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Abstract 
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-- 

Future damping rings for linear colliders will need to have very small ver- 
tical equilibrium emittances. In the limit of low beam current, the vertical 
emittance is primarily determined by the vertical dispersion and the beta- 
tron coupling. In this paper, the contributions to these effects from random 
misalignments are calculated and tolerances are derived to limit the vertical 
emittance with a 95% confidence level. 

1. Introduction 

Future damping rings for linear colliders will need to achieve very small vertical equilibrium 
emittances. In the limit of low beam current, the vertical emittance is primarily determined by 
the vertical dispersion and the betatron coupling. It is standard to estimate tolerances to limit 
these effects from the expected value of the vertical emittance. But, the emittance due to any 
given set of errors can deviate substantially from this expected value. Thus, in this paper, we 
calculate the distribution density of the emittance assuming a gaussian distribution of errors. 
This-will be used to determine the variation of the emittance about the expected value in an 
ensemble of machines having the same rms alignment tolerances. In particular, we will use the 
disfrib,ution density of the emittance to calculate rms alignment tolerances that will limit the 
emittance with a 95% confidence. 

In the next section, we will describe the beam emittance and then list the effect of the ver- 
tical dispersion and the betatron coupling. Since we are considering a weakly coupled machine, 
our expressions will differ slightly from the more common expressions. Then, in Section 3, we 
will evaluate the expected value of the emittance due to random errors. Finally, in Section 4, 
we calculate the distribution density of the value of the emittance and the location of the 95% 
confidence point. 

2. Emittance 

A particle beam consists of particles distributed in 6-dimensional phase space. When hhe 
beam is uncoupled, the rms vertical emittance is simply given by: 

fY = 4 (Y2)W2) - (YY9” . (1) 
But, when the beam is coupled, through either vertical dispersion or transverse betatron cou- 
pling, the normal modes of oscillation rotate from the horizontal, vertical, and longitudinal 
planes. In weakly coupled e+/e- rings, this coupling has two effects: it increases the pro- 
jected vertical emittance, the larger horizontal and longitudinal emittances are projected into 
the vertical phase space, and it couples the “vertical” normal mode emittance to the synchrotron 
radiation noise, leading to an increase in the normal mode emittance. 

The projectei emittance depends upon the coupling and can fluctuate from point to point 
around the ring while the equilibrium normal mode emittance is invariant. In a damping ring, 
the normal mode emittance is the more relevant quantity since, in theory, the beam can be 
fq&. -uncoupled after it is extracted from the ring; in this case, the vertical emittance equals 
“ve&al” hormal mode emittance. Thus, we will only consider this normal mode emittance, 
hereafter. 
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T h e  vert ical d ispers ion descr ibes coup l ing  be tween  the vert ical p h a s e  space  a n d  the energy  
deviat ion.  Thus,  it direct ly coup les  the vert ical p lane  to the energy  f luctuat ions d u e  to the 
synchrot ron radiat ion.  In the limit of weak  t ransverse coupl ing,  the “vert ical” no rma l  m o d e  
emi t tance is near ly  a l igned  to the vert ical p lane  a n d  w e  can  neglect  the rotat ion. In this case,  
the equ i l ib r ium “vert ical” emi t tance d u e  to the vert ical d ispers ion is[l’ 

W 2  $  IG 3 ( 4  I%  ( S F  
E Y  =  7  f G 2 ( s ) d s  

w h e r e  ‘HH, is the d ispers ion invariant:  

Nw(s)  =  & M y +  ( P + L ,y +  cry,,y?)z ,y)2)  ) 
“,Y  

(2)  

(3)  

a n d  C, =  55f i / (32f imc)  =  3 .84  x lo -13meter ,  G  is the inverse b e n d i n g  radi i  of the b e n d  
m a g n e ts G  =  eB, /po,  a n d  Jy is the vert ical d a m p i n g  part i t ion. For  a  r ing in the hor izonta l  
p lane  ,‘Jy =  1; in  the limit of weak  coupl ing,  the c h a n g e  in Jy d u e  to errors  is negl ig ib le.  

In addi t ion,  the betat ron coup l ing  coup les  the “vert ical” emi t tance to the synchrot ron 
radiat ion no ise  v ia the hor izonta l  d ispers ion.  In the limit of weak  coupl ing,  i.e., w h e n  far f rom 
the coup l ing  resonances,  this leads  to a n  increase in the “vert ical” no rma l  m o d e  emi t tance that 
can  b e  expressed:  Ia’ 

. . ..- -  
w h e r e  

(5)  

Here,  g  =  (K2y  - Iz), the s u m  over  f deno tes  a  s u m  over  bo th  the +  term (sum resonance)  a n d  
the - term (di f ference resonance)  whi le  A v +  =  V , +  vy a n d  Av-  =  vZ - vy, a n d  the opera tor  sfz 
y ie lds the rea l  por t ion of the express ion.  

A t this point,  w e  shou ld  no te  that E q . (4)  d ’ff 1  ers  f rom other  express ions for the emi t tance 
d u e  to betat ron coupl ing.‘3 ’4 1  There  a re  two reasons  for this: first, w e  have  cons idered  the case far 
f rom the coup l ing  resonances.  It is c o m m o n  to calculate the coup l ing  coeff icients by  cons ider ing  
the four ier  componen ts  at the s u m  a n d  di f ference resonances.  This is not  val id in  ou r  case s ince 
w e  have  a s s u m e d  that o n e  is far f rom resonance.  In this case,  the coup l ing  coeff icients Q&(s )  
d e p e n d  u p o n  s m u c h  as  the c losed orbi t  does.  In fact, the rea l  par t  of Qk/  s in xAv* has  exact ly 
the s a m e  form as  the vert ical d ispers ion or  the c losed orbi t  but  wi th a  p h a s e  advance  of $ J ~  f tiy 
ins tead of $J~.  Simi lar ly,  the imag inary  por t ion of Q h  (s)/ 
Thus,  IQ &  12/  s in2 a A v &  is complete ly  ana logous  to IH,. 

s inrAv* is ana logous  to (pyy’, +oyy) .  

Second ,  w e  have  wri t ten the express ion E q . (4)  in  a  form simi lar to E q . (2), the emi t tance 
d u e  to the vert ical d ispers ion.  This explicit ly shows  that the emi t tance d e p e n d s  u p o n  the ave rage  
of the coup l ing  in al l  of the b e n d i n g  m a g n e ts a n d  has  impl icat ions for correct ion of the emit tance.  
In theory,  o n e  can  fully uncoup le  the b e a m  at a  speci f ied locat ion with four  i ndependen t  skew 
quadrupo les .  B u t, to fully correct  the emi t tance contr ibut ion f rom the betat ron coup l ing  in 
a n  e + /e- mach ine ,  o n e  n e e d s  to correct  the coup l ing  at every  b e n d i n g  m a g n e t; 2  this is m u c h  
harder  to do!  

Final ly, w e  n e e d  to examine  the i n d e p e n d e n c e  of the two processes descr ibed by  Eqs.  (2)  
a n d  (4). T h e  c h a n g e  in the vert ical beta t ron m o tion d u e  to the emiss ion of a  pho ton  can  b e  
*Xten: I 

-  
Y P  =  (vy +  C Q  +  c’s;); Y ; =  (~5,  +  dvz +  d ’,:)& -  , 

w h e r e  u / E 0  is the relat ive energy  loss d u e  to the pho ton  a n d  c, c’, d, a n d  d ’ are  coup l ing  coetl i-  
cients. T h e  two processes a re  i ndependen t  if the coeff icients (cqyn,),  (c’nyvL),  etc., a re  al l  equa l  
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. . 
to zero. Obviously, this will not be true at any one location, but, because q2. is roughly constant 
while qy and the coupling terms (due to random errors) will oscillate with periods of roughly vy 
and V, f vy, the average of the coefficients around the ring will be zero. Thus, it is completely 
valid to treat the effects independently and the emittance contributions of Eqs. (2) and (4) just 
add. 
3. Expected Values for Random Errors 

We can quickly evaluate Eqs. (2) and (4) to calculate the expected value of the emittance 
due to random (gaussian) coupling errors; the effect of closed orbit errors is more complicated 
and is discussed in Ref. 2. Assuming random quadrupole rotations and random vertical sextupole 
misalignments, we find 

lEyj = Cqy” f IG3(41ds 1 
; -- Jy $ G2(s)ds 4sin2 rvy 

~(&~)24(@2)&?~ + ~w2~)2(YzJPyv~ (7) 
quad sext 1 

and 
6, &7z (1 - cos 2?rV, cos 2TVy) 

(EY) = TZ ( cos 27rV, - cos 27rVy)2 [C(~lewZ)aPy + ~(~2L)2(YiJPz~y] . (8) q”ad 
sext 

Notice that in Eq. (8), th e sum of l/ sin2 a(vZ f vy) has been written in terms of cos 2au, 
and cos2.1rvy and we have simplified the expression with the equilibrium horizontal emittance. 
In addition, notice that the cross terms have been not included in Eq. (8); these terms add 
contributions that are at least 1/27rv,,, smaller than the contributions from the individual 
resonances and thus they will be neglected in all future calculations. 

These. expressions for the expected values have been derived repeatedly over the years. 
. ‘Estimates of the dispersion due to random errors dates back to some of the original work in this 

field and Eq. (8) is the same as that used in Ref. 6. 
4, -Distributions and Tolerances 

In Section 3, we have listed the expected values of the vertical emittance. Naively, one could 
simply invert these equations to solve for alignment tolerances but the emittance due to any 
specific set of errors could deviate substantially from this expected value. Thus, when specifying 
tolerances, one should include a “confidence level” (CL); this is the probability that, given the 
specified tolerances, any specific machine will be less than the design limit. Typically, one wants 
to specify a large CL so that there is a small probability of exceeding the design limit. In this 
section, we will calculate the location of the 95% CL as a function of the expected value. 

Calculating the CL requires a detailed knowledge of the distribution of the values of the 
emittance in an ensemble of machines. It is well known that the mean square amplitude of the 
normalized orbit due to random errors with gaussian distributions should have an exponential 
distribution function!’ Since, as noted in Section 2, the equations for the closed orbit are similar 
to those of the dispersion function and the betatron coupling the same result applies to the 
amplitudes of ‘Hy(s) and 1Q*(s)12. But, th e vertical emittance is equal to the average of these 
functions in the bending magnets, and thus, we will consider the effect of averaging ‘Hy(s) and 
IQ*(s)12 over s in the next sections. 

4.1 Emittance due to Vertical Dispersion 
The actual distribution function for the values of the vertical emittance due to random 

errors is a very complicated function. Thus, we will derive an approximate form that can be 
integrated to solve for the location of the 95% CL. We will do this by solving for the moments 
of the distribution of emittances. The vertical emittance due to dispersion is given by Eq. (2). 
Assuming identical bending magnets and expressing this in complex notation, we find 

. .~ 
-G--- - - (9) 

where uE is the rms relative energy spread:l’ F is the driving term for the dispersion function: 
F = G, + Kly + 211’10172 + Ii’zy7jr + . . ., and the bar denotes the average around the ring. 
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Fig. 1. Second, third, and fourth normalized moments of the distribution for cY from 
dispersion due to random errors versus the fractional tune; the second moment is the 
largest and the fourth moment is the smallest. The points are the results of simulations. 

Now, we solve for the moments of Eq. (9) assuming that the random errors F have gaussian 
‘distributions. This yields 

- -. kY) = P 

(E:) = 2~’ 
( 

1 - f sin2 7r1+) 

- g sin2 rvY + -& sin4 TJ+) 

1 sin2 
1 

- 7rvY + - 
3 

sin4 
2 

rr+, - - 
15 

sin6 7rr+ , 

(10) 

where p is the expected value of the emittance due to the dispersion. The first three moments 
were calculated from Eq. (9), while the fourth moment was fit to data from simulations. These 
are--shown in Fig. 1 where the second, third, and fourth moments, normalized by n!,u”, are 
plotted. 

Notice that the moments only depend upon the first moment p and the fractional vertical 
tune. When the vertical tune is close to an integer, the moments have the form ,un = n!~“. 
These are the moments of an exponential distribution as noted in Ref. 7. As the fractional 
tune increases, the moments decrease, implying that the probability of large emittance values is 
decreased. 

We could attempt to construct a distribution directly from these moments, but, instead, 
we simply notice that these moments are close to those of a modified x-squared distribution 
where the number of degrees of freedom is a function of sin’ 7rr+. In particular, the distribution 
density can be approximated by 

(11) 
_- ._- 
&krv is the expected value of the emittance and n is the number of degrees of freedom which 
depends upon sin2 ruY: 

n 1 
-= l- $sin2XVy ’ 2 (12) 
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Fig. 2. Events  versus cy d u e  to the vert ical d ispers ion in the N D R  lattice. H is tograms 
a re  calcu lated f rom 1 0 0 0  s imulat ions of r a n d o m  vert ical sextupole  misa l ignments  with 
r ing tunes of: (a)  vy =  3.07,  (b)  vY  =  3.275,  a n d  (c) vY  =  3.43;  the curves a re  calcu lated 
f rom E q . (11).  

3 .0  

2.6 
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2.0 
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4  
Fig. 3. 9 5 %  conf idence level  for cy d u e  to d ispers ion versus the fract ional tune;  the 
d a s h e d  l ine is the result  after correct ion - see  Ref. 2. 

W ith these defini t ions, this distr ibut ion has  the s a m e  first a n d  second  m o m e n ts as  the va lue  
of the vert ical emit tance,  E q . (10).  Fur thermore,  w h e n  the tune is integral ,  E q . (11)  is correct ly 
equa l  to the densi ty  of a n  exponent ia l  distr ibut ion, and,  w h e n  the fract ional tune increases to 
0.5, the relat ive er ror  of the third a n d  fourth m o m e n ts of E q . (11)  is less than 2 %  a n d  8 % , 
respect ively.  

r  .~  , - -These distr ibut ions a re  i l lustrated in Fig. 2  w h e r e  the distr ibut ion densi ty  of the vert ical 
et i t tance, ar is ing f rom r a n d o m  errors,  has  b e e n  plot ted for three dif ferent tunes.  Al l  of the 
h is tonams a re  genera ted  f rom 1 0 0 0  s imulat ions of 1 5 0 p m  vert ical sextupole  misa l ignments  in  
the S tanford L inear  Col l ider  Nor th  D a m p i n g  R ing  (NDR)  whi le  the curves a re  calcu lated f rom 
E q . (11).  In Fig. 2(a),  th e  t u n e  is vY  =  3.07,  whi le  in  Figs. 2 (b)  a n d  2(c)  the tunes a re  z+  =  3 .275  
a n d  vY  =  3.43.  O n e  can  see  that there is fairly g o o d  ag reemen t  be tween  the s imulat ions a n d  the 
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approximation. 
At this point, we can calculate the location of the 95% CL for the distributions. This found 

by integrating the distribution density 

fCL(fy) 

J g(cy)dcy = 0.95 ) (13) 
0 

where fen is the location of the 95% CL in units of the expected vertical emittance. The 
results are plotted in Fig. 3 as a function of the fractional vertical tune A+. The solid curve is 
calculated from Eq. (ll), while the simulation results are plotted as crosses. One can see that 
there is very close agreement between the simulation and the approximation results. 

,r)L- Finally, it is important to note the following: first, the curves for fc~ are universal. The 
only dependence comes from the fractional vertical tune. The value of fen is independent of the 
type of errors, the lattice type, and the integral portion of the tune. The data in Fig. 3 has been 
compared with simulations run on the ALS:[” a Triple Bend Achromat lattice with an integral 
tune of 8, and a future damping ring design: [‘I a FODO lattice with an integral tune of 11. In 
both cases, excellent agreement was found with the curve in Fig. 3. 

Second, our calculations have assumed that the errors are random with gaussian distribu- 
tions. A more realistic error distribution is a gaussian distribution where the tails are cutoff at 
f2u; it is doubtful that large alignment errors, values that are many u, would go undetected. 
This will reduce fc~ even further, making Fig. 3 a conservative estimate of fc~. 

And lastly, notice that there are two advantages of increasing the fractional tune towards 
ahalf-integer: the expected value of the emittance decreases, and the probability of large devi- 
ations above this expected value also decreases. 

4.2-.E ‘tt c d ma an e ue to Betatron Coupling 
'N ow, we can use the results of the previous section to calculate the distribution of the value 

of the vertical emittance arising from betatron coupling. Ignoring the cross term in Eq. (4), 
the emittance is the sum the two quantities 1&*12. As noted earlier, these two values have the 
same form as K and thus they should each have approximate distributions given by Eq. (11). 
Furthermore, if IQ+ 12 and IQ- 12 are mutually independent, then the distribution of their sum 
is just the convolution of the two individual distributions. 

Since we have assumed that the errors have gaussian distributions, Q+ and Q- will be 
independent if’l” 

s+C s+C 
J d%(Q2(%))flzpyei2~" = 0 J dr(q2(%))p&?yei2~~ = 0 . (14) s s 

Both of these conditions will be (approximately) satisfied if there are many errors in a betatron 
period, N > v,,,, and if the tunes are large, yz,y 
rings. 

>> 1; this is typical of high tune (low emittance) 

Convolving the two individual distributions for IQ+ (2 and IQ- 12, we find an approximate 
distribution for the value of the vertical emittance: 

g(cy) M (%J (2) I’=;(gy$ ]d,,-4s&.~-‘(4 - +-1 ) (15) 
0 

. where n+ and n- are 
-*:. . 

nrt 1 - -= 
2 1 - g sin2 ~Av* ’ (16) 

and p& are the expected values of the contributions from the sum and difference resonances. 
Although the integral in Eq. (15) can be expressed in terms of the degenerate hypergeometric 
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Fig. 4. Events versus cy due to the linear coupling in the NDR lattice. Histograms 
are calculated from 1000 simulations of random vertical sextupole misalignments for 
tunes of: (a) Au + = 0.35 and Au- = 0.10, and (b) Au+ = 0.35 and Av- = 0.50; 
curves are calculated from Eq. (15). 

2.75 

2.25 

2.00 

1.75 

0.1 0.2 0.3 0.4 0.5 
Av- 

Fig. 5. 95% confidence level for ey due to betatron coupling versus the distance from 
the difference coupling resonance for Av+ = .35; the dashed line is the result after 
correction - see Ref. 2. 

function, sometimes called Kummer’s function, there is no simple evaluation and is thus left as 
is. 

The distribution of the emittances is illustrated in Fig. 4 where the distribution density is 
. .- plotted for two sets of tunes. In Fig. 4(a) the tunes are v, = 8.375 and vy = 3.275 so that 

L$$= 0.35 and Au- = 0.10, while in Fig. 4(b) the tunes are V, = 8.425 and vy = 2.925 so 
that en/+ = 0.35 and Au- = 0.50. As before the histograms are found from 1000 simulations of 
random sextupole errors and the curves are calculated from Eq. (15). Again, there is very good 
agreement between the simulations and the approximation. 

Now, we can calculate the location of the 95% CL which, in the case of the betatron coupling, 
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is a  funct ion of bo th  A u +  a n d  Au- .  This is i l lustrated in Fig. 5  w h e r e  fcL  is p lot ted as  a  funct ion 
of Au- ,  for A u +  =  0.35.  T h e  crosses a re  the results of s imulat ions a n d  the sol id l ine is ca lcu lated 
f rom E q . (15).  0  n e  can  see  that there is very g o o d  ag reemen t  be tween  the s imula ted results a n d  
the approx imat ion  w h e n  A u -  is smal l ,  but  there is a  signif icant d iscrepancy as  A u -  increases.  
In part icular,  as  A u -  increases toward  the hal f- integer,  the va lue  of fc~ appears  to d e p e n d  u p o n  
the hor izonta l  a n d  vert ical tunes in addi t ion to A u +  a n d  Au- .  For  example ,  w h e n  the tunes a re  
us  =  8 .575  a n d  uy  =  3 .075  (A  u +  =  0 .35  a n d  A u -  =  0.50),  fen equa ls  2.05.  In contrast,  w h e n  
the tunes a re  u, =  8 .425  a n d  uy  =  2 .925  ( A u +  =  0 .35  a n d  A u -  =  0.50),  fcL  equa ls  1.86.  Thus,  
there is a  substant ia l  d i f ference in fc~ even  th rough  A u k  a re  the s a m e  in the two cases.  This 
d i f ference cou ld  b e  exp la ined  by  the cross term in E q . (4)  wh ich  d e p e n d s  u p o n  sin2rv, a long  
with s in n A u f . 
4 .3  To le rances  

; .-- Final ly, o n e  can  use  the results of this sect ion to calculate to lerances.  W e  have  found  that 
the 9 5 %  C L  occurs at a  va lue  be tween  rough ly  two a n d  three tim e s  the expec ted  emit tance.  To  
calculate a l ignment  to lerances with a  9 5 %  CL,  w e  s imply so lve for to lerances that y ie ld expec ted  
va lues that a re  a  factor fc~ smal ler  than the des ign  values.  

Actual ly,  the factors fen were  calcu lated for the d ispers ive contr ibut ion a n d  coup l ing  con-  
tr ibut ion individual ly.  S trictly, to calculate the fc~ for the s u m  of the two contr ibut ions requ i res  
convolv ing bo th  distr ibut ions. Fortunately,  o n e  usual ly  f inds that e i ther  the d ispers ive or  the 
coup l ing  contr ibut ion domina tes  a n d  thus the separa te  va lues fc~ can  b e  used  accurately.  How-  
ever,  if bo th  contr ibut ions a re  of equa l  magn i tude,  this m e thod wil l  result  in  to lerances that a re  
sl ightly too severe.  
5 .0  S u m m a r y  
. . ..-- In this paper ,  w e  have  d iscussed the dominan t  low current  contr ibut ions to the vert ical 
emi t tance in e + /e- s torage r ings, namely ,  the vert ical d ispers ion a n d  the betat ron coupl ing.  
T h e  vert ical d ispers ion a n d  the betat ron coup l ing  a re  genera ted  by  bo th  m a g n e t a l ignment  
errors’a n d  a  non-zero  b e a m  trajectory; w e  have  on ly  cons idered  the effect of r a n d o m  a l ignment  
errors.  

W e  have  calcu lated a l ignment  to lerances to l imit the vert ical emi t tance f rom the vert ical 
d ispers ion a n d  the betat ron coupl ing.  In part icular,  w e  have  calcu lated approx imate  distr ibut ion 
funct ions for the va lues of the emi t tance in a n  ensemb le  of mach ines.  F rom these distr ibut ions, 
w e  found  to lerances that l imit the vert ical emi t tance with a  9 5 %  conf idence level.  In genera l ,  
these a re  a  factor of fi to &  m o r e  severe  than to lerances s imply ca lcu lated f rom the expec ted  
va lues of the emi t tance a n d  b e a m  size. 
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