak 
values are the same. 

Fig. 17 Feyman diagrams for the process e+e’ ---) bW+f corrected for gluon exchange in the 
one-loop order. External self-energy corrections are not shown. 

Fig. 18 The asymptotic behavior of the differential cross section 47rp*IG(p; E)I*l?e(E; p) 
for large top (anti-top) momentum IpI. It is calculated for the Coulombic potential 
v= -CFa,/r with mt = 150 GeV, Q, = 0.16, and E = -2 GeV. The dashed lines 
show the position of zero. The behavior for lpl > 40 GeV is magnified and shown 
as the dotdashed line. The arrows indicate the positions of the cut-offs Akin, A, and 
A d?* 

Fig. 19 The comparison of both sides of the unitarity relation (C.1) for the Green’s function 
with the running toponium width at energies near the threshold. The solid line is 
calculated by evaluating the constant B in eq. (C.20), which approximates the 1.h.s. 
of the identity in the small l/h limit. The dashed line shows the r.h.s. of the relation 

Cl) 

J *IG(p; E)p-e, 
p?<lz2 (2743 

evaluated by the phase space integration. They are calculated for the Coulombic 
potential V = -CFcr,/r with mt = 150 GeV and cr, = 0.16. The energy is measured 
from the threshold: E = fi - 2mt. 
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