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1. Introduction

It has recently been emphasized [1, 2] that hadronic systems containing a sin-
gle heavy quark (m > Aqcp) admit additional symmetries not present in the full
QCD lagrangian. In particular, such a system is most conveniently viewed as a
freely propagating point-like color source (the heavy quark), dressed by strongly
interacting “brown muck” bearing appropriate color, flavor, baryon number, en-
ergy, angular momentum and parity to make up the observed physical state. All
interesting properties of the system are properties of the brown muck and its con-

~-ming interaction with the source of color. Since an infinitely massive heavy quark
does not recoil from the emission and absorption of soft (E ~ Aqcp) gluons, and
since magnetic interactions of such a quark fall off as 1/m and are hence negligi-
ble, neither its mass (i.e., flavor) nor its spin affect the state of the light degrees
of freedom. This results in a remarkable simplification of the description of tran-
sitions in which a hadron containing a heavy quark, with velocity v*, decays into
another hadron containing a heavy quark of a different flavor. To the heavy quark,
this looks like a free decay (up to pertubative QCD corrections), in which the
light dressing plays no role. The brown muck, on the other hand, knows only that

" its point-like source of color is now recoiling at a new velocity »'#, and it must
reassemble itself about it in some configuration. This reassembly will involve non-
perturbative strong interactions in a horrible and incalculable way (in particular it
may produce a multi-body final state), but the only property of the heavy quarks
on which it will depend is the recoil velocity of the decay product.

The decay of the heavy quark occurs through the action of some external
current and is calculable in perturbation theory. The transition of the brown
muck to a boosted state, involving as it does low energy strong interactions, is
incalculable and must be parameterized, but the result is independent of the mass
and spin of the initial and final heavy quarks. Essentially, the matrix elements of a
heavy quark current between hadronic states may be factorized schematically into
heavy and light matrix elements as follows:

(W )]I(0) [¥)) = -
(Q'()), 2L 17(0)] Q(v), £1) x (light, o', ', m |light, 0,5, m;).
The velocity of the outgoing light subsystem is the same as the velocity of the
final heavy quark; hence the light matrix element depends on the change in heavy
quark velocity v'# — v* induced by the current J = Q'TQ but not on its Lorentz
é‘&ug;ure. We will neglect possible corrections to this form from the emission of
hard gluons.



As written, eq. (1.1) is not directly applicable to physical processes, because in
general physical heavy hadrons will be linear combinations of the two heavy quark
spin states

|Q(v)’_%>s |Q(’U),%),
and the 27 + 1 light spin states
|1ight,v>j7 _.7 )a ey I hght,v’],] )a

. 80 as to form eigenstates of total angular momentum. Hence eq. (1.1) can be used
to extract relations between hadronic decays at the price of keeping track of some
Clebsch-Gordan coefficients. It is straightforward, if tedious, to organize these
coeflicients for specific values of the brown muck angular momentum j. Such direct
analysis has yielded relations between form factors arising in the decays of j = %
heavy mesons [1,3], and their excited j = % states [4]. The heavy baryons (j =
0,1) have been treated as well [3,5]; however, the complexity of such calculations
grows significantly with increasing j. The same results have also been obtained
through a consideration of the transformation properties of heavy hadrons under

- the heavy quark spin operators, which in the heavy quark limit are well-defined and
independent of the heavy quark mass [6 — 10]. The method is to construct heavy
current matrix elements between physical states in such a way that the invariance
of {light,v’, j', m'j |light, v, j,m; ) under heavy quark spatial rotations is manifest.
The form factor relations then emerge directly.

In this paper we will rederive this latter formalism, in such a way that its
extension to brown muck with 7 > 1 is obvious. We will then use this result to
explore some properties of transitions for general j, including to verify rules, first
derived by Politzer {2], for counting the number of independent form factors in a
given transition.

2. Brown Muck With Integral j

There are basic features of the formalism which will differ between the two
cases of light dressing with integral and half-integral total spin j. Since these
cases correspond in turn to even and odd fermion number, there are no transitions
between the subclasses and they may be treated separately. It will be most conve-
nient to consider first the case of integral light angular momentum, which may be
thought of for concreteness as the case of the baryons and their excited states. For
thecases j = 0 and j = 1 these results have previously been obtained by Georgi

[§M by Mannel, Roberts and Ryzak [9].



2.1 REPRESENTATIONS OF STATES

The baryons are built out of a heavy and a light component, each of which has
a well-defined transformation under the Lorentz group. The heavy component is
a single spinor uy, satisfying the subsidiary condition

pup = unp, (2.1)

where v* is the velocity of the baryon (and of its heavy point-like constituent). This
. condition, in the m — oo limit, ensures that the quark has positive energy and no
" lower components in the rest frame. (Heavy antiquarks would satisfy pv, = —vp.)
The light constituent is an object of integral spin 7, and is represented by a totally
symmetric tensor of the form A#1"'# subject to the constraints of transversality
and tracelessness:

vy, AFTTR =0, AR b =, (2.2)
These may then be combined into a single object representing the composite state,

Pl = ARy (2.3)

This object has well-defined behavior under Lorentz transformations A,

d)l‘l---pu — AM n "o A“JV-D(A)t/)VIWW’ (24)

J

as well as separately under heavy quark spin rotations,

~

g DRy, (2.5)

where D(A) = e~17»5" is the usual spinor representation, and in eq. (2.5) A is
restricted to spatial rotations and refers only to the heavy quark spinor. However,
for 3 > 0, *1#7 does not transform irreducibly under the Lorentz group; instead
it 1s a linear combination of an object with spin j + % and one with spin j — %:

g 26
These will correspond to a pair of physical states which differ only in the orientation
of the heavy quark spin to the spin of the brown muck. They are degenerate in
the heavy quark limit, as the chromomagnetic interaction vanishes as m — oo.
We will now identify these two components for a few low values of ; before writing
down the general expressions.



The j = 0 case is trivial, since in this case the heavy quark carries all of the
angular momentum of the baryon. So we just have

P = Up. (2.7)
There is no decomposition to be done.
The case 7 = 1 is more interesting. Here

bt = Aluy, (2.8)

P

must be decomposed into spin—% and spin-% states. We accomplish this by recalling
the properties of a spin—% Rarita-Schwinger vector-spinor R*:

pR* = R*,  w,R*=0, y,R*=0. (2.9)

If we define
¢§/2 = [88 — 3(+* + v ¥,
(2.10)
ty = 30"+ 0wy,
thf_:il' it 1s straightforward to verify that 1#5/2 satisfies the conditions in eq. (2.9) and

is indeed a spin—% object. That 1/){‘/2 has spin % is most easily seen by rewriting it
in the form

¥l = (" 0P, (2.11)
where
{E = \%757u¢¢/2 (2'12)

is a positive energy spinor moving at velocity v# (;/)zz = 12;) and provides the most
convenient description of the physical state. Spin sums for these objects can be
derived directly from the known relations for A* and uy,

() 1
S =y
1=1,2

Z Az(i)A,(,i) = ~Guy + VuVy.
i=1,2,3

N
W

“*An equivalent representation of the spin—g field is provided (up to normalization) by the

antisymmetric tensor P,, = ie“,,apv"z/)g/z. See ref. [9].
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We obtain
D Wt = A [—g" + 0" 4 F( = o) 0]

i=1,...,.4
(2.13)
e 4
Z ¢f/21/)1/2 = =3 A4 (7" = ") (v +v”).
i=1,2
The normalizations also check:
— g Tr Z ¢g/2$§ j2 =4
- i=1,....4
(2.14)

— g Tt Y ¢f/2$§ 2 =2

i=1,2

accounting for a total of 442 = 3x 2 independent states. Of course these properties
of spin—% Rarita-Schwinger objects are all well known [11]; we have rederived and
checked them here to give the reader confidence in the generalization to brown
muck of higher spin j.

~-- We turn now to the case j = 2. Here the baryon is of the form
Y = Aty

which must be decomposed into degenerate spin-g— and spin—% states. Here and
later we will need the conditions for a spin-(n + %) Rarita-Schwinger tensor-spinor
R#Bn (totally symmetric and traceless) [11]:

ﬁRILlI_‘n — R“l'”u"’ ’Ultl R#lﬂn — 0’ ’yulR”l“" — 0' (2'15)
Defining
Vi, = (6585 — §(V" + v")1a8f — 365(7" + 0")p) ¥F,
(2.16)
d’z/z = [%(7 + Uu)%‘sﬂ + 15“(’7” + UV)’Yﬂ] %baﬂ,

we check directly that 1/)5/”2 satisfies the conditions (2.15) and is indeed spin—%. In

turn, 11)5/'/2 may be seen to be spin-%— by writing it in the form

Yy = (7 + oMY + \/—(7 + ")y Pk, (2.17)
where
—\7,‘ - . ¢3/2 \/;757111/)3/2 (218)

satisfies the conditions (2.9). Again, this is the most useful form.



It is now straightforward to extend these results to general ;. The composite
of a spin-% heavy quark and spin-j brown muck decomposes into degenerate spin-
(j =+ 3) states as follows:

W1 phy _ /l/)ll‘l”’J _ Bi-phy
J+1/2 j—1/2>
Lis = 5 ' 2.19
e = Gl o), 82 8l (2.19)
+eet 5511 T 6#:__11 (’7#1 + vhs )'71/j] ,‘/)Ill---y]-.
l:Ll.”uj

» Hurthermore, we can reduce 9 to an object with one fewer index by writing

j-1/2

:il/uz; - /m[wm + vﬂl),y5{/;l‘2--~l‘f + (7" + v/‘2)75¢ﬂ1ﬂs-~uj

~ (2.20)
Ho o (7 ]
where
ULt y 5 “eefd
P = (2.21)

-~ '29- MATRIX ELEMENTS

. We may now use these representations to calculate matrix elements of heavy
quark currents between baryon states, making use of the factorization property
(1.1). Recall that we may calculate the heavy quark transition in perturbation
theory, while the best we can do for the light transition is to absorb our ignorance
of strong dynamics into Lorentz-invariant parameters in a covariant form factor
decomposition. Yet we will see that analyzing the light transition after making use
of eq. (1.1), rather than decomposing the baryon matrix elements directly, results
in a tremendous reduction in the number of incalculable form factors which we
must introduce.

We will first consider the light transitions in isolation, although we know that
in fact the “states” we are using are actually linear combinations of physical states.
Replacing the light states by their tensor representations, we have

s(light, ', 5/, m |light, v, j,m; ) = A3 A1t a8 (2.22)

"'Vj’;ll’l'“p’j.

Here o and 3 represent all other quantum numbers associated with the light states
(such as mass and flavor), and the quantity Cfflﬂ is a function of the Lorentz
invariant v - v'. From here on we shall suppress the indices o and 8, but one must
not_forget that they are there. There are many distinct light states with the same
t&’aLanéular momentum; the replacement in a matrix element of one such state
with another introduces an entirely new set of form factors.
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The quantity (y, ..., ... represents the amplitude for a light state with given spin
quantum numbers and movmg at velocity v* to make a transition to a state with
a possibly different spin and moving at velocity v'*. Tt absorbs all of our 1gn0rance
about the details of the strong interactions. Given the properties (2.2) of A#™
and A7 the most general form for (y,....4, ... is, taking 3" —j > 0 (without loss
of generality) and w# = v'* — v¥,

CI/]"'V,'HILI"'”J' = (—1)-7’U)yj+l N 'U)yj/ [C(()] 7.7)(’0 . vl)gllllh o Guip;
+ CF" 0 v Y, W G+ Gy

+-+ C](] ’J)(v 0wy, wyy ¢ Wy W]

- (2.23)
Note that because of the transversality of A" and A#1", the factors wywy,
reduce to the less apparently symmetric form v,, v,;. The factor (—1)j is inserted
because the indices on the space-like tensors A1 and A#1" should be contracted
with —gy, ;- This formula identifying the independent form factors becomes more
transparent if we take a few specific cases:

(i)j:O7j,:2:
s eiee- CVIVZ — Cézyo)(v . U,)wuleQ; (2.24)
()5 =1,4 =1

Cop = —Cél’l)(v -0 )gup — Cfl’l)(v -0 Jwywy; (2.25)

—_ (2 2) (2,2)(

, ! !
CV1V2;IA1[L2 — 0 (v " v )gl’]ltlgllzm + C] v-v )g'/l w1 Wy, Wy,

(2.26)
+ Céu)(v . v')w,,1 Wy Wy Wy -

_ We can now calculate the matrix elements of a heavy quark current J(g) =
Q'T(Q between dressed “states” as follows:

(V' ()] J(q) [#(0)) = —VAmmI A" T Puy A Gy (227)

The factor —/4mm' arises due to the non-relativistic normalization of the heavy
states which we are using [1]. However, since we would like to have physical baryons
as the states |¥(v)), we must perform the decomposition (2.6); then eq. (2.27)

becomes
—fy) - R21

— 4mm’\Il ’:l:1/2 F '(//'m 1/2 Cul RZT S N (228)

the that four classes of decays are described by the same set of form factors.
For example if we identify the degenerate heavy baryons ¥ and X} with the



composite of a heavy quark and the lowest energy 5 = 1 light state, all of the form
factors arising in the decays ¥ — Xy, X — X3, B — I and X} — X3, are
related to the two quantities C(()l’l)(v -v') and Cl(l’l)(v -v') defined in eq. (2.25).

The non-recoil limit, v’ = v, is particularly simple from the point of view of
the brown muck. If the heavy transition is from one immovable color source to
another at the same velocity, nothing whatsoever happens to the light dressing.
The amplitude vanishes for non-trivial transitions of the light degrees of freedom.
Indeed, we see that as w — 0 only the C(g]”]) form factors contribute, and then
_only for j' = j. In this case eq. (2.22) for m’; = m; reduces to the normalization
of the light state, yielding the condition

> 1 for a =g,
Ciw o' =1) = { s (2.29)
0 for a#p.
Here we have assumed implicitly that Cz(,jl’j)(v -2} has no pole as w? — 0, or

at least no pole as strong as w™?P. Of course we see no obvious mechanism for
producing such a pole, for example, no Goldstone boson to which the transition
~ could couple as in the derivation of the Goldberger-Treiman relation. However we
can-also turn the argument of the previous paragraph around. Since the simul-
taneous m — oo, v = v' limit is one in which absolutely nothing happens to the
light degrees of freedom, the orthogonality of the basis of light states requires that
only a form factor proportional to gy, ,, - - - gv,u; can be nonvanishing. Hence such
J)

poles in C',(,j re excluded, except insofar as they can be reabsorbed into a finite

contribution to C’(()j J ), in which case they have already been accounted for.

3. Brown Muck With Half-integral j

We turn now to the case of light constituents with half-integral angular mo-
mentum. The physical arguments are the same as with j an integer, while the
formalism is nominally more complicated to develop, so we will focus on the for-
malism. In particular, the two cases of orbital angular momentum ¢ = j + % will
have to be treated distinctly. '



3.1 REPRESENTATIONS OF STATES

Let us consider the construction for j = % Once again, the heavy component
of the hadron is a positive energy quark u, satisfying pup = wuy, but now the
representation of the light component will depend on whether £ = 0 or £ = 1. Note
that the energy splitting between states of different ¢ does not vanish in the heavy
quark limit. We will first take the case £ = 0. Here the brown muck transforms
under the Lorentz group simply as an antiquark v, satisfying

. Tep = —0y. (3.1)

(The subscript £ on vy here just denotes “light”.) The composite, which we may
write

UpVy,

is a linear combination of objects with total angular momentum j + % = (0,1).
It is easiest to identify these in the rest frame, where the spin operator takes the

. simple form
sioLlfe o)
2\0 o

It is also convenient to work with the rest frame spinor basis

1 0 0 0
0 1 0 0
1 2 1 2
ugl): e ug)— E vg): nE o(? = 0 (3.2)
0 0 0 1

Then, using S(upBe) = (Sup)vp — up(v,S), we find
S [l +Pef?] —o,

5 [us — o] =0,

Up "Vyp
ﬁ (3.3)
[ = ol
~_ - 3 [ (2)=(1) (2)-(1)
S _“h v, ]:—uh v, .

10



1), @-@)_ L (0 -1
ﬁ(uhvf +uhv£)—\/§ 0 0 s

1 1_(1 2)_(2 1 (0 o3
o5 7)

leading us to the Lorentz covariant identification of pseudoscalar (P) and vector
meson (V') states:

P = —%Aws, V(n")= %Aw“%’ (3.5)

where 5 is the polarization of the vector meson (n*v, = 0). The transformation
of these states under the Lorentz group is given by

P — D(A)PDY(A),

(3.6)
V(n*) = D(A)V(A*,n")DY(A),
while underrspatial rotations A of the heavy quark
P - D(K)P,
(3.7)

V(n*) — D(A)V (n").

For 5 = % but ¢ = 1, the light degrees of freedom are the spiﬁ—% combination
of a vector and a spinor. Using the negative energy analogue of egs. (2.10)—(2.12),
we write

RE = L(y# — vP)y, AV,

= 1 (B A5y
T o = \/5(7 v*)y .

(3.8)
Decomposing upve as in eq. (3.4), we obtain (up to irrelevant signs) the pair of

11



states

Fhrs( =0t and A e (0 = ot (3.9)
It is convenient to eliminate the spurious index by contracting on the right with
%’yu, after which we have the scalar (S) and pseudovector (B) states:

§=7A B(n") = Z5A " " . (3.10)

~“Fhese should be compared to eq. (3.5).

-- For half-integral j > 1, the light antispinor becomes a generalized Rarita-
Schwinger tensor-antispinor Rﬁl"'“"(ﬂﬁ), where k = 5 — l and the 4° is present if

i1k

j=0— % (after removing the spurious index). In either case R, satisfies

Ef‘""“‘f) _ —R@“""“‘ (3.11)

as well as the other conditions listed in and above eq. (2.15) (note that Dirac
" ‘matrices now all act on the right). Then the object which must be decomposed

L c 1y L

into its spin-(j & 5) pieces is up Ity (
under A and A. Let us first work out the case j = 3 and ¢ = 1. Recalling eq. (3.8),
we write

%), which transforms in the obvious way

Ry = [68 — (4" — v*)y,] A%y, (3.12)

and use eq. (3.5) to decompose the u,T, part of upRy. A straightforward rear-
rangement of the Dirac matrices yields the spin-2 object

VEME) = JsAinfw, (3.13)

where ni" = 771“, ni# =0, and v“ni” = 0, and the spin-1 object

\[A Yol (6 — (" = o)), (3.14)

where n¥v, = 0. (We derive n{” entirely from the V part of eq. (3.5), while n*
is a linear combination of both terms. This is as we would expect, since after the
identification (3.5) we have either a spin 0 object (P) or a spin-1 object (V) to
dsmblne with the spin-1 Vector AY; nh” must be the symmetric combination of the
Vectors V and A%.) The j = states with ¢ = 2 are identical to V# and P*, but

12



with opposite parity:

B* ("7+ ) = \/-A+7 77+ Y, (3.15)
\[ An? (85 — 3m(y* +0M)] .

The generalization to arbitrary half-integral j is now straightforward. We
construct objects of spin j + % as follows, for j = ¢ + %:

o “Hk41

Vltl.../tk — TA 77 7ltk+1’

. N 3.16
T = N ] R s P AR L

- 2k+2
_ = 2]—+T5M . 5#!: 1’7uk(7 v’“‘)]

Here n/'" are symmetric, traceless and transverse to v#. We obtain the coefficients
in eqs. (3.14) and (3.16) by requiring that V#1"#* and P#"'#* be normalized
~ - -eorrectly in terms of n'". The j = £ — % states BH1Hk and S#1Ek are their
counterparts of opposite parity, as in eq. (3.15). Recall that in the heavy quark
limit the states P and V are degenerate, as are the states B and S, but the pair
(P, V) is split from (S, B).

3.2 MATRIX ELEMENTS

We can now use these representations to construct matrix elements of heavy
quark currents between meson states, in exact analogy to the case of baryons.
Because the brown muck now carries a spinor index, the light matrix element
takes the form

ﬁ( light’ v”j/’ m,] | light, v’j’ mj )01 = Tl‘ RIVIka/F“lmukégfnukl;ltl"'ltk] ’

(3.17)
From here on, as with the baryons, we will suppress (but not forget) the indices
a and B. In principle §,,....,... has Dirac structure, and it could include terms
proportional to. However in the tracey reduces to zero (for (P, V) — (P,V)
and (S, B) — (5, B) matrix elements) or to +2 (for (P,V) — (S, B) matrix ele-
ments), so such terms are redundant. Since there is no other vector in the problem,
and terms with 75 are excluded by parity conservation of the strong interactions,
{’:1._”,1 has no nontrivial Dirac structure after all. Hence the formula (2.23) may
be extended to half-integral (j',7). Again, we write out a few examples to make
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things clear:
0i=h7 =4

f_C(-%,%)( ,
=C, vev). (3.18)

This is the famous function originally identified by Isgur and Wise [1].
(i)j=734 =%

3
& = C'Oz’2 (v - v)w,; (3.19)
i) j =32, =3
3.3 3.3
vip = —Co¥ 2 (v-0) gy — C1¥% (v - v )wpwy. (3.20)

The suppression of the upper indices on {fflﬂ...;m... should not obscure the fact that
there are an entirely separate sets of form factors Ci(] 7 for (P,V) - (PV),
(B,S) — (B,S) and (P,V) — (B, S) transitions.

~_ The.matrix element of a heavy quark current J(¢) = Q'TQ between physical
meson states is then given by

(' (V"] J(q) |¥(v)) = =V4mm' Tr [_]\TW"W I MU vy s (3:21)

where M*" = P Ve S*" or B*". For example, this reduces in the j = j' =
%, £ =0 case to the familiar result [6] [7] for heavy pseudoscalar and vector meson
decays,

(V'(v)|QTQ |¥(v)) = —vVAmm/E(v - ') Tr M'T M. (3.22)

We can also reproduce compactly the results of ref. [4] for the matrix elements of
excited meson states. Finally, we recover the extension to half-integral j of the

normalization condition (2.29), Céj’j)(l) =1 for a = 4.
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4. Other Applications
4.1 COUNTING FORM FACTORS

We may now consider the question of how many independent form factors
appear for given values of j and j'. This question was first addressed by Politzer,
in ref. [2]. His method is to go to the “brick wall” frame (v’ = —v) and quantize
the angular momentum of the brown muck about the spatial axis defined by v.
In this frame the action of parity is particularly simple, since here w* has no

. Jime-component and simply changes sign. Thus the form factor (... /;ps-p, 18
multiplied by (—1)(j’_j), as 18 vy vy3u1--p;- Assuming the transition A9 — A1
involves no change in intrinsic parity, the light matrix element (2.22) picks up
the same factor (otherwise it picks up an additional minus sign). The rotational

symmetry about v of the light system then yields three rules:
1. Angular momentum about this axis is conserved, so m; = m']
2. Amplitudes for m; are equal (up to a phase) to those for —m;.

3. Amplitudes for m; = 0 vanish if ;' — j is not an even integer.

"~ 7""In the absence of the third, the first two rules would imply that there are j +1
independent form factors for j < j' integral, and j + 3 for j < j' half-integral.
The same result would follow immediately from the form of eq. (2.23). However,
we must now account for the additional restriction implied by Rule 3, which is
not implied by our results so far. Imposing it by explicitly inserting the m; = 0
states into egs. (2.22) and (2.23), we then derive the following condition on the

form factors Cz-(j”j) for j integral and j' — 7 > 0 odd:

-4

ST+ G =P 4o fOPC T =0, ()
where f(0) = 1 and f(k) = (2k — 1)!{/k! for £ > 1. In this case there are only j

independent form factors. For example, we find that j = 1, j/ = 2 transitions are
governed by a single form factor,

2,1
51/1,1/2;/11 = C{ )wV2 [““wzglllm + wl/lwm] ) ’ (4'2)
and that, for j' odd and j =0,

by (v-0") = 0. (4.3)
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4.2 SuM RULES FOR GENERAL SPIN

If the picture of heavy hadrons which we have been using is correct, in particular
the factorization property (1.1), then it should be possible to prove sum rules for
these “spectator” decays. This has been done for (j,5') = (0,0) and (3,3) by
Bjorken, Dunietz and Taron [12]. They show that the squared matrix element for
the decay of one heavy quark to another, summed over final spin states,

Y (Q),£3] T (@) Q' (), s) (Q(v), 5| J(g) |Q(v), £3),  (4.4)

s=%£1/2

is equal to the same quantity with heavy hadrons replacing heavy quarks, summed
oVer all possible final hadron states of velocity v'#. This justifies the idea that it is
consistent to think of the decay of the heavy quark and the rearrangement of the
light degrees of freedom about the decay product as independent processes.

The machinery is now clearly in place to extend their proof to arbitrary j and
J'. However the task is probably more tedious than enlightening, especially as we
consider the result to be intuitively compelling. We will restrict ourselves here to
commenting on one aspect of these sum rules, namely their form as v — v, in
-~ an expansion in (v - v’ — 1). (See refs. [4,12,13] for more detailed discussion of
the-cases j = 0, %) At zeroth order, of course, only the form factor C(g“) (for
a = f3) contributes to the squared matrix element. At linear order, there are
also positive definite contributions proportional to (v - v' — 1)|C(g]il’])|2. (Note
that nonresonant final states with more than one particle may be included here.)
Canceling the quantity (4.4) from both sides of the sum rule, one obtains in this
limit an expression of the form

L= hi(o-o)|CP (0o 4+ (4.5)

where the elided terms are all nonnegative or vanish at least as (v - v’ — 1)%. The
factor hj(v-v') comes from taking the product of a polarization state of spin j with
its Lorentz boosted counterpart. We find &g(v - v') = 1, while for j = % we have

hija(v-v') = 1 +v-0). (4.6)

The positive derivative of hy/5(v-v') at v-v' = 1, together with the relation (4.5),
yields an essentially kinematical restriction on the slope of the Isgur-Wise function
at the endpoint. Defining

OO} =
DD =t

f(v-v'):Cé’)(v-v'):1~p2(v~vl—1)+~-, (4.7)

(;iﬁé'ﬁ_rldé p> % That no such restriction arises for j = 0 had led to the speculation
[4] that this suppression was associated with the zitterbewegung of the brown
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muck. If this were true, we would expect to find this effect only for half-integral j.
However, for j an integer we can now use the tensor representations to calculate
explicitly the nontrivial condition p? > j2/(2j—1) for j > 0. Hence the suppression
cannot have this particular origin.
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