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Abstract 
._ 

We show that Landau-Ginzburg models with modality one are equivalent to ZN 
orbifold models on two dimensional tori. The identification of the primary field 
content is given and the operator product coefficients of the twisted sectors are 
explicitly computed. 



1. Introduction 

The singularities of a N = 2 Landau-Ginzburg (LG) theory are classified according 
to the form of the superpotential of a two-dimensional N = 2 superconformal field 
theory (SCFT) [l, 21. An N = 2 LG theory with modality one and conformal 
anomaly c = 3 is described by either one of the following superpotentials: 

It has been argued that those LG theories correspond to the conformal field theory 
(CFT) on 23, 24, 2s orbifolds, respectively, relying on the path-integral argumenta- 
tion [a]. In addition, it has been possible to relate the modal parameter a to the 
complex Kahler. modulus of the orbifold (g iven in terms of a radius and an axionic 
scale parameterB) and thereby to derive a duality transformation in the space of LG 

theories [3, 41. At a = 0 the above superpotential was shown to define the (super-) 

orbifolds on the SU(3), SU(2) x SU(2), and SU(3) root lattices, respectively; in ad- 
dition one finds that the symmetries of the corresponding LG theories are enlarged. 

Because.of the constraint c = 3 .there are just three possibilities to obtain them, 
namely (13), (a2), and (1,4) where the entries denote the A-series building blocks in 

a tensor product. At a = 0, the orbifold theory possesses further U(1) symmetries 
which gives rise to a rational CFT. 

In this paper, we will prove that the above three tensor models are equivalent 
to a ZN orbifold CFT (N E {3,4,6}) at p recisely those points where the symmetry 
group is enhanced. Once this is demonstrated, the equivalence for arbitrary values 

of the modulus follows by applying marginal deformations. The exact operator 
relation between the modulus of the SU(3) orbifold and that of the (13) LG theory 

was already found in [5]. To prove that two CFTs are equivalent, one has to show 

(i) that their chiral algebras are indistinguishable, (ii) that the primary fields with 
respect to the chiral algebras are in one-to-one correspondence, and (iii) that the 
operator product expansions (OPE) involving primary fields are in agreement. For 
simplicity we establish these properties for the NS sector of both theories. The 
R sector can be treated similarly. We first have to diagonalize the primary fields 
of an orbifold CFT with respect to the enhanced U(1) symmetries. This step is 

necessary because the tensor model is naturally described in the ‘U(l)-diagonal basis’ _. *. 
while the preferred construction of an orbifold starts from the conjugacy classes of 
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the space group thereby endowing the ground states of the twisted sectors with 

specific global monodromy properties. This relation between the geometric and the 

algebraic construction gives thus rise to an equivalence of orbifold (Calabi-Yau) 
compactifactions and Gepner-type constructions [6, 71. 

2. The primary fields of 2~ orbifold constructions 

ZN (super-) orbifold models on a two-dimensional target space have an N = 2 

superconformal algebra (SCA) with the fermion number operator providing a U(1) 

charge: 

T(z) = +ipdX’i - $)“a@ 

G*(z) = iy!+dXr (2) 

Q(z) = idB 

The collection of N = 2 super-Virasoro primary fields in the untwisted sector consists 
of the NS fermion 

Q = efiB (3) 
which is-(anti-)chiral with (h, Q) k (ii *l) an d an infinite number of bosonic vertex 

operators which are ZN-invariant: 

(4 

where 8 generates the point group. The Narain momenta are pt,n = ~‘*“(PL,R)~ 

where (p~,n)i = $rni + (&g - b);j nj in case of a torus compactification with period 

vectors E+i, I?+~ (;*I, P2 span the associated dual basis, g;j = e’; . Zj and mi, ni denote 
the integer momentum and winding (quantum) numbers). We have furthermore 
allowed for a constant antisymmetric torsion background B,, (in the lattice basis 

its components read b;i = e’Bpvey). 
Conversely, the momentum p’and winding v’ are then read off from p’= ZJ(pi + 

Pk> + J$(PjL - ddl, v’= iE’& - pi). In the s-th twisted sector ground state fields 

are chiral primary with (h, Q) = (ia, +) 
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This ensues from the OPE involving the bosonic twist field at&) and dX* = (dX1 f 
i 8X2)/& 

dX+(z)a(qo) N ~-o-i3&3(q + . . . 
(6) 

ax-(z)m(O) N r-K&qq +. . . 

Furthermore, at the special values of ZN orbifold background moduli space, the 
chiral algebra (2) enlarges so as to contain the U(1) currents of conformal dimension 

(1,O) (In most formulas yet to come we will omit the right-moving part): 

for the Z’s, 2, and 2s orbifold, respectively. Here & = (A, 0), z2 = (-&,fi,, 
c?3 = -(& + G2) are the positive roots of the SU(3) Lie-algebra whereas ,& = 

(4 O), a = (0, J2) are the positive roots for SU(2) x SU(2). Note that there are 

two (one) additional U( 1) symmetries for a 2s (24, 2s) orbifold. We can now find 
the finite number of primary fields in. the presence of these U(1) symmetries. The 
U(l)-primary fields have the OPE J(z)V(O,O) = %V(O,O) + {regular terms} with 

the U(1) current (Q denotes the charge of the field V). The ZN-invariant primary 

fields in (4) do not yet have a definite U(1) charge. But it is possible to find the 
U(1) basis as soon as the above OPE has been calculated. To this end we have to 
take-into account the cocycle operator associated to VsL,gR (for clarity zero mode 
operators will carry a hat accent) [8]: 

Consequently, the OPE between two vertex operators picks up a phase 

This expansion enables us to find the U(1) d ia g onal fields and their charges for the 

untwisted sector of ZN orbifolds. We proceed case by case. 
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Z3 orbifold: The Narain momentum (CL,&) of a SU(3) torus model at the 
point of enhanced symmetry belongs to either one of the three conjugacy classes 

(I’,,I’,), E E (0, fl} where 

rc = {cw’~ + nlc% + n&2,n1,n2 E 2) (10) 

and z& denotes a SU(3) weight vector (Gr . Zj = &j, j E { 1,2}). One recognizes 
that the conformal dimension of VC~,~‘~ is (5 1 c 1 +K-z~, 5 1 c 1 +m2), where ml,2 E 
Ws. Among the infinite number of Virasoro primary fields, there are just three 

U(l)-primary fields in the class r +r (and three in I’-,) which are the &-invariant 

combinations of the nine fields VC,,,U~, (i, j E { 1,2,3}) where C& = @-rw’r. (0 denotes 

a 120’ rotation and 2or,2,s form the weights related to the 3 representation of SU(3)) 

Here the integers appearing as subscripts are to be understood mod 3. From the 
O@E with the U(1) currents Jf (see (7)), we obtain the following U(1) diagonal 

primaries (the critical background is chosen to be e := 2(&lZ$ - ibr2) = -icr; 
Ly = ,q: 

(12) 
where 1 w;) means the state whose J+-charge is 3. There are no U(1) primary 
fields with h, h 2 1, whence this part of the spectrum can always be reached through 

further repeated action with J& on I w; >. In particular, one can verify that the 
vertex operators with h, h = 1 are U(1) d escendants of the identity (e.g., 8X:8X,, 

JL+ JR). 
24 orbifold: There are four conjugacy classes for the Narain momenta on a 

SU(2) X SU(2) torus: 

It is possible to construct two &-invariant vertex operators with h = ?I = f: 

(13) 
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where 8 denotes a 90 degree rotation and d2(10) G (-1,O). The U( 1) diagonal 
primary fields w.r.t. the current JL(z) in (7) are the following ones (here Q = 1): 

;z[(Qo, - q-IO)>1 = I +a, 
(15) 

&[(v(lO) + iv,-IO)>1 = I -f, 
As regards the h = h = f vertex operators, we find four &-invariant fields 

with 0(11) z (-1,1),e2(11) E (-1,-1),03(11) E (1,-l). The U(1) diagonal com- 
binations read: 

fMl1, - v,-L-1)) - q-11, + v,,,-,))I = 1 +1) 

fKv,ll) - v,-L-1)) + q-11) + v,,,-I))] = I -1) 

3Nll) + v,-L-l,> + (v,-11) - v,l,-l))] = I 0) 

will) + v,-L-1,) - (v,-11) - v,l,-,)>I = I 0) 

(17) 

The pair of zero charge fields turns out not to be completely degenerate if one 
considers the conformal dimension (1,1) operators: In contrast to the case of 2s 
orbifold, there is one U(1) p rimary field among the dimension (1,l) operators. Four 
&-invariant vertex operators with h = h = 1 are 

1 3 
%‘(20) = 5 c b’+“(JT,o),e”(~,o)(~7 3 7 1 E {0,1,2,3) (18) 

n=O 

where 8’(20) zz (02), (-20) and (0, -2) for I = 1,2 and 3, respectively. Among these, 

only one linear combination describes a primary field with charge zero 

;M20) + y-20,> + (v(O2) + v(o,-2))] =I 0) (19) 

whereas the other combinations are U(l)-descendants of the identity, e.g., 

$420) + v,-20)) - &02) + v,o,-2)) = JLJR . (20) 

Observe that the relative sign factor accounts for the cocycle phase in the OPE 

JL . JR. In fact the neutral primary field (19) is the product of the neutral primary 
-( _. .* fields with dimension ($, i) in (17). A s was the case for the 2s orbifold, all other 

7 



vertex operators with higher dimensions are again U(1) descendants of the above 
primary fields. 

Zs orbifold: It is constructed by modding the 2s orbifold w.r.t its reflection 

automorphism. That is, the U(1) current is JL = -& i$l( V&,0 + lL~~,o). &-invariant 

dimension (i, $) operators are 

- K=fi w, ‘(V-. + v-,) ) i E {1,2,3} (21) 
where Vi’& are defined in (11). Analyzing the action of U(1) on the x’s, one arrives 
at three diagonal states (again e = -io): 

A[: : :Jj “)I/-,.) ta21 
For dimension (1,l) operators, there are six 2s invariants 

I E {0,1,~~~,5} (23) 

where 8 is a 60 degree rotation. While all the dimension (1,l) operators of the 2s 
orbifold are U(1) d escendants, three combinations of the operators in (22) become 

primary in the case of a Zs-orbifold. 

_. &KK, - v-0,) + (K, - v-CY,) - (va, - ~,,)] = ( 0) 
~KK, + V-a,) + qv,, + LY,) - qL3 + v-a,)] = 1 &) (24) 
&[(K, + v-cq) + Q(v,, + v-0,) - qvk, + IL,,)] = ( -h) 

In addition one checks that one of the other operators with dimension (1,l) is JL JR = 
&[(K, + Lx,) + (Xx2 + V-a,) - (KS + V-a,)]. N o ice that not all of the dimension t 
(1 ,l) operators are U( 1) d escendants in the cases of 24 and 2s orbifolds. This might 
be attributed to the 22 orbifoldization of SU(2) x SU(2) and SU(3) tori (90 degree 

and 180 degree rotation, respectively), not being an inner automorphism . 

We proceed with the diagonalization of the twisted sector fields w.r.t. the U(1) 
symmetries. It suffices to concentrate on the bosonic twist fields. The twist field 
ei&B of the Ic-th twisted sector of a 2~ orbifold accounts for the fermionic number 

. **charge & = $. Even though we do not know the explicit form of bosonic twist 
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fields in terms of the free field X, we can find the local expansions of a(X) 
They emerge when one factorizes a four-point function of type (o+(T-o+~-) which 
is exactly known (cf. [9, lo]). R ly g e in on this method it was possible to calculate 
the OPE coefficients for the first twisted sector of every two-dimensional 2~ orb- 

ifold (see [ll], [12]). Th ese formulae also serve to determine OPE coefficients for the 
higher twisted sectors. For instance, the fact that a i-twist (g-twist) gives identifi- 
cations under 180 degree rotation, requires the twist fields to be &- (Zs-)invariant 
combinations of ordinary 2, twist fields [9]. L k i ewise, a g-twist field of a 2s orbifold 
must be described by a Z&invariant combination of 2s twist fields. We may restrict 
the range of Ic to [l, $1, due to ~7 (%?) = ,-($) = ,(s)t. Explicit formulae for these 
OPE are presented in Table 1. We again discuss the cases at our disposal. 

2, orbifold (i) k-t wist: There are three twist fields, g!“’ (i E {O,l, a}), associ- 
ated to three fixed points f; (equivalently, three conjugacy classes). The momenta 

and windings are also contained in coset classes Vivj (i, j E (0, 1, a}). Since the U( 1) 

current J+(J-). belongs to the coset class V1y2 (V”y’), we find the action of Jt on 

the twist fields ,!” with the help of the expansion for aZtg; whose coefficients have 
been determined* before (see equation (3.44) in [la]). 

l ai+ J+(z) u~qo,o) = y$TU’ $(O, 0) + . . . ) 
Then according to [4, 51 the diagonal elements are 

(25) 

2, orbifold (i) a-t wist: There are two conjugacy classes which carry the labels 
0, 1. One can find an OPE similar to (25) with the U(1) current contained in the 
class V1jl. (It is immediately obtained by consulting equation (3.41) in [12]. We will 
abstain here from providing those OPE relations.) The U(l)-diagonal fields then 

read 

(27) 

._ (ii) i-twist: Th e e fi Id s in this sector are &-invariants of a 2, orbifold. The twisted 

sector of a 22 orbifold has four conjugacy classes labeled (00), (01), (lo), (11). Since 
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a 2, twist mixes the classes (01) and (lo), 2, invariant fields look as follows: 

$’ = $t (3) 
co1 

(3) 
+ 010 > 

(3) c’2 = ($1 
011 (28) 

vl,’ = s;(vol,ol + v10,10) 
a 

vy = ~(pJ0 + v*wy 

It is noteworthy that there appear two types for the class V’*l. The U(1) current 

J(z) is an element of V, *J The diagonal combinations are . 

26 orbifold (i) t-t wist: There is a single fixed point; the twist field therefore 
being trivially diagonal has U(1) charge 2. 
(ii) g-twist: a &-invariant projection of Z3 twist fields is necessary. There are two 
conjugacy classes and the class V*l* comprises two types (labelled a, b). 

,$’ = ,p 

_. ($’ 
= $(a* 

($1 + ($)) 

v”’ - 
a - $(VlJ + V2F2) 

lp = $v*J + V2J) 

(30) 

With the U(1) current belonging to the class I$*‘*, one gets the following diagonal- 
ization: 

(iii) i-twist: There are two conjugacy classes one of them being a combination of 
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three conjugacy classes of 22 twist fields: 

($1 00 = (3) coo 
$) = ~(&) + a$) + g$‘) 
VL’ = ~(vol’ol + j,.710,11 + p,lo) 

a 

- v;J = ~(p’ll + 1/*0,*0 + p’o1) 

V’J = ~(vol’lo + v10,01 + v1”11) 
c 

._ 

The U(1) current is a member of Vb*“; diagodization gives 

(32) 

3.‘ The primary fields of the c = 3 Landau-Ginzburg models 

The conformal dimension and U(1) charge for the primary fields in the NS sector 
of level k - 2 minimal N = 2 SCFT [13] with conformal anomaly c = v are 

given by th, Q.> = ( v, f) w$h I = 0,. . . , k - 2 and -I 2 q 5 1. One observes 
that the chiral primary fields with q = 1 = s have the same (h, Q) as the twist 
fields (5) for a Zk orbifold. This indicates that 2, twist fields are related to chiral 
primary fields of level (k - 2). The latter are expressed in terms of order parameters 
of Zk-2 parafermionic system [14] and of a free U(1) boson. Apparently, there are 
just three ways of combining minimal N = 2 SCFT’s to construct tensor models 
having conformal anomaly c = 3: (l”), ( a2), (1,4). These tensor models have three, 
two and two U(1) currents, id$j, respectively, which are provided by each minimal 

model factor. To further compare tensor models with 21, orbifolds, we must identify 
their total U(1) current with the fermion number current of the Zk orbifold. 

A4 = 3 (2) for (13) ((2”), (1,4)) (34) 

The remaining U(l)‘s (b ’ g em or o onal to iaB>, should then be identified with th g 
the additional U(1) currents Ji of the multicritical Zk orbifold. To explore the 
equivalences between (l”), (a2) and (1,4) t ensor models and 2, orbifolds with k = 
3,4,6 respectively, let us present the chiral algebra and field contents of tensor 

-( _. 
** models. 
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The N = 2 SCA of level (k - 2) minimal SCFT is generated by 

together with the stress tensor T(z) = Td( z) + Ttk-2,(2) for a free boson 4 and a 
Zk-2 parafermionic system. The primary fields of N = 2 minimal SCFT have been 

written by Qiu in [13] as a product of a parafermionic field and a bosonic field: 

@f exp(icuid). Here we suppress the indices for a right-moving part. When needed, 

the same indices q for the right-moving part may be revived since we are dealing 
with a left-right symmetric theory. (For the complete expressions see [15].) Note 
that all chiral primary fields (h, Q) = ($-, *i) of a level (k - 2) theory have the 
order parameter @a:, in their parafermionic part: 

e,e *j*+ ) I E {l,+..,(k - 2)) (36) 

By tensoring the primary fields for the level 1, 2 and 4 models, we arrive at the 
primary fields of c = 3 tensor models. Table 2 lists them. Comparing the conformal 

dimensions and U(1) h g c ar es, the primary field contents of tensor models and Zk 

orbifolds is seen to coincide. One point which should be emphasized is that there 
exist primary fields with excited twist states different from ground state twist fields 

in the twisted sectors. One may express the tensor model versions of the excited 
twist fields in terms of parafermionic fields and U( 1) free bosons by calculating the 
OPE-(6). P ara ermionic descriptions of free bosons dX* on the orbifold result from f 
identifying the stress tensor of a tensor model with the one given in (2). This will 
be discussed below (see also [ 161). 

(13) model: It is simply composed of three free bosons q!~j; a parafermionic 
system is not needed. The total U(1) (f ermion number) and the additional two 

U(1) currents are expressed as Q = idB, J* = idH* = i(dH* f iaH’)/&. Here 
B and 2 = (H’, H2) are related to dj via 

bj = &(B + Gj * I?) 

(Gj was defined below (7)). Then the total superstress tensor becomes 

(37) 

(38) 
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Comparing now with (2)) (7) f or a 2s orbifold, one finds the rebosonization formulae 

w-9 

where 2 = (Xl, X2). Inspection of Table 2.2 reveals that there appear three bosonic 

fields (Q = 0) in the untwisted sector with (h, Q) = ($,O) which must be identified 

with (12); for example, l/&(1/,-, + V& - V&) = exp(iGs . I?). As regards the 
(:)-twist fields, one can see that exp(fi$Zj . I?) forms an eigenvector w.r.t. the 
application of J+(z) in (26). This was shown before in [5] where modding out by 

a twist has been traded for the equivalent modding out by a shift. As announced 
above the additional fields of the form exp(i$B)exp(-ii& + I?) correspond to the 
excited twist fields of the orbifoJd mode! , which can be seen by calculating the OPE 
(6) (e.g., idX+ . %(oA’) + say + acp ) = ~ Cj eXp(-iGj * 17) * exp(i$& * IT)): 

(2’) model: There are two U(1) currents Q = idB, J = idH arising from r$1,2: 

B = &($1+$2) 

. H = $(b-$2) 

Then we express idX* in terms of two Z2 parafermions t,!~*, $I: and H: 

(41) 

idX- = -&(&eiH + $iesiH) 

iaX+ = $($,temiH + $iteiH) 
(42) 

One can also see the one-to-one correspondences between primary fields in Table 2.3 
and those in (15), (17), (19), (27), (29). Th ere occur also excited twist fields with 

(h,Q) = (g, i), (ii, $), (z, f) in Table 2.3. We choose (i, i) fields and show how 
they are obtained by applying idX* to the ground state twist fields: 
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ax+(z) * *[up + i&(O) 
= $(+-iH + 7&eiH)(z) - (@ieitH)(0) (43) 

= -Lz-i(@,e 
J;i ’ -it”)(O) + regular terms 

Here we used the OPE &( .z)@f(O) = z-‘~“@~+,(O) + - . . from 2, parafermionic theory 

where one identifies # = @z$ = @i+zs [14]. Thus one gets 

(44) 

(1,4) model: Two U(1) currents are generated by 

where q5i belongs to the level 1 model and 42 is the U(1) boson of the level 4 model. 
Moreover the free bosons on a 2s orbifold are related to H and the 2, parafermion 

$1 by: 

Now we are ready to compare the field contents in Table 2.4 with what appears in 
(22); (24) and (31), (33). For th e. excited twist fields we can repeat the calculation 
given above. 

4. The twisted sector operator product expansion - a com- 
parison of both constructions 

Finally we must calculate the OPE between the twist fields in order to confirm 
the identifications. In Table 3 the twist fields u are expressed in terms of linear 
combinations of U(1) d’ g la onal twist fields. Since CY is written in product form and 

since H is a free boson the only nontrivial ingredient is (cf. [14]) 
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where Ct,, = %tm 1+k+12)r( “-$-l)P( N-$-l) 

r(~)r(N-“,-‘z-l)r(~)r(~) 

Let us concentrate on the most singular parts and omit the worldsheet arguments. 
For a 2s orbifold we then have (r E ie = a) 

(i, (iI Ui Ui +;(5) 
= &it 

,~5),~~) = --IT_0 43) * 
I 3 $j -(i+j)lf i # .i 

(47) 

The ratio of these OPE coefficients is -26 which was independently found by a 
calculation of orbifold Yukawa couplings (see [12]). The situation for a 2, orbifold 

is as follows: 

And the pattern for a 2s orbifold reads (Cl1 = Cl2 = 26) : 

(49) 

These OPEs can be shown to be consistent with space group selection rules [9] 
and one may check that the coefficients of the above OPEs are the same as those 
obtained in [12]. H owever it would take us too far if we were going to reproduce the 
explicit values of the OPE coefficients (cf. formula (3.62) in [la]). For simplicity 
let us therefore use the duality operation S and the discrete shift T of the axionic 

variable br2 for the twist fields (details can be found in [12]) to extract the ratios 
of the coefficients. We use the abbreviations Y. (Yr) for the Yukawa couplings 

< ujujuj > (< uou1u3 >). Then their ratio at the background point T = Q becomes 

-, . .* Yo/Yl = -2~. On th e other hand two-dimensional orbifold models possess the 
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discrete symmetry group SL(2,Z) w.r.t which the modulus 7, the primary fields 
and the correlation functions form various representations such as 

E(a) = sp;Yk(-$ - 1) (50) 
where Sy and TY are defined in [4], since the enhancement point r = o is the fixed 
point of the transformation ST. 

From this eigenvector equation we infer Ys/Yi = -26 once more. As regards the 
2, orbifold we deduce from above that 

< u(t)u$,,(-3, 
0 

>. < ,(tp,(-3 
0 * 0 

>. < uq$)u(-P) > 
2 * 

=(Jz+1): (d-1) : a0 

1 1 

(51) 

Another way to obtain this ratio makes use of the invariance of the Yukawa-couplings 
under a duality transformation S: 

< S(u’)S(uf)S(u,-) >-l/7=< u+u.+;- >T (52) 

At the fixed point r = i of S this identity reduces to a homogeneous system of linear 
equations for the Yukawa couplings present in (51). The solution vector is seen to 

be subject to (51). Along the same lines one may also analyze the ratio of certain 
Yukawa couplings in the case of a 2s orbifold at a critical point in background space. 
There is again complete agreement with the results based on the explicit forms of 

the primary fields available in a Landau-Ginzburg CFT. 

5. Conclusion 

In this paper, we have shown the equivalence of 2~ (super-) orbifold models on two- 
dimensional tori at multicritical values of the characteristic background parameter 
r and LG models with modality one. The primary field contents of both models 
have been shown to be in one-to-one correspondence by calculating the untwisted 
OPE relations between the U(1) currents and various vertex operators. Finally, the 
OPE coefficients of the twisted sectors a.re computed to verify the equivalence of the 
two types of models. 
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Table 1: Operator products involving ground states from oppositely twisted sec- 
tors 

Table 1.1: $ twist sector (We have omitted the coupling strength 2 x 16-v) 

u,+(t)u(-y~3 = J/70,0 + Vl’O + j/72,0 

- +qp 
Ul 

= VO’O + VW _ vu3 _ v2,2 

+($p 
02 

= VO’O _ VW + J,mJ 

+ct,,;ca, 
CO = &(VO” + iVfl a ’ + vy + iV2J) 

+(q),;(f) _ 
01 - Lp41 + ;v,lJ - J/p* - iV2J) 

+(a),;(4) = J/70,2 + &&2 + v2>2 
00 

Table 1.2: i twist sector (omitted factor: fi x 27-q) 

u,+(f)u;~%) = J/70,0 + VW 

+c$)u;cP) 
01 

= J/70,0 _ ;/w + y” + ;vy + fv;” 

+qp 
00 

= ~(VO” + &V,“’ + cyvy) 

+(%)u-$ 
01 

= 1 VW + ~V,‘J + ivy) 
Jz( 

Table 1.3: i twist sector (omitted factor : & x 16-y) 

f(~)O;(3 = vo,o + VW 
00 

+(qp 
01 

= vo,o + yJ" _ y"o - py 

+(9),;(i) = 
00 

-+(V”J + iV,lll + iv>” + V:“) 

+(%)a,(3 _ 171 
01 - -)(Vo~l - iV,lll - iv, + Vc”‘) 

-. __ . . 
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Table 2: Nontrivial primary fields with eigenvalues (h, Q) for tensor models in 
the NS sector (Q 2 0) 

Table 2.1: level 1,2,4 models 
level 1; 

level 2; 

(f,*$) = efi@ 

(6, Ai) = 9i,e*iSd I = 0,1,2 

level 4; 

(&,dz$) = Q~le*i~e I = 0,1,2,3,4 

($0) = a; (1,O) = @; 

(&j-a) = @~2e*i&d ($-, -l-i) = Q3,1e*ik44 

Table 2.2: (13) model 

($0) = efiw’i’If i =.1,2,3 

(i, $) = ,iiB,i$G;.l? 
($7;) = 

,i$B,-iiG’,,rf 

($, f) = ,i~B,-i~Zi.fi 

Table 2.3: (a2) model 

cg, = 1 
eiiB@leifH , ,ifB@;le-itH 

$f, = 
,ifrB,fifrH, ei$B@;ql 

($f, = 1 
eiPBq,le-i)H , eifB@;leiiH 

(g, ;, = 
eifB<ple-i+H 

1 
, eiiBq,;leitH 

c&f, = 1 0 
,ifBq>lgj12~i)H , ei)Bq,;@;le-iiH 

.( .* , ei;W$2e-i+H 

18 



Table 2.4: (1,4) model 

Table 3: Relations between twist fields of orbifolds and tensor products of mini- 
mal SCFT’s 

Table 3.1: 23 twist 

Table 3.2: 2, twist 

a* w 1 1 

ei$H 

e-i;H 

19 



Table 3.3: 2, twist 

(3 = 
UO 

~1 -i&H 
1e 
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