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Abstract

Future damping rings for linear colliders will need to have very small ver-
tical equilibrium emittances. In the limit of low beam current, the vertical
emittance is primarily determined by the vertical dispersion and the beta-
tron coupling. In this paper, the contributions to these effects from random

e misalignments are calculated and tolerances are derived to limit the vertical
emittance with a 95% confidence level.

1. Introduction

Future damping rings for linear colliders will need to achieve very small vertical equilibrium
emittances. In the limit of low beam current, the vertical emittance is primarily determined by
the vertical dispersion and the betatron coupling. It is standard to estimate tolerances to limit
these effects from the expected value of the vertical emittance. But, the emittance due to any
given set of errors can deviate substantially from this expected value. Thus, in this paper, we
calculate the distribution density of the emittance assuming a gaussian distribution of errors.

" . This will be used to determine the variation of the emittance about the expected value in an

ensemble of machines having the same rms alignment tolerances. In particular, we will use the
distribution density of the emittance to calculate rms alignment tolerances that will limit the
emittance with a 95% confidence.

In the next section, we will describe the beam emittance and then list the effect of the ver-
tical dispersion and the betatron coupling. Since we are considering a weakly coupled machine,
our expressions will differ slightly from the more common expressions. Then, in Section 3, we
will evaluate the expected value of the emittance due to random errors. Finally, in Section 4,
we calculate the distribution density of the value of the emittance and the location of the 95%
confidence point.

2. Emittance

A particle beam consists of particles distributed in 6-dimensional phase space. When the
beam is uncoupled, the rms vertical emittance is simply given by:

& = V)Y - () . (1)

But, when the beam is coupled, through either vertical dispersion or transverse betatron cou-
pling, the normal modes of oscillation rotate from the horizontal, vertical, and longitudinal
planes. In weakly coupled et /e~ rings, this coupling has two effects: it increases the pro-
jected vertical emittance, the larger horizontal and longitudinal emittances are projected into
the vertical phase space, and it couples the “vertical” normal mode emittance to the synchrotron
radiation noise, leading to an increase in the normal mode emittance.

The projected emittance depends upon the coupling and can fluctuate from point to point
around the ring while the equilibrium normal mode emittance is invariant. In a damping ring,
the normal mode emittance is the more relevant quantity since, in theory, the beam can be
full -uncoupled after it is extracted from the ring; in this case, the vertical emittance equals

“vertical” normal mode emittance. Thus, we will only con51der this normal mode emittance,
hereafter.
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The vertical dispersion describes coupling between the vertical phase space and the energy
deviation. Thus, it directly couples the vertical plane to the energy fluctuations due to the
synchrotron radiation. In the limit of weak transverse coupling, the “vertical” normal mode
emittance is nearly aligned to the vertical plane and we can neglect the rotation. In this case,

the equilibrium “vertical” emittance due to the vertical dispersion is™
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where H, is the dispersion invariant:

(2)
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“and C, = 55h/(32v/3mc) = 3.84 x 10~ '3 meter, G is the inverse bending radii of the bend
magnets G = eBy/po, and Jy is the vertical damping partition. For a ring in the horizontal
plane J, = 1; in the limit of weak coupling, the change in J, due to errors is negligible.

In addition, the betatron coupling couples the “vertical” emittance to the synchrotron
radiation noise via the horizontal dispersion. In the limit of weak coupling, i.e., when far from
the coupling resonances, this leads to an increase in the “vertical” normal mode emittance that

[2}
can be expressed:

€ = Coy / dsM,|G? [Z |Q*( I8 + o 9+(9)Q-(5) (4)

167, f Gds sin® TAvg sin TAvy sin TAv_
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Here, g = (K2y— K1) the sum over & denotes a sum over both the + term (sum resonance) and
the — term (difference resonance) while Avy = v, + vy and Av_ = v, — vy, and the operator ®
yields the real portion of the expression.

At this point, we should note that Eq. (4) differs from other expressions for the emittance

due to betatron coupling.[“] There are two reasons for this: first, we have considered the case far
from the coupling resonances. It is common to calculate the coupling coefficients by considering
the fourier components at the sum and difference resonances. This is not valid in our case since
we have assumed that one is far from resonance. In this case, the couphng coefficients Q4 (s)
depend upon s much as the closed orbit does. In fact, the real part of Q1 /sin TAvy has exactly
the same form as the vertical dispersion or the closed orbit but with a phase advance of ¥, + 1,
instead of 1/)y Slmllarly, the imaginary portion of Q1 (s)/sin 7 Avy is analogous to (B, ¥, + ayy).

Thus, |Q+|?/sin? rAvy is completely analogous to Hy.

Second, we have written the expression Eq. (4) in a form similar to Eq. (2), the emittance
due to the vertlcal dispersion. This explicitly shows that the emittance depends upon the average
of the coupling in all of the bending magnets and has implications for correction of the emittance.
In theory, one can fully uncouple the beam at a specified location with four independent skew
quadrupoles. But, to fully correct the emittance contribution from the betatron coupling in
an et /e~ machine, one needs to correct the coupling at every bending magnet; 2 this is much
harder to do!

Finally, we need to examine the independence of the two processes described by Egs. (2)
and (4). The change in the vertical betatron motion due to the emission of a photon can be

wagtt‘en
— u
ys = (my +cnx+cnx)— Yp = (n} +d77:c+d,77;:)E_0 : (6)

where u/Ej is the relative energy loss due to the photon and ¢, ¢/, d, and d’ are coupling coeffi-
cients. The two processes are independent if the coefficients (cnyns), (¢'nyn.), ete., are all equal



to zero. Obviously, this will not be true at any one location, but, because 7, is roughly constant
while 7, and the coupling terms (due to random errors) will oscillate with periods of roughly vy
and v, + vy, the average of the coefficients around the ring will be zero. Thus, it is completely
valid to treat the effects independently and the emittance contributions of Eqgs. (2) and (4) just
add.

3. Expected Values for Random Errors
We can quickly evaluate Egs. (2) and (4) to calculate the expected value of the emittance
due to random (gaussian) coupling errors; the effect of closed orbit errors is more complicated

and is discussed in Ref. 2. Assuming random quadrupole rotations and random vertical sextupole
misalignments, we find

<€ ) — CQ72 f|G3(s)|ds 1 [
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and

(ey) =

€z Jz (1 — cos 27y, cos 2mry)
4 Jy (cos 2wy, — cos 2myy)?
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Notice that in Eq. (8), the sum of 1/sin? 7(v; &+ »,) has been written in terms of cos 27y,
and cos 27y, and we have simplified the expression with the equilibrium horizontal emittance.
In addition, notice that the cross terms have been not included in Eq. (8); these terms add
contributions that are at least 1/27wv,, smaller than the contributions from the individual
resonances and thus they will be neglected in all future calculations.
These . expressions for the expected values have been derived repeatedly over the years.
" ‘Estimates of the dispersion due to random errors dates back to some of the original work in this
field and Eq. (8) is the same as that used in Ref. 6.

4. Distributions and Tolerances

In Section 3, we have listed the ezpected values of the vertical emittance. Naively, one could
simply invert these equations to solve for alignment tolerances but the emittance due to any
specific set of errors could deviate substantially from this expected value. Thus, when specifying
tolerances, one should include a “confidence level” (CL); this is the probability that, given the
specified tolerances, any specific machine will be less than the design limit. Typically, one wants
to specify a large CL so that there is a small probability of exceeding the design limit. In this
section, we will calculate the location of the 95% CL as a function of the expected value.

Calculating the CL requires a detailed knowledge of the distribution of the values of the
emittance in an ensemble of machines. It is well known that the mean square amplitude of the
normalized orbit due to random errors with gaussian distributions should have an exponential
distribution function'™ Since, as noted in Section 2, the equations for the closed orbit are similar
to those of the dispersion function and the betatron coupling the same result applies to the
amplitudes of H,(s) and |Q+(s)|2. But, the vertical emittance is equal to the average of these
functions in the bending magnets, and thus, we will consider the effect of averaging H,(s) and
|Q+(s)|? over s in the next sections.

4.1 Emittance due to Vertical Dispersion

The actual distribution function for the values of the vertical emittance due to random
errors is a very complicated function. Thus, we will derive an approximate form that can be
integrated to solve for the location of the 95% CL. We will do this by solving for the moments
of the distribution of emittances. The vertical emittance due to dispersion is given by Eq. (2).
Assuming identical bending magnets and expressing this in complex notation, we find

s+C

/ /B, (2)e v F(2)dz

where o, is the rms relative energy spread,m F is the driving term for the dispersion function:
F=Gy+ Ki1y+ 2K:0n; + Kayn: + -+, and the bar denotes the average around the ring.
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Fig. 1. Second, third, and fourth normalized moments of the distribution for ¢, from
dispersion due to random errors versus the fractional tune; the second moment is the
largest and the fourth moment is the smallest. The points are the results of simulations.

: Now, we solve for the moments of Eq. (9) assuming that the random errors F' have gaussian
" "distributions. This yields

- _ (ey) = p
1
() =24° (1 - gsin2 7I'I/y)
2 2 (10)
3\ _qa,,3 -2 .4
(€y) = 6u (1 — gsin®myy + 75 5in ruy)
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where pu is the expected value of the emittance due to the dispersion. The first three moments
were calculated from Eq. (9), while the fourth moment was fit to data from simulations. These
are-shown in Fig. 1 where the second, third, and fourth moments, normalized by n!u®, are
plotted.

Notice that the moments only depend upon the first moment p and the fractional vertical
tune. When the vertical tune is close to an integer, the moments have the form p, = nlu®.
These are the moments of an exponential distribution as noted in Ref. 7. As the fractional
tune increases, the moments decrease, implying that the probability of large emittance values is
decreased.

We could attempt to construct a distribution directly from these moments, but, instead,
we simply notice that these moments are close to those of a modified y-squared distribution

where the number of degrees of freedom is a function of sin® 7v,. In particular, the distribution
density can be approximated by

—eyn/2u 5-1
n e v €yT
9(ey) = o 7y (i—) , (11)
o 2u T(3) \2u
vﬁere_y i§ the expected value of the emittance and n is the number of degrees of freedom which
depends upon sin? Ty
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Fig. 2. Events versus ¢, due to the vertical dispersion in the NDR lattice. Histograms
are calculated from 1000 simulations of random vertical sextupole misalignments with
ring tunes of: (a) vy, = 3.07, (b) vy = 3.275, and (c) vy = 3.43; the curves are calculated
from Eq. (11).
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Fig. 3.  95% confidence level for ¢, due to dispersion versus the fractional tune; the
dashed line is the result after correction - see Ref. 2.

With these definitions, this distribution has the same first and second moments as the value
of the vertical emittance, Eq. (10). Furthermore, when the tune is integral, Eq. (11) is correctly
equal to the density of an exponential distribution, and, when the fractional tune increases to
0.5, the relative error of the third and fourth moments of Eq. (11) is less than 2% and 8%,
respectively.

.- These distributions are illustrated in Fig. 2 where the distribution density of the vertical
€xiittance, arising from random errors, has been plotted for three different tunes. All of the
histograms are generated from 1000 simulations of 150 pm vertical sextupole misalignments in
the Stanford Linear Collider North Damping Ring (NDR) while the curves are calculated from
Eq. (11). In Fig. 2(a), the tune is v, = 3.07, while in Figs. 2(b) and 2(c) the tunes are v, = 3.275
and vy, = 3.43. One can see that there is fairly good agreement between the simulations and the



approximation.

At this point, we can calculate the location of the 95% CL for the distributions. This found
by integrating the distribution density

forfey)
gley)dey = 0.95 | (13)
0

where fcr is the location of the 95% CL in units of the expected vertical emittance. The
results are plotted in Fig. 3 as a function of the fractional vertical tune Ay,. The solid curve is
calculated from Eq. (11), while the simulation results are plotted as crosses. One can see that
there is very close agreement between the simulation and the approximation results.

- ... Finally, it is important to note the following: first, the curves for fcy, are universal. The
only dependence comes from the fractional vertical tune. The value of fcr, is independent of the
type of errors, the lattice type, and the integral portion of the tune. The data in Fig. 3 has been
compared with simulations run on the ALS:™ a Triple Bend Achromat lattice with an integral
tune of 8, and a future damping ring design:ls] a FODO lattice with an integral tune of 11. In
both cases, excellent agreement was found with the curve in Fig. 3.

Second, our calculations have assumed that the errors are random with gaussian distribu-
tions. A more realistic error distribution is a gaussian distribution where the tails are cutoff at
+20; it is doubtful that large alignment errors, values that are many o, would go undetected.
This will reduce fcy, even further, making Fig. 3 a conservative estimate of for,.

And lastly, notice that there are two advantages of increasing the fractional tune towards

- _ a half-integer: the expected value of the emittance decreases, and the probability of large devi-

ations above this expected value also decreases.
4.2~ Emittance due to Betatron Coupling

o Now, we can use the results of the previous section to calculate the distribution of the value
of the vertical emittance arising from betatron coupling. Ignoring the cross term in Eq. (4),

the emittance is the sum the two quantities |@Q+|2. As noted earlier, these two values have the
same form as H, and thus they should each have approximate distributions given by Eq. (11).

Furthermore, if |Q4|? and |@_|? are mutually independent, then the distribution of their sum
is just the convolution of the two individual distributions.

Since we have assumed that the errors have gaussian distributions, Q4 and Q_ will be
independent it

s4+C s+C

[ asa@)sep,em =0 [ at@@nseperr=o . (19)
s s
Both of these conditions will be (approximately) satisfied if there are many errors in a betatron

period, N > v, 4, and if the tunes are large, vz, > 1; this is typical of high tune (low emittance)
rings.

Convolving the two individual distributions for |Q+]? and |Q_|2; we find an approximate
distribution for the value of the vertical emittance:

n

g(E )z ( ni )_SL( n_ )T e—€vn—/2p_ fdxe—x(-igi+—'ali)x1§t—l(€ _ a:)nT__l (15)
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where ny and n_ are
- - n 1
- -5 = (16)

and p4 are the expected values of the contributions from the sum and difference resonances.
Although the integral in Eq. (15) can be expressed in terms of the degenerate hypergeometric

2 1- %sin2 TAvy
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Fig. 4. Events versus ¢, due to the linear coupling in the NDR lattice. Histograms
are calculated from 1000 simulations of random vertical sextupole misalignments for
tunes of: (a) Avy = 0.35 and Av_ = 0.10, and (b) Avy = 0.35 and Av_ = 0.50;
curves are calculated from Eq. (15).

IIIIIIllllIIIllIIIIIIlI

- _ 2.75
2.50

2.25

fCLﬂ

2.00

R AR R A

1.75

II’llllIllllllljllllll[l]l

|||I||||I|11|I||1|I||||l|

0.1 0.2 0.3 0.4 0.5
Av_

Fig. 5.  95% confidence level for €, due to betatron coupling versus the distance from
the difference coupling resonance for Av; = .35; the dashed line is the result after
correction - see Ref. 2.

function, sometimes called Kummer’s function, there is no simple evaluation and is thus left as
is.

The distribution of the emittances is illustrated in Fig. 4 where the distribution density is
plotted for two sets of tunes. In Fig. 4(a) the tunes are v, = 8.375 and v, = 3.275 so that
A= 0.35 and Av_ = 0.10, while in Fig. 4(b) the tunes are v, = 8.425 and v, = 2.925 so
that Av, = 0.35 and Av_ = 0.50. As before the histograms are found from 1000 simulations of
random sextupole errors and the curves are calculated from Eq. (15). Again, there is very good
agreement between the simulations and the approximation.

Now, we can calculate the location of the 95% CL which, in the case of the betatron coupling,



is a function of both Avy and Av_. This is illustrated in Fig. 5 where fcr is plotted as a function
of Av_, for Av, = 0.35. The crosses are the results of simulations and the solid line is calculated
from Eq. (15). One can see that there is very good agreement between the simulated results and
the approximation when Av_ is small, but there is a significant discrepancy as Av. increases.
In particular, as Av_ increases toward the half-integer, the value of fcr, appears to depend upon
the horizontal and vertical tunes in addition to Ar, and Av_. For example, when the tunes are
vy = 8.575 and vy, = 3.075 (Ary = 0.35 and Av_ = 0.50), fcr equals 2.05. In contrast, when
the tunes are v, = 8.425 and v, = 2.925 (Av; = 0.35 and Av_ = 0.50), fcr equals 1.86. Thus,
there is a substantial difference in for even through Avy are the same in the two cases. This
difference could be explained by the cross term in Eq. (4) which depends upon sin 27y, along
with sinTAvy.

4.9

Tolerances

+ = Finally, one can use the results of this section to calculate tolerances. We have found that
the 95% CL occurs at a value between roughly two and three times the expected emittance. To
calculate alignment tolerances with a 95% CL, we simply solve for tolerances that yield expected
values that are a factor fcr, smaller than the design values.

Actually, the factors fcy, were calculated for the dispersive contribution and coupling con-
tribution individually. Strictly, to calculate the fcy, for the sum of the two contributions requires
convolving both distributions. Fortunately, one usually finds that either the dispersive or the
coupling contribution dominates and thus the separate values fcr, can be used accurately. How-
ever, if both contributions are of equal magnitude, this method will result in tolerances that are
slightly too severe.

5.0

Summary

... In this paper, we have discussed the dominant low current contributions to the vertical
emittance in et /e~ storage rings, namely, the vertical dispersion and the betatron coupling.
The vertical dispersion and the betatron coupling are generated by both magnet alignment
errors and a non-zero beam trajectory; we have only considered the effect of random alignment

errors.

We have calculated alignment tolerances to limit the vertical emittance from the vertical
dispersion and the betatron coupling. In particular, we have calculated approximate distribution
functions for the values of the emittance in an ensemble of machines. From these distributions,
we found tolerances that limit the vertical emittance with a 95% confidence level. In general,
these are a factor of v/2 to v/3 more severe than tolerances simply calculated from the expected
values of the emittance and beam size.
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