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. . 
\ 1. Introduction 

It has recently been emphasized [l, 21 that hadronic systems containing a sin- 
gle heavy quark (m >> AQCD) admit additional symmetries not present in the full 
QCD lagrangian. In particular, such a system is most conveniently viewed as a 
freely propagating point-like color source (the heavy quark), dressed by strongly 
interacting “brown muck” bearing appropriate color, flavor, baryon number, en- 
ergy, angular momentum and parity to make up the observed physical state. All 
interesting properties of the system are properties of the brown muck and its con- 

+ning interaction with the source of color. Since an infinitely massive heavy quark 
does not recoil from the emission and absorption of soft (E M AQCD) gluons, and 
since magnetic interactions of such a quark fall off as l/m and are hence negligi- 
ble, neither its mass (i.e., flavor) nor its spin affect the state of the light degrees 
of freedom. This results in a remarkable simplification of the description of tran- 
sitions in which a hadron containing a heavy quark, with velocity ~9, decays into 
another hadron containing a hea,vy quark of a different flavor. To the heavy quark, 
this looks like a free decay (up to pertubative QCD corrections), in which the 
light dressing plays no role. The brown muck, on the other hand, knows only that 

its-point-like source of color is now recoiling at a new velocity v’P, and it must 
reassemble itself about it in some configuration. This reassembly will involve non- 
perturbative strong interactions in a horrible and incalculable way (in particular it 
may produce a multi-body final state), but the only property of the heavy quarks 
on which it will depend is the recoil velocity of the decay product. 

The decay of the heavy quark occurs through the action of some external 
current and is calculable in perturbation theory. The transition of the brown 
muck to a boosted state, involving as it does low energy strong interactions, is 
incalculable and must be parameterized, but the result is independent of the mass 
and spin of the initial and final heavy quarks. Essentially, the matrix elements of a 
heavy quark current between hadronic states may be factorized schematically into 
heavy and light matrix elements a.s follows: 

(Qw)IJ(d pw) = 
(Q'(u'), ki [J(q)] Q(u), =hi) x (light, u’,j’, rn; ] light, ti,j, rnj ). 

(1.1) 

The velocity of the outgoing light subsystem is the same as the velocity of the 
final heavy quark; hence the light matrix element depends on the change in heavy - 

_ .- quark velocity v’p - VP induced by the current J = Q’I’Q but not on its Lorentz _ .-- 
s&&ture. We will neglect possible corrections to this form from the emission of 
hard gluons. 
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As  writ ten, e q . (1 .1 )  is n o t direct ly app l i cab le  to  physical  processes,  b e c a u s e  in  
g e n e r a l  phys ica l  heavy  h a d r o n s  wil l  b e  l inear  c o m b i n a tio n s  o f th e  two heavy  q u a r k  
sp in  sta tes  

a n d  th e  2 j  +  1  l ight sp in  sta tes  

; $ 9  as  to  fo r m  e igens ta tes  o f to ta l  a n g u l a r  m o m e n tu m . H e n c e  e q . (1 .1 )  c a n  b e  u s e d  
to  extract re la t ions b e tween  hadron i c  decays  a t th e  pr ice  o f k e e p i n g  track o f s o m e  
C l e b s c h - G o r d a n  c o e fficie n ts. It is s t ra ight forward,  if ted ious , to  o rgan i ze  th e s e  
c o e fficie n ts fo r  specif ic va lues  o f th e  b r o w n  muck  a n g u l a r  m o m e n tu m  j. S u c h  direct  
analys is  h a s  y ie lded  re la t ions b e tween  fo r m  factors ar is ing in  th e  decays  o f j =  3  
heavy  m e s o n s  [1 ,3 ], a n d  the i r  exc i ted j =  $  sta tes  [4 ]. T h e  heavy  ba ryons  (j =  
0 ,l) h a v e  b e e n  t reated as  wel l  [3 ,5 ]; h  o w e v e r , th e  complexi ty  o f such  calculat ions 
g rows  signif icantly wi th inc reas ing  j. T h e  s a m e  resul ts h a v e  a lso  b e e n  o b ta i n e d  
th r o u g h  a  cons idera t ion  o f th e  t ransformat ion p r o p e r ties  o f heavy  h a d r o n s  u n d e r  

-  th e - h e a v y  q u a r k  sp in  o p e r a tors, wh ich  in  th e  heavy  q u a r k  lim it a r e  we l l -de f ined a n d  
i n d e p e n d e n t o f th e  heavy  q u a r k  mass  [6  -  lo]. T h e  m e th o d  is to  construct  heavy  
current  m a trix e l e m e n ts b e tween  physical  sta tes  in  such  a  way  th a t th e  invar iance  
o f (  l ight, v’, j’, rn i  I l ight, TJ,~ , rn j  )  u n d e r  h e a .vy q u a r k  s p a tia l  r o ta tio n s  is m a n ifest. 
T h e  fo r m  factor  re la t ions th e n  e m e r g e  directly. 

In  th is  p a p e r  w e  wil l  reder i ve  th is latter formal ism,  in  such  a  way  th a t its 
ex tens ion  to  b r o w n  muck  with j >  1  is obv ious.  W e  wil l  th e n  u s e  th is resul t  to  
exp lo re  s o m e  p r o p e r ties  o f t ransi t ions fo r  g e n e r a l  j, inc lud ing  to  verify rules,  first 
de r i ved  by  Rol i tzer [2 ], f o r  c o u n tin g  th e  n u m b e r  o f i n d e p e n d e n t fo r m  factors in  a  
g i ven  transit ion. 

2 . B r o w n  Muck  W ith  In tegra l  j 

T h e r e  a r e  bas ic  fe a tu res  o f th e  fo rma l i sm wh ich  wil l  di f fer b e tween  th e  two 
cases o f l ight d ress ing  with in tegra l  a n d  hal f - in tegra l  to ta l  sp in  j. S ince th e s e  
cases c o r r e s p o n d  in  tu r n  to  e v e n  a n d  o d d  fe r m i o n  n u m b e r , th e r e  a r e  n o  transi t ions 
b e tween  th e  subc lasses a n d  th e y  m a y  b e  t reated s e p a ,rately. It wil l  b e  m o s t conve-  
n i e n t to  cons ider  first th e  case  o f in tegra l  l ight a n g u l a r  m o m e n tu m , wh ich  m a y  b e  
th o u g h t o f fo r  concre teness  as  th e  ca.se o f th e  ba ryons  a n d  the i r  exc i ted sta tes. Fo r  
thecases  j =  0  a n d  j =  1  th e s e  resul ts h a v e  prev ious ly  b e e n  o b ta i n e d  by  G e o r g i  
[@ a n d b y M  a n n e l , R o b e r ts a n d  Ryzak [9 ]. 
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2.1 REPRESENTATIONS OF STATES 

The baryons are built out of a heavy and a light component, each of which has 
a well-defined transformation under the Lorentz group. The heavy component is 
a single spinor uh, satisfying the subsidiary condition 

, . 

fiuh = uh, (2.1) 

where VP is the velocity of the baryon (and of its heavy point-like constituent). This 
condition, in the m  -+ 00 lim it, ensures that the quark has positive energy and no I -- 
lower components in the rest frame. (Heavy antiquarks would satisfy fiVh = -Z?h.) 
The light constituent is an object of integral spin j, and is represented by a totally 
symmetric tensor of the form  A~I”‘~J, subject to the constraints of transversality 
and tracelessness: 

These may then be combined into a single object representing the composite state, 
. -.-.- 

$,W’P3 = API”‘PJ u h- P-3) 

This object has well-defined behavior under Lorentz transformations A, 

(2.4) 

(2.5) 

1c, Pl”‘P1 + API u1 . . . 1\~~u3D(Jz)~“l-~u~, 

as well as separately under heavy quark spin rotations, 

$,PL’“‘PJ + D( ,),W% , 

where D(A) = e--$“~~sp” is the usual spinor representation, and in eq. (2.5) i is 
restricted to spatial rotations and refers only to the heavy quark spinor. However, 
for j > 0, $F”‘@J does not transform  irreducibly under the Lorentz group; instead 
it is a linear combination of an object with spin j + i and one with spin j - 3: 

(2.6) 
These will correspond to a pair of physical states which differ only in the orientation 
of the heavy quark spin to the spin of the brown muck. They are degenerate in 
the-heavy quark lim it, as the chromomagnetic interaction vanishes as m  -+ co. 
%will ‘now identify these two components for a few low values of j before writing 
down the general expressions. 
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The j = 0 case is trivial, since in this case the heavy quark carries all of the 
angular momentum of the baryon. So we just have 

II, = uh. P-7) 
‘ . 

There is no decomposition to be done. 

The case j = 1 is more interesting. Here 

q!)’ = A’luh (2.8) 

must be decomposed into spin-i and spin-$ states. We accomplish this by recalling 
the properties of a spin-g Rarita-Schwinger vector-spinor Rp: 

If we define 

$Rp = RpL, v,Rp = 0 7 -ypRp = 0. (2.9) 

then it is straightforward to verify that tit,2 satisfies the conditions in eq. (2.9) and 

is indeed a spin-i object.* That $2 has spin g is most easily seen by rewriting it 
in the form  

“fp = $(Y” + oY543 (2.11) 

where 

(2.12) 

is a positive energy spinor moving at velocity T.P (fi6 = 6) and provides the most 
convenient description of the physical state. Spin sums for these objects can be 
derived directly from  the known relations for A’” and Uh, 

c (4-(i) 
uh uh 

1+$ zz - =  A+, 

i=1,2 
2 - 

c 
A*(i)A(i) = --g 

CL u PU 
+ V/L%. 

i=1,2,3 
_- .-- 
w 

-‘c-m equivalent representation of the spin-$ field is provided (up to normalization) by the 
antisymmetric tensor Ppv = i6P,,pva$3p,2. See ref. [9]. 
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We obtain 

c ti;,2& = A+ [-g”” + @vV + g-/p - tqyv + v”)] ) 
i=1,...,4 

(2.13) 

The normalizations also check: 

gpu Tr c ~!$~??$2 = 4~ 

id,...,4 

- gpv Tr c $f”2$yp = 2, 
id,2 

accounting for a total of 4+2 = 3 x 2 independent states. Of course these properties 
of spin-$ Rarita-Schwinger objects a.re all well known [ll]; we have rederived and 
checked them here to give the rea.der confidence in the generalization to brown 
muck of higher spin j. 

.s.---- We turn now to the case j = 2. Here the baryon is of the form 

which must be decomposed into degenerate spin-$ and spin-i states. Here and 
later we will need the conditions for a spin-(n + 3) Rarita-Schwinger tensor-spinor 
R@‘“‘pL” (totally symmetric and traceless) [ll]: 

q2 = [w; - $(r” + vqydq - $:(y” + tqyp] $!@, 
“3”/” = [$(r” + @)Ycd$ + $:(yv + ““)y/Jq ?@, 

(2.16) 

we check directly that I$“~ satisfies the conditions (2.15) and is indeed spin-g. In 

turn, ~$7~ may be seen to be spin-$ by writing it in the form 

where 

(2.17) 

_ .- 
-& I (2.18) 

- 
satisfies the conditions (2.9). Ag ain, this is the most useful form. 
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It is now straightforward to extend these results to general j. The composite 

of a spin-$ heavy quark and spin-j brown muck decomposes into degenerate spin- 
(j f 3) states as follows: 

2 arthermore, we can reduce $$‘L;‘;“?’ to an object with one fewer index by writing 

where 

1c, - -Pl..$+l _ j 5 
J- 

. . . 
2j+1Y r,,1C1;:1/$ (2.21) 

. '2.Y MATRIX ELEMENTS 

- :w e may now use these representations to calculate matrix elements of heavy 
quark currents between baryon states, making use of the factorization property 
(1.1). Recall th t a we may calculate the heavy quark transition in perturbation 
theory, while the best we can do for the light transition is to absorb our ignorance 
of strong dynamics into Lorentz-invariant parameters in a covariant form factor 
decomposition. Yet we will see that analyzing the light transition after making use 
of eq. (l.l), rather than decomposing the baryon matrix elements directly, results 
in a tremendous reduction in the number of incalculable form factors which we 
must introduce. 

We will first consider the light transitions in isolation, although we know that 
in fact the “states” we are using are a.ctually linear combinations of physical states. 
Replacing the light states by their tensor representations, we have 

p( light, v’, j’, rn> 1 light, V, j, rnj )@ = A’V1”‘~~‘Al”l”‘I”‘~~~..Y,,;~l...ll). (2.22) 

Here (Y and p represent all other quantum numbers associated with the light states 
(such as mass and flavor), and the quantity [zl!.. is a function of the Lorentz 
invariant 2, . v’. From here on we shall suppress the indices cy and ,B, but one must 

. .~ ~.o,Lforget that they are there. There are many distinct light states with the same 
t&%Langular momentum; the replacement in a matrix element of one such state 
with another introduces an entirely new set of form factors. 
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The quantity c&...;~~... represents the amplitude for a light state with given spin 

quantum numbers and moving at velocity w p to make a transition to a state with 
a possibly different spin and moving at velocity v ‘p It absorbs all of our ignorance . 
about the details of the strong interactions. Given the properties (2.2) of Apl”‘fij 
and A’Yl-+, , the most general form for c&...;~~... is, taking j’ - j >_ 0 (without loss 
of generality) and wfi = w’p - #, 

+ * * * + cjyz, * w’)wvlwpL1 - * * wvjwp)]. 
-- (2.23) 

Note that because of the transversality of A’““” and API”‘, the factors wViwP, 
reduce to the less apparently symmetric form vLivPi. The factor (-1) j is inserted 

because the indices on the space-like tensors A’V1”’ and API”’ should be contracted 
with -gyiPi. This formula identifying the independent form factors becomes more 
transparent if we take a few specific cases: 
(i) j = 0, j’ = 2: 
. ..- - 

5 Vl v2 = c;2’o)(w * w’)w,, wv2; (2.24) 

(ii). j’ = 1, j’ = 1: 

&qi = -c~qw * w')gvp - cy)(v * w')w,wp; (2.25) 

(iii) j = 2, j’ = 2: 

Gw2;p1p2 = c$2’2b * 4Lh4p,gv2p2 + Cj”‘“)(ZJ * ‘L”)gv,~l~lwv2~p2 

+ c$2’2)(w * w’)w,, ‘Lop1 WY2 wp2. 

(2.26) 

We can now calculate the matrix elements of a heavy quark current J(a) = - 
Q’I’Q between dressed “states” as follows: 

The factor -dm arises due to the non-relativistic normalization of the heavy 
states which we are using [l]. H owever, since we would like to have physical baryons 
as the states IQ(w)), we must perform the decomposition (2.6); then eq. (2.27) 
becomes 

(2.28) 

l%&e that four classes of decays are described by the same set of form factors. 
ForEample, if we identify the degenerate heavy baryons Ch and Ci with the 
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. 
compos i te  o f a  heavy  q u a r k  a n d  th e  lowest  e n e r g y  j =  1  l ight sta te , al l  o f th e  fo r m  
factors ar is ing in  th e  decays  C h  +  C h t, C h  +  Cl,, Ci  +  C h t a n d  Ci  - +  Ci, a r e  

re la ted  to  th e  two q u a n tities  C , (l”)(v. 2 )‘)  a n d  Ci”‘)(  v . u ’) d e fin e d  in  e q . (2 .2 5 ) . 

T h e  non- reco i l  lim it, U ’ =  V , is p a r ticu lar ly  sim p le f rom th e  p o i n t o f v iew o f 
th e  b r o w n  muck.  If th e  heavy  transi t ion is f rom o n e  i m m o v a b l e  co lor  source  to  
a n o th e r  a t th e  s a m e  velocity, n o th i n g  w h a tso e v e r  h a p p e n s  to  th e  l ight dress ing.  
T h e  a m p litu d e  van ishes  fo r  n o n - trivial t ransi t ions o f th e  l ight d e g r e e s  o f f r e e d o m . 
In d e e d , w e  s e e  th a t as  w  +  0  on ly  th e  C h ”“) fo r m  factors c o n tr ibute, a n d  th e n  

12-n ly  fo r  j’ =  j. In  th is  case  e q . (2 .2 2 )  f o r  rn i  =  rn j  reduces  to  th e  normal iza t ion  
o f th e  l ight sta te , y ie ld ing th e  cond i t ion  

--  

C $ q ~ . u ’ =  1 )  =  
i 

1  fo r  o  =  p ; 

0  fo r  (7y  #  p . 
(2 .2 9 )  

H e r e  w e  h a v e  a s s u m e d  implicit ly th a t C ~ “‘) (V  . u ’) h a s  n o  p o l e  as  w 2  +  0 , o r  
a t least  n o  p o l e  as  s t rong as  w  -‘P  . O f course  w e  s e e  n o  obv ious  m e c h a n i s m  fo r  
p r o d u c i n g  such  a  p o l e , fo r  e x a m p l e , n o  G o lds tone b o s o n  to  wh ich  th e  transi t ion 
cou ld  coup le  as  in  th e  der iva t ion o f th e  G o ldbe rge r -T re iman  relat ion.  H o w e v e r  w e  
can-a lso  tu r n  th e  a r g u m e n t o f th e  p rev ious  p a r a g r a p h  a r o u n d . S ince th e  sim u l- 
ta n e o u s  m  +  0 0 , v =  v’ lim it is o n e  in  wh ich  abso lu tely n o th i n g  h a p p e n s  to  th e  
l ight d e g r e e s  o f f r e e d o m , th e  o r th o g o n a l i ty o f th e  bas is  o f l ight sta tes  requ i res  th a t 
on ly  a  fo r m  factor  p r o p o r tio n a l  to  g V IP 1  . . . g V J P J  c a n  b e  nonvan i sh ing . H e n c e  such  

po les  in  C f”‘) a r e  exc luded , excep t insofar  as  th e y  c a n  b e  r e a b s o r b e d  into a  fin i te 

c o n tr ibut ion to  C f7 ’), in  wh ich  case  th e y  h a .ve  a l ready  b e e n  a c c o u n te d  fo r . 

3 . B r o w n  Muck  W ith  H a lf-in tegra l  j 

W e  tu r n  n o w  to  th e  case  o f l ight const i tuents with hal f - in tegra l  a n g u l a r  m o -  
m e n tu m . T h e  physical  a r g u m e n ts a r e  th e  s a m e  as  with j a n  in teger ,  wh i le  th e  
fo rma l i sm is n o m inal ly m o r e  compl ica ted  to  d e v e l o p , so  w e  wil l  focus  o n  th e  fo r -  
m a lism . In  p a r ticular ,  th e  two cases o f orb i ta l  a n g u l a r  m o m e n tu m  ! =  j f 3  wil l  
h a v e  to  b e  t reated distinctly. 
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3.1 REPRESENTATIONS OF STATES 

Let us consider the construction for j = 3. Once again, the heavy component 
of the hadron is a positive energy quark uh satisfying fiuh = Uh, but now the 
representation of the light component will depend on whether J! = 0 or e = 1. Note 
that the energy splitting between states of different e does not vanish in the heavy 
quark limit. We will first take the case e = 0. Here the brown muck transforms 
under the Lorentz group simply as an antiquark Ve satisfying 

(The subscript e on Ve here just denotes “light”.) The composite, which we may 
write 

uhve, 

is a linear combination of objects with total angular momentum j f i = (0,l). 
It is easiest to identify these in the rest frame, where the spin operator takes the 
simple form 

si = 1 crz 0 

(’ ) 2 0 ,i ’ 

1 

O 
0 

0 

It is also convenient to work with the rest frame spinor basis 

j, uf’=[;], $=[;), vj2’=[;j. (3.2) 

Then, using S(uh’ij,) = (Suh)‘i’j - uh(veS), we find 

(2)-(2) 
-Uh ve 1 = 0, 

7 r .~ 

-ii- - 
- s3 uP)-P) = -pq [ 1 h ve 

10 
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. 
From the basis (3.2) we calculate (note the lowered spatial indices) 

upj$) + ,f)j$) 

. 

(3.4) 

leading us to the Lorentz covariant identification of pseudoscalar (P) and vector 
meson (V) states: 

- -. 
where r/p is the polarization of the vector meson (q@uP = 0). The transformation 
of these states under the Lorentz group is given by 

P --) D(A)PD+(h), 

V(f) --+ W W W W ’)~+(A), 
P-6) 

while under spatial rotations 11 of the heavy quark 

P - D(X)P, 

V(f) + D(X)V(f). 
(3.7) 

For j = 3 but e = 1, the light degrees of freedom are the spin-f combination 
of a vector and a spinor. Using the negative energy analogue of eqs. (2.10)-(2.12), 
we write 

Decomposing uh& as in eq. (3.4), we obtain (up to irrelevant signs) the pair of 
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sta tes  

$ A + & W  - 4  a n d  @ + y5fyv#y” -  u p ”> . (3 .9 )  

It is conven ien t to  e l iminate  th e  spur ious  index  by  c o n tract ing o n  th e  r ight  wi th 

& r m  a fte r  wh ich  w e  h a v e  th e  scalar  (S )  a n d  p s e u d o v e c to r  (B )  sta tes: 

S  =  k A + , (3 .1 0 )  

‘T h e s e  shou ld  b e  c o m p a r e d  to  e q . (3 .5 ) . 

- -  Fo r  hal f - in tegra l  j >  1 , th e  l ight a n tisp ino r  b e c o m e s  a  genera l i zed  Rar i ta-  
S c h w i n g e r  te n s o r - a n tisp ino r  ??z l”‘(Lk  (r5),  w h e r e  Ic =  j -  3  a n d  th e  y5  is p r e s e n t if 
j =  f?  -  3  (a fte r  r e m o v i n g  th e  spur ious  index) .  In  e i ther  case  ? ? F 1 ”‘ILk  satisfies 

as  wel l  as  th e  o th e r  condi t ions l isted in  a n d  a b o v e  e q . (2 .1 5 )  ( n o te  th a t Di rac 
m a trices n o w  al l  act o n  th e  r ight).  T h e n  th e  object  wh ich  m u s t b e  d e c o m p o s e d  
into its S p in-( j  f f) p ieces  is Uh??r l”‘pk  (r5),  wh ich  t ransforms in  th e  obv ious  way  
u ’n d e r  A  a n d  x. L e t us  first work  o u t th e  case  j =  $  a n d  f! =  1 . Reca l l ing  e q . (3 .8 ) , 
w e  wri te 

R g  =  [S F  - i(r” - T.+ ‘)+/~]  A ’ve  (3 .1 2 )  

a n d  u s e  e q . (3 .5 )  to  d  e c o m p o s e  th e  u h ? ? e  p a r t o f ‘Ih R r . A  s t ra ight forward rear -  
r a n g e m e n t o f th e  Di rac m a trices y ie lds th e  sp in -2  object  

(3 .1 3 )  

w h e r e  qy  =  vy, rl+ p  -  ’ -  0 , a n d  u P $ ’ =  0 , a n d  th e  spin- l  ob ject  

w h e r e  $ -‘vP  =  0 . ( W e  der ive  qy  e n tirely f rom th e  V  p a r t o f e q . (3 .5 ) , wh i le  q ! 
is a  l inear  c o m b i n a tio n  o f b o th  te rms . This  is as  w e  w o u l d  expec t, s ince a fte r  th e  

. .~  i d e n tifica tio n  (3 .5 )  w e  h a v e  e i ther  a  sp in -0  object  (P)  or  a  spin- l  ob ject  (V)  to  
& m b inewi th  th e  spin- l  vector  A ’; qy  m u s t b e  th e  s y m m e tric c o m b i n a tio n  o f th e  
vectors V  a n d  A ’.) T h e  j =  $  sta tes  with e  =  2  a r e  i d e n tica l  to  V P  a n d  P p , b u t 
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with opposite parity: 

(3.15) 

The generalization to arbitrary half-integral j is now straightforward. We 
construct objects of spin j f 3 as follows, for j = !! + 3: 

Here 772” are symmetric, traceless and transverse to ‘up. We obtain the coefficients 
in eqs. (3.14) and (3.16) by requiring that VP1 “‘pk and Ppl”‘fik be normalized 

. correctly in terms of rlc”‘. The j = e - f states Bp’“‘pk and Spl”‘pk are their 
counterparts of opposite parity, as in eq. (3.15). Recall that in the heavy quark 
limit the states P and V are degenerate, as are the states B and S, but the pair 
(P, V) is split from (S, B). 

3.2 MATRIX ELEMENTS 

We can now use these representations to construct matrix elements of heavy 
quark currents between meson states, in exact analogy to the case of baryons. 
Because the brown muck now carries a spinor index, the light matrix element 
takes the form 

p(light, v’,.?, m; 1 light, v,j, rnj )O = Tr R’Vl...uklRI1l”‘C(k~~~~.,Yk,;~I...~k 
I 

. (3.17) 

From here on, as with the baryons, we will suppress (but not forget) the indices 
LL and ,L?. In principle &, ,... ;P1... has Dirac structure, and it could include terms 
proportional to y$. H owever in the trace 4 reduces to zero (for (P, V) --+ (P, V) 
and (S, B) -+ (S, B) matrix elements) or to f2 (for (P, V) --+ (S, B) matrix ele- 
ments), so such terms are redundant. Since there is no other vector in the problem, 
and terms with y5 are excluded by parity conservation of the strong interactions, 

. 
P- -has Vl ‘-tfdl ... no nontrivial Dirac structure after all. Hence the formula (2.23) may 
be extended to half-integral (j’, j). Again, we write out a few examples to make 
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things clear: 
(i) j = a, j’ = 3: 

[ = &$v. J). (3.18) 

This is the famous function originally identified by Isgur and Wise [l]. 
(ii) j = 3, j’ = $: 

(3.19) 

;f-iii) j = 4, j’ = $ 

(3.20) 

The suppression of the upper indices on [~~..;,,... should not obscure the fact that 

there are an entirely separate sets of form factors Cl”‘) for (P, V) + (P, V), 
(B,S) + (B,S) and (P, V) + (B,S) transitions. 

- 
The-matrix element of a heavy quark current J(Q) = Q’I’Q between physical 

meson states is then given by 
- -. 

@‘(v’)l J(q) l*(u)) = -1/4mm’Tr [wvl”‘uk’ r ‘z~P~.-.IL*]Iv~...~~,;~~...~~, (3.21) 

where M”“’ = PC?, VW’, SW.’ or B”-. For example, this reduces in the j = j’ = 
4, Q = 0 case to the familiar result [6] [7] for heavy pseudoscalar and vector meson 
decays, 

(Q’(d)1 &‘I’Q IQ(U)) = -dm[(~ - d) Tr A&I’M. (3.22) 

We can also reproduce compactly the results of ref. [4] for the matrix elements of 
excited meson states. Finally, we recover the extension to half-integral j of the 
normalization condition (2.29), Cf”)(l) = 1 for (Y = ,L?. 
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4. Other Applications 

4.1 COUNTING FORM FACTORS 

We may now consider the question of how many independent form factors 
appear for given values of j and j’. This question was first addressed by Politzer, 
in ref. [2]. H is method is to go to the “brick wall” frame (v’ = -v) and quantize 
the angular momentum of the brown muck about the spatial axis defined by V. 
In this frame the action of parity is particularly simple, since here w” has no 

;$jrne-component and simply changes sign. Thus the form factor [V1...y3,;.1...cLJ is 

multiplied by (-l)(f-i), as is &,l...v,,.~l...~J. Assuming the transition Ap’“’ --+ A’“““ 
involves no change in intrinsic parity, the light matrix element (2.22) picks up 
the same factor (otherwise it picks up an additional minus sign). The rotational 
symmetry about v of the light system then yields three rules: 

1. Angular momentum about this axis is conserved, so rnj = m>. 

2. Amplitudes for rnj are equal (up to a phase) to those for -mj. 

3. Amplitudes for rnj = 0 vanish if j’ - j is not an even integer. 
. . . ..-- 

-In the absence of the third, the first two rules would imply that there are j + 1 
independent form factors for j 5 j’ integral, and j + i for j 5 j’ half-integral. 
The same result would follow immediately from the form of eq. (2.23). However, 
we must now account for the additional restriction implied by Rule 3, which is 
not implied by our results so far. Imposing it by explicitly inserting the rnj = 0 
states into eqs. (2.22) and (2.23), we then derive the following condition on the 

form factors C@“‘) 2 for j integral and j’ - j > 0 odd: 

f(j)($‘d + f(j _ qw2@‘d + . . . + f(())w2+j’sj’ = 0, 
3 

where f(0) = 1 and f(lc) = (2lc - l)!!/lc! for Ic > 1. In this case there are only j 
independent form factors. For exa,mple, we find that j = 1, j’ = 2 transitions are 
governed by a single form factor, 

t Vl ,vz;p1 
= cy)w’/2 [- 

w2!Jl/l~1 + WV1 wp,] 3 

and that, for j’ odd and j = 0, 

(4.2) 

r .~ &q...I/l,(2.’ * u’) = 0. (4.3) 
-G-- - - 
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4 .2  S U M  R U L E S  F O R  G E N E R A L  S P IN 

If th e  p ic ture o f heavy  h a d r o n s  wh ich  w e  h a v e  b e e n  us ing  is correct,  in  p a r ticu la r  
th e  factor izat ion p r o p e r ty (l.l), th  e n  it shou ld  b e  poss ib le  to  p r o v e  s u m  ru les  fo r  
th e s e  “spectator” decays.  This  h a s  b e e n  d o n e  fo r  (j, j’)  =  (0 ,O ) a n d  (3 , i) by  
B jorken,  D u n i e tz a n d  T a r o n  [la ]. They  s h o w  th a t th e  s q u a r e d  m a trix e l e m e n t fo r  
th e  decay  o f o n e  heavy  q u a r k  to  a n o th e r , s u m m e d  over  fina l  sp in  sta tes, 

c (Q b L  & + I J + M  IQ 't~ 'b )  ( Q 't~ '), ~ 1  J(d  IQ (v), + )  , ( 4 .4 )  

is e q u a l  to  th e  s a m e  q u a n tity wi th heavy  h a d r o n s  rep lac ing  heavy  quarks,  s u m m e d  
over  al l  poss ib le  fina l  h a d r o n  sta tes  o f velocity v”‘. This  justif ies th e  i d e a  th a t it is 
consistent  to  th ink  o f th e  decay  o f th e  heavy  q u a r k  a n d  th e  r e a r r a n g e m e n t o f th e  
l ight d e g r e e s  o f f r e e d o m  a b o u t th e  decay  p r o d u c t as  i n d e p e n d e n t processes.  

T h e  mach ine ry  is n o w  clear ly  in  p la .ce to  ex tend  the i r  p r o o f to  arb i t rary  j a n d  
j’. H o w e v e r  th e  task is p robab l y  m o r e  ted ious  th a n  en l igh ten ing ,  especia l ly  as  w e  
cons ider  th e  resul t  to  b e  intuit ively compel l ing .  W e  wil l  restrict ourse lves  h e r e  to  
c o m m e n tin g  o n  o n e  aspec t o f th e s e  s u m  rules,  n a m e ly the i r  fo r m  as  u ’ +  2 ) )  in  

‘-an -  expans ion  in  ( V  . d  -  1 ) . ( S e e  re fs. [4 ,1 2 ,1 3 ] f o r  m o r e  d e ta i led  d iscuss ion o f 

the-cases  j =  0 , i.) A t zero th  o r d e r , o f course,  on ly  th e  fo r m  factor  C f”) ( for 
cx =  ,0 )  c o n tr ibutes to  th e  s q u a r e d  m a trix e l e m e n t. A t l inear  o r d e r , th e r e  a r e  
a lso  posi t ive d e fin i te c o n tr ibut ions p r o p o r tio n a l  to  ( V  . Y ’ -  1 ) ]C~*1,i)]2. ( N o te  
th a t n o n r e s o n a n t fina l  sta tes  with m o r e  th a n  o n e  p a r ticle m a y  b e  inc luded  h e r e .) 
Cance l ing  th e  q u a n tity (4 .4 )  f r o m  b o th  s ides o f th e  s u m  rule,  o n e  o b ta ins  in  th is  
lim it a n  express ion  o f th e  fo r m  

1  =  hj(?J.  ?J’)]‘$j ) (  2 , * v’) 1 2  +  . * * )  (4 .5 ) 
w h e r e  th e  e l i ded  te rms  a r e  al l  n o n n e g a tive  o r  van ish  a t least  as  (U  . v’ -  1 ) 2 . T h e  
factor  h j (v *u’) c o m e s  f rom tak ing  th e  p r o d u c t o f a  po lar iza t ion sta te  o f sp in  j wi th 
its L o r e n tz b o o s te d  c o u n te r p a r t. W e  fin d  ho(v  . v’)  =  1 , wh i le  fo r  j =  i w e  h a v e  

hl,2(v. 2)‘) =  3 ( 1  +  2 , * u ’). (4 .6 )  

T h e  posi t ive der ivat ive o f h  r i2 (2’ * 2 )‘) a t ‘u . o ’ =  1 , to g e th e r  with th e  re la t ion (4 .5 ) )  
y ie lds a n  essen tial ly k i n e m a tica l  restr ict ion o n  th e  s lope  o f th e  Isgur -Wise  fu n c tio n  
a t th e  e n d p o i n t. D e fin i n g  

1  1  

_  .- ( (7J  * ? I) =  c, y, . t,‘)  =  1  -  /qv. 2 1 ’ -  1 )  +  . . . )  
_  .-- 
o % e & r d s  p  2  3 . T h a t n o  such  restr ict ion ar ises fo r  j =  0  h a d  led  to  th e  specu la t ion  
1 4 3  th a t th is  suppress ion  was  assoc ia ted with th e  zitte r b e w e g u n g  o f th e  b r o w n  
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muck.  If th is  w e r e  true, w e  w o u l d  expec t to  fin d  th is e ffect on ly  fo r  hal f - in tegra l  j. 
H o w e v e r , fo r  j a n  in teger  w e  c a n  n o w  u s e  th e  te n s o r  r e p r e s e n ta tio n s  to  calculate 
explicit ly th e  n o n trivial cond i t ion  p 2  2  j2/(2j  -  1 )  fo r  j 2  0 . H e n c e  th e  suppress ion  
c a n n o t h a v e  th is p a r ticu la r  or ig in.  
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