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Abstract 
A technique is described for reconstructing the first order transport matrix (R) 
for a given beam line. Emphasis is placed on the rigorous error analysis of the 
data, and the use of powerful statistical techniques to estimate unknown 
systematic errors. The application of the technique to the measurement and 
subsequent correction of the SLC Arcs is briefly described. 

1.0 Introduction. 

In circular machines, the cyclic boundary conditions which exist uniquely define the properties of the 
beam: Twiss parameters become properties of the lattice. In linear (single pass) colliders, however, the 
beam phase spe is not uniquely determined by the lattice, but is also a function of the initial conditions. 
Determination of the lattice properties in the SLC are generally performed by giving the beam centroid a 
small kick, and observing over many pulses the resulting disturbance downstream. In the case of the linear 
bansport (R) matrix reconstruction described in this paper, the small kicks are angular kicks caused by 
small corrector dipoles, and the resulting downstream betatron oscillation the disturbance. The kick could 
quite have easily been a small energy kick from an accelerating cavity, in which case the downstream orbit 
is a measurement of the dispersion. In both cases, it is important to note that it is the lattice properties (k 
matrix) from the kick that is measured, not the beam properties. 

In the following description of the R matrix reconstruction techniques that were used in conjunction 
with the SLC Arcs, emphasis is placed on the rigorous error analysis that was adopted. An understanding 
of the statistical nature of the measurements allows for a better choice of correction algorithm; this was the 
essence of the coupling corrections applied to the SLC Arcs. 

2.0 Reconstruction of the 4x4 linear R matrix 

2.1 Basic technique. 

The first order transport of a given beam line can be measured using a technique developed by 
Barklow l. ‘Ihe technique relies on making small amplitude betawn oscillations using dipole correctors, 
and measuring the resulting orbit using downstream beam position monitors (BPM). In order to reconstruct 
the 4x4 R matrix a minimum of two betawn phases are required, ideally separated by z/2. In addition to 
the BPM of interest, an additional BPM (again ideally ti in phase away from the first) is required from 
which the beam angle can also be determined. Thus four correctors and four BPM measurements give the 
necessary minimum of 16 measurements to completely determine the R matrix to a given BPM. However, 
to gain somd statistical redundancy, it is bette-r to generate more oscillations at different phases. In the case 
of the SLC Arcs, a total of four correctors in each plane where used, separated by approximately x/4 in 
phase. Now the R matrix reconstruction becomes over constrained, and least squares regression techniques 
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Figure 1. Schematic representation of R matrix reconstruction technique. 

ate employed. 

The problem now becomes one of m inimizing a x2 sum. For each BPM in a given plane, the raw 
measurement is the gradient of the beam displacement at that monitor as a function of the corrector kick: 
We will refer to these values as M ij .w, where the subscript i=l for an X BPM, and i=3 for a Y BPM, j=2 
for an X corrector and j=4 for a Y corrector (following the TRANSPORT* convention), and p and q index 
the corrector (p=l-,...,8) and BPM number (q=1,.;.,4) respectively (figure 1). In the previous introductory 
discussion, it was inferred that each physical BPM could read both X and Y displacements; this is not a 
prerequisite however, and indeed in the Arcs the BPMs alternate X and Y. 

Assuming the linear matrices between the correctors to be Cq, and those between the BPMs to be BP, 
as depicted in figure 1, then the M ijW are given by 

NjW = (BPR(C’)-‘)ij (1) 

where R is the matrix of interest. The required 16 elements of the R matrix can be found by m inimizing 
the following x2 sum: 

MijP’- (BpR(C’)-‘)ij * 
x2=x (2) 

ijw 6Mij P’ 

where SMijw aretheraw measurementerrors(section2.3). WhenmeasuringthetransportoftheSLCArcs, 
a total of 8x4=32 measurements of the M i, .N elements where taken, giving 32-16=16 degrees of freedom. 
However, there are additional constraints due to the fact that the resulting R matrix must be symplectic. 
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2.2 Symplectic constraints 

The symplectic constraint is given by 

RTSR=S 
where S is the matrix 

(3) 

0100 

S = I -1000 
0001 
0 0 -1 0 1 (4) 

Equation 3 generates 6 non-linear constraints on the sixteen elements for the R matrix (hence there are only 
tenindependentelements).ThereconstructedRmatrixisforcedtobesymplectic byminimizingtheX*sum 
given by (2) subject to the 6 symplectic constraints (3). By doing so, we not only guarantee that the resulting 
R matrix be symplectic, but we also increase the number of degrees of freedom from 16 to22, thus gaining 
additional statistical redundancy. The complexity of the computation now increases, however, since the 
problem becomes one of non-linear regression, requiring specialized numerical algorithms and additional 
CPU time. 

2.3 Initial analysis of &jpq terms. 

For each corrector, the corresponding corrector strength is stepped over a number of increments, and 
the BPM displacements recorded. The required MijW and GMijw are then obtained by a linear fit to the 
BPM data as a function of corrector kick. Experience has shown that the reconstructed R matrix is sensitive 
to the initial errors of these slopes: In particularly, systematic errors, if uncorrected, can seriously corrupt 
the final result. When obtaining the Mijw, there are two main sources of systematic errors: i) Unknown 
sources of betatron oscillations upstream of the corrector of interest and ii) energy fluctuations. The latter 
is particular damaging with respect to the SLC Arcs since there is nominally dispersion present at each 
BPM. Simulations have shown that even small energy fluctuations (<O.OS%) can seriously corrupt the 
Mijw if they are not taken into account. In the case of the SLC Arcs, it was possible to fit out the effects 
of the energy fluctuations, since taking the average of the all 240 X BPMs in the Arc gave an accurate 
measurement of the relative energy error AE4E (when differenced with respect to some reference). Thus 
instead of the original straight line (2 parameter) fit, we now have a three parameter fit of the form: 

Xq = (MijW)Bp + q (5) 

where Mijw and rip are the dependent parameters to be determined. Figure 2 shows the x2 distributions 
for the two parameter and three parameter fits. The three parameter fit exhibits a much more well behaved 
x2 distribution, with the mean being equal to the number of degrees of freedom of the fit (in this case 1). 

The effect of upstream bet&on oscillations has been to a large extent solved by the addition of a 
feedback system at the end of the SLC LINAC. Fast (cl Hz) jitter can be removed by averaging. There still 
remain unknown systematic errors (such as BPM and corrector calibrations), but their effect can be 
estimated by the techniques described in the following section. 
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Figure 2. x2 distribution for the initial Mij w fit, with and without fitting for the energy fluctuations. 

The shaded areas indicate the given probability P of a x2 being greater than the indicated value. 

2.4 The 2 distribution: Estimation of systematic errors. 

In the previous section it was mentioned that the distribution of the x2 obtained from several tits of the 
MijW to the raw BPM data did not exhibit the correct behavior; another way of saying this is that the model 
for the fit was incorrect (due to the non-inclusion of the dispersion term). For purely random errors (noise) 
the x2 distribution has a well defined form, with the mean equal to the number of degrees of freedom (Nf). 
and the variance equal to 2Nf. For the R matrix reconstruction, we assume a global equivalent random error 
which represents the unknown systematics. Defining the global error as a,,,, the x2 sum in equation 2 
becomes 

x2 = c (MjW -bPR(W-1)ij)2 

ijpq ( 8Mjp9)2 + O&s 
(6) 



FortheSLCArcs,46ORmatrices werereconstructedfromessentiallythesamedataset. Byadjustingc+, 
the mean of the x2 distribution formed by all 460 reconstructions was forced to be the number of degrees 
of freedom for the tit (22). In most cases, the value of o,ys was comparable to the individual 6Mijw (-0.1 
m). Although this resealing of the errors does not in general alter the actual resulting elements of the R 
matrices, it does affect the associated error covariance matrix; this is important when considering 
correction algorithms. One other benefit of looking at the x2 distribution is to be able to reject BPMs at 
which the reconstructions are statisticahy bad: Again this is important when deciding which measurements 
to use for tuning purposes. 

3.0 Application of R matrix measurements to the SLC Arcs 

The application of the R matrix reconstruction techniques described in section 2 to the SLC Arcs, and 
the use of those measurements in the subsequent first order corrections is documented elsewhere3. 
However, to emphasize the importance of rigorous error propagation to the tuning algorithms, we will 
repeat the essentials here. 

3.1 Correction of cross plane coupling. 

To facilitate terrain following, the SLC Arcs contain vertical steering which is introduced via matched 
roll pairs, separated by a phase advance of 6nrc. In this way, the cross plane coupling introduced at the first 
roll is cancelled by the second opposite roll. However during early commissioning it was discovered that 
optical errors within the achromat sections caused uncorrectable anomalous coupling, leading to large 
projected emittance growth in both planes4. It was soon realized after several attempts to tune out the 
coupling that it was necessary to correct the entire 4x4 R matrix. There were two predominant sources of 
the anomalous coupling: (i) phase errors between matched rolls, resulting in uncancelled coupling and (ii) 
anomalous skew quadrupoles within achromats. Both the phase (quad) errors and skewquad errors were 
considered to accrue from systematic misalignments of the Arc mixed function dipoles, all of which contain 
a strong sextupole component to correct the second order optics. Since the Arc magnets run on a common 
bus bar, there is no freedom in adjusting the various multipole strengths individually. Hence, closed orbit 
bumps were used to introduce controlled amounts of normal and skew-quadrupole, again by virtue of the 
sextupole field present in the magnets. 

Ideally, to correct the 10 independent R matrix elements for a given section of beam line requires 10 
independent orthogonal adjustments. In the case of the Arcs, the five possible closed bumps (per plane) 
available in any given achromat were very close to being degenerate in terms of their perturbative effect 
on the optics. In order to surmount this problem it was necessary to parameterize the optical anomaly of 
interest, and reduce the magnitude of this parameter with a single closed bump. To this end, twox2 figures 
of merit were defined. 

3.2 Definition of $c and 2,a 

The phase errors (in-plane optics) and local coupling were dealt with separately. A single horizontal 
bump, which introduced a normal quadrupole component to the beam line, was used to adjust the in-plane 
optics, while a vertical bump (skewquadrupole) was used to adjust the coupling. Correction was achieved 
by the minimization of two x2 sums. Defining the R matrix thus 



R= (7) 

where A, B, C and D are 2x2 submatrices, the x2 sum for the coupling correction, x2,. is defined as: 

X2, = C (Ci - Q(VR)$(Cj - c$ 
ij 

03) 

where Ci cycles over the four independent elements of the C submatrix, the superscri t d referring to the 
design (required) values. It is important to note that the more general from of the f: x sum with the full 
covariance matrix Vg is used. Although the four elements of the C matrix are independent, their errors will 
be. coupled (by virtue of the reconstruction technique), and this coupling must be taken into account when 
forming a figure of merit of this type. Failure to do so can lead to an adjustment which will over or under 
correcttheerror. For theinplaneoptics,a~2isdefinedovertheremaining6independent Rmauixelements 
in the A and D submatrices. In this case, however, the design Twiss parameters are propagated through the 
beam line of interest (an achromat), and the x2 is formed over the difference between the design Twiss 
parameters, and those propagated values. Thus we define x20g as 

(9) 

where [i cycles over (~xrax,f3y,ay). Vc is the associated4x4 covariance matrix, and the superscript d refers 
to design values as before. Vc is determined directly from Vg by 

'V~~JVRJT (10) 

J being the 4x10 Jacobian of the form aci/aRjk. 

The amplitudes of the required closed bumps were determined by treating the effect of the bump on the 
optics as a linear perturbation. The differential effect of each possible bump on the R matrix was calculated 
using-the code DI@, and another computer code selected the best bump out of the five possible to 
minimize the required x2. Details of the implementation of the bumps are given in reference 3. 

3.4 Some results. 

Historically, the coupling in the SLC Arcs has been characterized by the determinant of the C submatrix 
(det C) although in practise it is not the quantity that is tuned on. Figure 3 shows the north Arc det C as a 
function of BPM unit number before and after the application of the correction algorithm. Figure 4 shows 
histograms of the x2e for each achromat before and after the application of vertical bumps. It is interesting 
to note that the careful error analysis allowed us to determine (in conjunction with montecarlo simulations 
of magnet misalignments using DIMAD) that the measurements were precise enough to resolve 1OOprn 
rms random magnet misalignments, the original design alignment tolerances for the SLC Arcs. 
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- Figure 3. Det C for the north SLC Arc (a) before correction and (b) after correction. 

4.0 Extension to non-linear behavior. 

So far we have only described a technique for reconstructing the linear 4x4 R matrix. It is possible 
however, to extend the technique to second (or even higher) order. In the initial determination of the 
Mijw elements, small amplitude oscillations were used (section 2). By increasing the amplitude of the 
measurements significantly, it is possible to observe non-linear behavior. Now two parameters are 
required from the initial fit: the initial slope (Mijw) and the quadratic parameter (WijW). For the SLC 
Arcs, such a fit would take the form: 

Xq = (Mijpqpp + (Wijpq)6: + TJ~($$) + const. (11) 

Clearly there are four parameters to be determined, requiring at least 4 data points. The coefficients 
._. . . WjW are the same as those previously defined, and can be used in exactly the same manor to recon- 

7 



500 

400 

300 

200 

100 

0 

600 L 1 

0 
1 6 12 17 

Achromat Number 
22 1 6 12 17 

Achromat Number 
22 

Figure 4. x2e per achromat number for the north SLC Arc (a) before any correction and (b) after 
application of vertical closed bumps. 

struct the R matrix. The quadratic coefficients (Wijw) can then be used to reconstruct the second order 
Taylor expansion coefficients Tijk (as defined by Brown2). The exact details of the reconstruction are 
too complex for this review, however it is important to note that exactly the same techniques described 
for the linear reconstruction are directly applicable to the second order calculations, including a set of 
symplectic constraints on the resulting Tijk terms. At the present time, such a reconstruction of the 
second order terms has not been attempted, although large amplitude oscillation data for the SLC Arcs 
has been recorded, and it is our intention to apply these techniques to those data. 

5.0 References. 

1. T Barklow, “A Technique for Measuring the 4x4 Transfer Matrix for Beam Line Sections with 
Cross-plane Coupling”, SLAC-PUB4%9 (in preparation). 
2. K. Brown, “A First- and Second-Order Matrix Theory for the Design of Beam Transport Systems 
and Charged Particle Spectrometers”, SLAC-PUB-75 1982. 
3. N. Walker et al., “Correction of the First Order Beam Transport of the SLC Arcs”, SLAC-PUB- 
5560.1991. 
4. G. Fischer et al., “Some Experiences on the Commissioning Program of the SLC Arcs”, SLAC- 
PUB4206,1987. 
5. R. V. Servranckx et al., “Users Guide to the Program DIMAD”, SLAC-PUB-285.1985. 


