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1. Introduction

The purpose of these lectures is to give a detailed and pedagogical description
of the CKM picture of the quark sector [1,2]‘. The discussion is held within the
_Stahda.rd Model (SM) [3—5). Examples of physics beyond the SM are given only to
demonstrate which properties are unique to the SM and what kind of ingredients
have to be superseded in order to have the predictions modified.

“™  We first list those ingredients of the SM which are essential for the CKM picture
and introduce our notations. Then we show how the quark sector becomes more
and more intriguing as the number of generations increases: masses, mixing and
CP violation arise in a world of one, two and three quark generations, respectively.
The absence of flavor changing neutral currents is contrasted with a world of three

quark flavors, and provides evidence for the existence of the top quark.

" . ... Once the theoretical picture of quark mixing and C P violation becomes clear,

we turn our attention to phenomenology. We describe how various entries of the
CKM matrix are measured by weak decays and deep inelastic neutrino scatter-
ing (“direct measurements”), while those that involve the top quark mixing are
deduced from unitarity constraints. The unitarity triangle is presented. Further
information is gained from loop processes (“indirect measurements”), i.e. K — K
and B — B mixing. Finally, measurements of C P violating processes are discussed

for both the K and the B systems.

The CKM parameters are measured in the hope of finding contradictions among
various measurements that will provide evidence for physics beyond the SM. How-
ever, the numerical values of the parameters, even if consistent with each other,
may provide clues to new physics which may relate quark masses and mixing pa-
rameters. We discuss the idea of schemes for quark mass matrices and describe the

Fritzsch scheme as a specific example.

~In the last chapter, we describe the future of the CKM picture. We list the
iﬁ‘pmveinents expected in experiment and theory and discuss their implications

for our understanding of the quark sector and C P violation.
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I. QUARK MIXING: BASICS

2. The Standard Model

To specify a model of elementary particles, one needs to give:
a. The symmetries of the Lagrangian,
b. The symmetry representations of fermions and scalars,

- ¢. The symmetries of the vacuum (namely, the nature of the spontaneous sym-

metry breaking).
The Standard Model (SM) is defined as follows:

a. The gauge group is SU(3)¢c x SU(2)p x U(1)y. Thus there are twelve gauge
bosons and the covariant derivative which determines all gauge interactions is given
by

o D* = 9" +ig,G¥ Lo + igWPTy + ig' B*Y. (2.1)
Here L, (a = 1,...,8) are the generators of SU(3)c, Ty (b = 1,2,3) are the
generators of SU(2), and Y is the generator of U(1)y. There are three independent
gauge couplings: gs, g and ¢'.

b. Left-handed quarks are in (3,2), /¢ representations of the gauge group, namely
triplets of SU(3)c, doublets of SU(2)f and carry hypercharge Y = 1/6. Right-

- handed up-quarks are in (3,1)y/3 multiples while right-handed down-quarks are in
(3,1)_1/3 multiplets. This determines the form of the various generator matrices

in (2.1):

Qr: La=3iX, Ty=1n, Y =1/6,
up: Lo=1X, T,=0, Y =2/3, (2.2)
drp: La=1%Xa, Tp=0, Y =-1/3

X are the 3 x 3 Gell-Mann matrices while 7 are the 2 x 2 Pauli matrices. The

gauge interactions of the various quark multiplets are all derived from the kinetic
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energy term in the Lagrangian:

Lin(fermions) = Z it]}ﬂ”’Df,j)d)j. (2.3)

multiplets j

The superscript (j) denotes that the various generators in the covariant derivative
are in the appropriate representation. The scalar sector of the model consists of a
single Higgs doublet #(1,2);/,.

PO

-~ ¢. The gauge symmetry is spontaneously broken,
SU3)e x SU(2) xU(l)y — SUB)c xU(1)Ewm, (2.4)

when the neutral member of the scalar doublet acquires a VEV:

DG e

The two charged W bosons and one linear combination of W3 and B, the Z boson,
acquire masses, while the orthogonal combination of the neutral bosons, the photon

A, remains massless:

1 .
Wi = ZWEFiWg): My = 39™%,
2" = cosbw WE —sinbw B*: M} = My cos? b, (2.6)

A¥ = sinbw W + cosOw B* : Mi =0,
where

tanfy = ¢'/g. (2.7).

The phenomenon of quark mixing arises from the difference between the up
sector and the down sector in the rotation from the interaction eigenbasis to the
mass eigenbasis. To understand that, we need to study two types of quark in-
tﬁﬁ;ﬁionsﬁ their gauge interactions with charged vector-bosons and their Yukawa

interactions with neutral scalars.



3. A World of Two Flavors: Quark Masses

We start by studying a hypothetical world of two quark flavors only. Our
purpose it to follow in detail the mechanism for generating quark masses. However,

there is no quark mixing in this world.

Assume that the spectrum of colored fermions consists of 12 degrees of freedom

divided into three different multiplets:

o

Q= (3,2)1/6; up = (3, 1)g/3; dp = (3, 1)_1/3- (3.1)

This is a one generation world. The superscript I stands for Interaction eigenstates.
Mass eigenstates will carry no superscript. However, as here there is only one
flavor of each electromagnetic charge, interaction eigenstates and mass eigenstates

are identical. Thus, in this section we omit the superscript 1.

" . ..-_The interactions of quarks with the SU(2)[ gauge bosons are given by

~Lw = S0 QLW (3.2)
The interactions of quarks with the scalar doublet are given by
—Ly =GQrédp + FQpdug + h.c. (3.3)

where ¢ = igy¢*. Since the symmetry is spontaneously broken, (¢) # 0, we are able
to physically distinguish among the various members within an SU(2)z-multiplet.

In particular, the quark doublet has two components of different charges, which

ug
Qr = (dL) . ; ] (3.4)

The charged current interactions in (3.2) are given by

we denote by

-9 — +
o | —Lw = 7§uL7”dLW“ + h.c. (3.5)

LA
VThe—mass terms that arise from the replacement of Re(¢%) — (v+ H®)/+/2 in (3.3)
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. are given by:

—Ly = %EL_C{R + %ﬁu;g + h.c., (3.6)
namely
myg = G’U/\/i, My = F'v/\/5 (37)

4. A World of Four Flavors: Quark Mixing

The hypothetical world of four quark flavors is similar in many ways to ours. In
particular, in this world quark mizing is simplest to understand. There is, however,

one important ingredient of nature missing: C'P violation.

~ Assume that the spectrum of colored fermions consists of 24 degrees of freedom

divided into six multiplets of three different kinds:

-~ -

QL = (3,2)1/6; QL2 = (3,2)1/6
up = (3, 1)g/3; ch = (3, 1)g/3; (4.1)
dp = (3, 1) 173 sk =(3, 1)_1y3-

This is a two generation world.

" The interactions of quarks with the SU(2)[ gauge bosons are given by
9T a 9T
~Lw = QLY T QLW + SR T QLW (4.2)
The interactions of quarks with the scalar doublet are given by

—Ly = GuQ_ilcbdfg + FllQ_iléufz + Glz@;@fg + FIZ_Q—EQEC%

4.3
GnQL,8dp + FnQl,dul + G2aQl 65k + FnQl,éch +h )
+ 21Q[,2¢ Rt 21QL2¢UR+ 22QL2¢SR+ ZZQL2¢CR+ .C.

N

Again, the spontaneous symmetry breaking means that the members within a
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doublet can be distinguished from each other, so we denote them by

uI CI
Qh=<j);Qb=<;). (4.4)
L L

The charged current interactions in (4.2) are given by

9T 9°T
—Lw :Eui'y“diwlf + ﬁci'y“siW;f + h.c.
v - 9 T T di N (45)
=7§(uL cp )™ o W, +h.ec.
The mass terms from (4.3) are
v — — [Gu G2 dh
—Ly=—7(d) sh) I
V2 Ga1 Ga Sp
Fin Fip ul (46)
(e R
+—(ul + h.c.,
\/-2_( L L)(le Fzz)(%)
oi‘, in a more compact notation,
My =Gv/vV2, M, =Fv/V2. (4.7)

M, and M, are 2 x 2 matrices.

_The mass eigenbasis corresponds, by definition, to diagonal mass matrices. We

1

can always find unitary matrices V31, Vg, Viur and Vg such that
VarMpVi, = M3, v Myvi, = Miie
dLMpVip = Mp™;  VurMyV,p = M; ™. (4.8)

The M, giag are real diagonal matrices. The mass eigenstates are then identified as
dr ! dr df
ST SL SR SR
_ I 7 (4.9)
7 Cl, CL CR CR



with

The W-interactions (4.5) are given in the mass eigenbasis by

dg,

V2

—Lw =L (ug )Y (Var V) (S
L

) W, +he. (4.10)

The matrix (V4 VdTL) is the mixing matrix for 2 quark generations. It is a 2 x 2
unitary matrix. As such, it generally contains 4 parameters, of which one can be

chosen as a real angle, §¢, and 3 are phases:

-,

W yt ) cos b e sinf¢c e'f (4.11)
ulVar) = —sinf¢ e’ cos Oc 6‘(_a+ﬂ+7) . .
By the transformation
(Vur Vi) = V = Pu(Var V), ) Pj, (4.12)

e 1
I Gl RV (T R

we eliminate the three phases from the mixing matrix. (We redefine the mass
eigenstates up g — Pyup g and df p — Pyd R, so that the mass matrices remain
unchanged. In particular, they remain real.) Notice that there are three inde-
pendent phdse differences between the elements of P, and those of P;, and three
phaseé in>(Vu L V; ;). Consequently, there are no physically meaningful phases in V/,

and hence no C P violation:”

cos 8 sin 6
V= < ¢ C) , : (4.14)

—sinfo  cosfc

For two generations, V is called the Cabibbo matrix [1]. If sin 8¢ of (4.14) is dif-

ferent from zero, then the W¥ interactions mediate generation-changing currents.

s :
*—In extended models, such as LRS [6] or SUSY [7], CP-violation in the quark sector is
~ possible even with two generations only.




The W*-boson couples to a pair of quarks @;d; with strength g|V;;|. In particular,
the s — u transition allows kaon decays, e.g. K — mev. The value of sin ¢ = |V,|

can be determined from the rate of this decay, and is found to be

sinfc = 0.22. (4.15)

5. A World of Six Flavors: C' P Violation

It seems very likely that Nature is indeed a world of six quark flavors. From
the theoretical point of view, it is not just a straightforward extension of the four

quark world, because a new and important phenomenon arises: C'P violation.

The spectrum of colored fermions consists of 36 degrees of freedom divided
into nine multiplets of three different kinds, namely a three generation world. The

multiplets additional to (4.1) are denoted by

AN oL A
Qs = "k (321765 th=(3,1)93; bp=(3,1)_y/3 (5.1)
L

The derivation follows exactly the same lines as in the previous chapter. Similarly

to (4.10) we get for the charged current interaction in the mass eigenbasis:

dg
(a7 e ) VarVi) | se | Wi +hee. (5.2)
br

—Lw =

Sl

The matrix (V4 VJL) is the mixing matrix for three quark generations. It is a 3 x 3
unitary matrix. As such, it generally contains 9 parameters, of which three can be
chosen as real angles, 012, 023 and )3, and six are phases. We may again reduce

the number of phases in the mixing matrix V by redefining the phases of the quark
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mass eigenstates:

V = P,(Vur V), )Py (5.3)

The crucial point is that there are only five independent phase differences between
the elements of P, and those of Py, while there are siz phases in (V, LVJL). Conse-
quently, the mixing matrix V' contains one physically meaningful phase [2], §. The

standard parametrization of V is [8,9 — 13]

o

—ib
c12¢€13 $12€13 s13e”"
; 6
V = | —s12c23 — c1a803513€"  c12c03 — s12523513€° s23€13 (5.4)
512823 — €12€23513€  —c12803 — s12¢23513€®  ca3cn3

where ¢;j = cos 0;; and s;; = sin 6;;. The matrix V for the three generation mixing

is-called the Cabibbo — Kobayashi — Maskawa matrix or, in short, the CKM matrix.

Pt

6. C'P Violation from the CKM Matrix

The unremovable phase in the CKM matrix allows possible C' P violation. To
demonstrate that, we use a variant of an argument presented in ref. [14]. The

charge conjugation matrix C fulfills

CruC ' =—4L, CyuC7l =4 (6.1)

We work with representations for y-matrices where
—c=c1=0T=C". (6.2)

The charge conjugation transformation of spinor fields is

.-

= 09T, @ - piyTe. (6.3)
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The parity transformation of spinor fields is

P(z) = 0" P(2),  P(z) = np(E)y°, (6.4)

with ## = z,. Thus the C'P transformation of spinor fields is

P(z) = —nCyP*(8), P(z) > —n*P*(&)C. (6.5)
- The CP transformations of scalar and left-handed currents are then

Piv; -,

B ~ (6.6)
iy (1= v5)v5 = — ¥ivu(l = ¥s)bi,
where we used
(iT3)" = =5 (vl o). (6.7)
. The C P-transformation law for the charged vector boson is
Wi(z) - —WFH(z). (6.8)

A mass term or gauge coupling can be invariant under (6.6) if the masses and
couplings are real. In particular, consider the coupling of W¥ to quarks. It has

the form
gVt W (1 = 5)dj + gViidiy, W (1 = 75 )ui. (6.9)

The CP bperation interchanges the two terms except that V;; and V,; are not
7 interchanged. Thus, CP is a symmetry only if there is some basis in which all
couplings (and masses) are real. If there were only the four quarks u, d, s and c,

the SU(2) x U(1) interactions could not violate C'P.

It is, of course, an important experimental question whether the KM phase 6
is, in fact, the source of the observed C P violation. We will discuss this question
in detail when we study K° physics. Note, however, that CP is not necessarily
\?'féi-aied in the three generation case. If any of the following conditions held, C'P

would not be violated:
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1. There is mass degeneracy among the three up-sector quarks or among the
three down-sector quarks. Suppose, for example, that the u and the ¢ quarks are
degenerate in mass. Then any linear combination of the mass eigenstates u and ¢
is still a mass eigenstate. Consequently, instead of the diagonal unitary matrix Py

of (5.3), we may use a more general form:

_ Py = (U ei¢) (6.10)

where U is any 2 X 2 unitary matrix. This allows us to remove one more phase

(and an angle) from V, thus making V real.
2. Any of the mixing angles 612, 023 or 813 is an integer multiple of 7 /2.

3. The phase in the CKM matrix vanishes, siné = 0.

~ 7" ‘The above conditions can be summarized in one equation, which must be ful-

filled.if CP is to be violated:

(mg = me)(m¢ — my)(mi — mg)(my — m)(mg —mg)(mi —mg) J #0, (6.11)

where

J = 6126236%3812823813 sin é. (6.12)

The above condition can be restated in another way [15], which is explicitly in-

| dependent of the parametrization of V. Take the quark mass matrices Mp and
My in any interaction eigenbasis. Then the LHS of (6.11) equals (up to a possible
sign) Im{det[MDML,MUM;]}/Q. Thus CP is violated in the three generation
Standard Model if and only if [15]:

Im{det[Mp M}, My M}]} # 0. (6.13)

N

J, the function of the mixing angles and the phase, can also be written in a form
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which is explicitly parametrization-independent:
|J| = [Im(V;; Vi Vii Vi5)| (6.14)

for any choice of 1 #£1, j # k.

The numerical values that we later find for the different mixing angles imply

that |J| < 1074, even for sin § = 1. This value is to be compared with the maximum

. possible value of 1/(61/3): the SM predicts a small intrinsic value for this measure
of C P-violation.

7. A World of Three Flavors: FCNC

A world of three quark flavors does not fit into a model with all left-handed
quarks in doublets of SU(2). How can we incorporate interactions of the strange

- quark in this picture? The solution that we now describe is wrong. Yet, it is of
histerical interest and, moreover, helps to understand some of the unique properties

of the SM. In particular, we will see that in the three-flavor world there are flavor-

changing neutral currents (FCNC) which are forbidden (at tree level) in the SM.

Assume that sz is an SU(2)-singlet:

QL = (3,2)1/6 s, = (3, 1)_1y35

(7.1)
wh=(3,)ys dh=01)_ys sh=031)_1s.

- Consequently, si does not have gauge interactions with the charged W-bosons:
Ly = gQ_WT“ing. (7.2)
The interactions of quarks with the scalar doublet are given by
~Ly = GaQTodh + G, QL ¢sh + FQTduk + h.c. (7.3)

K¢ important difference from the cases discussed so far is that quark representa-

tions are no longer purely chiral. Consequently, bare mass terms appear in the
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Lagrangian:

_LR;IC —_ msdgdff + m“;{sﬁ + h.c. (74)

With the spontaneous symmetry breaking we get contributions to quark masses

from both Ly and £lﬁre:

—_— s dl —
Ly = (di si) <mdd mq ) ( f) + muuiuﬁ + h.c., (7.5)
L Mgd Mg SR
where
mag = Gav/V2, mgs = G/ V2, my = Fv/ V2. (7.6)

The mass eigenbasis for the down-sector corresponds to diagonal My, so we find

unitary 2 X 2 matrices V3 and Vg such that

myq Mg my
ViL ( ) Vi = ( ) : (7.7)
Mgd Mgg ! mg

and correspondingly

I 1
S, st SR Sh

The charged current interactions are given by

Ly = ulF W +hee.

V2

d
9 u : L ,
=70 cos 8 sin @ W* 4+ h.c.
\/5 LY ( C C) (SL) u -

(7.9)

(Any phases in V, the 1 x 2 mixing matrix, can be removed by an appropriate
redefinition of the mass eigenstates.) The s — u transition still proceeds via the
charged current interactions, and the same value for sin ¢ = |V,,| will be measured

by the K — mev decay as in the four flavor case.
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Trouble begins when we turn to neutral current interactions. The Z° boson,
being a combination of the W3 and B gauge bosons as given in (2.6), couples to

the (T3 — sin® Oy Q)-charge:

9 =1 122 I =1 2 ;2 I
—Lyz = o~ 0W[ urpy* (5 — 5 sin® Ow )up + Upy*(—5sin® 0w )up
~=I . =I .
+d* (-1 + %sm2 Ow)dL + dR'y"(+%s1n2 Ow )dh (7.10)

+§£'y"(+% sin? Oy )st + Efn”’(+% sin Oy )sh ] Z,.

-

Note that all couplings are diagonal in the interaction eigenbasis, as they should
be by definition. We now concentrate on the T3-coupling of the down-sector. All
other couplings are trivially transformed into the mass eigenbasis: just omit the
superscript I. However,

U SVTERAY
cos()wdm( 2)drZy =

- _ cos 8 d
Cojaw(dL n)( C)v“(—%)(cosac sinoc)( L>Z = (1)

) sin ¢ SL
. - cos? 6 cos O sin @ d
—— (4 3p) © .02 V) 2,
2 cos Oy cos B¢ sin ¢ sin“ ¢ SL

The non-diagonal terms signal flavor changing neutral currents!

This situation is very different from the world of two generations described
above. There, si is a member of a second quark doublet, see (4.4). As a result,

the coupling of sf to the Z%-boson changes from (7.10) to

'3'27”(-—% + %sin2 Ow)sl Z,. (7.12)

cos Ow

(In addition there will, of course, be terms describing the c-quark couplings to the

Z%-boson.) The part of the interaction that we isolated in (7.11) is modified into

g = 1 di
(dp sp)7"(=3) I Zy =

cos Oy

< . g - 1 L L
T 2C080W(dL SL)( 1>7 (.SL)ZW

(7.13)



There are no FCNC in the Standard Model. The reason for the difference between
(7.11) and (7.13) can be traced back to the difference in the charged current mixing
matrix. The neutral current mixing matrix U = VIV. When V is unitary, as in
(4.10), U = 1 as in (7.13). When V is not unitary, as in (7.9) (Visa lx 2
sub-matrix of the unitary matrix VJL), U#1 asin (7.11).

The difference in the predicted phenomenology is dramatic: the interaction

(7.11) induces the decay

a P

K% —ptp” (7.14)
at a rate of the same order of magnitude as
Kt - p+1/u. (7.15)

In fact, (7.14) is suppressed by a factor of 1078 Compared to (7.15)!

I ‘This-problem, which was noted at the time when only three quarks were known,
drove Glashow, Iliopoulos and Maiani (GIM) [16] to propose the existence of the
charm quark, in an SU(2) doublet with .SIL.

8. A World of Five Flavors: Is There a Top?

If the reason for not having experimentally observed the top quark is that it
does not exist, and if the gauge structure of electroweak interactions is indeed
SU(2)p x U(1)y, then the by, quark has to be in a singlet of SU(2)z. The implica-

~ tions of this on phenomenology are readily understood on the basis of our analysis

of the three flavor case.

The five flavor world with by an SU(2)-singlet has Z°-mediated FCNC. In

particular, there are non-diagonal couplings involving the bottom quark:

Uap =V qiVub + VigVes,

(8.1)
Ugp =V Var + Vi Ve

LR
Consequently, the decay B — ¢+£~ X will proceed in a rate comparable to the
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charged current decay B — fv, X [17):

(B — £+0-X)
T(B — lv,X)

. . Upl+ [Up? 1
= [(1 = sin? Oy )? 20w)? [Uas S . )
((z = sin”0w)" + (sin” 6w ]IVub|2 + Fps|Vap|? 4 (8.2)

(Fps is a phase space factor.) Experimentally [19], this ratio is smaller than 5x 10~4!

Additional evidence for the existence of the top quark comes from measure-

_ments of the Z-width and of the forward-backward asymmetry in ete™ — bb.

Using recent LEP results for these two quantities gives T3(bz, r) rather accurately
[18]:

Ts3(b) = —0.4901001%  T3(bg) = —0.028 £ 0.056. (8.3)

This is consistent with the SM values, T3(br) = —1/2, T3(bgr) = 0, and certainly
excludes the possibility that the bottom quark is an SU(2)[-singlet.

II. MEASURING THE CKM PARAMETERS:
DIRECT MEASUREMENTS AND UNITARITY CONSTRAINTS

9. Direct Measurements

In direct measurements we measure processes which occur at the tree level
within the SM. The assumption made here is that there are no processes from new
physics which compete with SM tree-level processes. This assumption holds in
most models which go beyond the SM. Thus, we expect the values of CKM matrix
elements which are extracted from direct measurements to hold even if the SM is

only a low-energy effective theory.

The simplest example of a model in which direct measurements would lead to
fﬁo.gg values for the CKM elements is a two Higgs doublet model, with a light
charged Higgs. The two body decay into a charged Higgs and a quark could
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dominate over W-mediated decays. However, the present limits on the mass of a
charged Higgs (mpy+ > 41.7 GeV [20]) allow this decay mode for only the top-
quark, and thus none of the measurements described in this chapter could be

affected.

As the top-quark has not been experimentally observed, its mixings, V4;, cannot
be directly measured. At present we have direct information on the six elements

of the first two rows in the CKM matrix, and in this section we describe this

PO

information. Most of our discussion follows the lines of refs. [8,21]. For the
rriixings of the b-quark, we discuss in detail the implications of the Heavy Quark

Symmetry (HQS) [22] for improved measurements with future facilities [23].

Our present knowledge of the matrix elements comes from the following sources:

9.1 MEASURING |Vy4|

. Nuclear beta decay, when compared to muon decay, gives [24 — 27]
|Via| = 0.9744 + 0.0010 . (9.1)

This includes refinements in the analysis of the radiative corrections, especially the
order Za? effects, which have brought the ft-values from low and high Z Fermi

transitions into good agreement.

9.2 MEASURING |Vys|

Analysis of K3 decays: Kt — n%*v, and Kg — 1~ etv, yields [28]
Vis| = 0.2196 + 0.0023 . (9.2)

At the quark level the process is s — ueve. However, a calculation from first

principles at the quark level cannot be carried out [29):
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a. The final spectrum is completely dominated by the single pion state (the two
pion final state has a branching ratio smaller by four orders of magnitude).
Quark - meson duality is expected to hold when there is a dense set of final

states, which is certainly not the case here.

b. There are large QCD corrections as the relevant scale for as(p) is g = O(m;),
but ms ~ Agcp (the scale at which, by definition, as ~ 1). Thus, a pertur-

bative QCD expansion is meaningless.

~c. There are large uncertainties in my; first, it is a running mass and we do not
know the relevant scale and second, even if we knew the scale, the uncertainty
in my is still about 30%. This is significant since the phase space for the decay

depends on (m;)S.

Thus, |Vus| has to be calculated at the meson level:

BR(K — mev) _ [G%M?‘,CZ

7(K) 19273 ] Fps(1+ 7')|f+(0)|2|vus|2~ (9.3)

The quantities on the LHS of this equation are given by experiments with an
overall accuracy of 1-1.5%. The quantities in brackets are known. The phase
space factor Fps depends on an experimentally-fitted parameter, which introduces
a 0.5% uncertainty. The radiative corrections r can be calculated to an accuracy of
about 0.3%, but an ambiguity in the way these corrections were incorporated into
various daté analyses adds up to 1% uncertainty in (1 + r). The main theoretical
uncertainty is in the normalization of the form factor |f4(0)|. However, in the
SU(3) limit (my = mg = my) we have |f(0)] = 1, and deviations from this value
are only second order in the symmetry breaking parameter. The approximate
symmetry allows a determination of |f4+(0)| with an uncertainty of only 0.8%.
The isospin violation between K::',, and K?; decays has been taken into account,
bringing the values of |V,4| extracted from these two decays into agreement at the
1% level of accuracy. The analysis of hyperon decay data has larger theoretical

wgicertainties because of first order SU(3) symmetry breaking effects in the axial-

rvect:r couplings, but due account of symmetry breaking [30] applied to the WA2
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data [31] gives a corrected value of 0.222 + 0.003 . We average these two results to

obtain:

[Vis| = 0.2205 £ 0.0018 . (9.4)

9.3 MEASURING |V4|

The magnitude of |V 4| may be deduced from neutrino and antineutrino pro-

-

- P

duction of charm off valence d quarks. The dimuon production cross sections of the
CDHS group [32] yield B, |V,q|? = (0.41 £0.07) x 1072, where B, is the semilep-
tonic branching fraction of the charmed hadrons produced. The corresponding pre-
liminary value from a recent Tevatron experiment [33] is B |Vq4|? = (0.53410 058 ) x
10~2. Averaging these two results gives B, |V,4]|? = (0.47 4 0.05) x 1072, Supple-
menting this with measurements of the semileptonic branching fractions of charmed
~* mesons [34], weighted by a production ratio of D°/Dt = (60 + 10)/(40 F 10), to
give' B, = 0.113 4 0.015, yields

[Vea| = 0.204 £ 0.017. (9.5)

A second method is to measure the semileptonic strangeless D decay. At present

there is only one such measurement and with large uncertainties [35]:
BR(D" — n~etv) = (3.9733 £ 0.4) x 1072, (9.6)

This, together with the theoretical uncertainties in the form factor, make this

method less accurate at present.
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9.4 MEASURING |V4]

Values of |V;s| from neutrino production of charm are dependent on assump-
tions about the strange quark density in the parton-sea. The most conservative
assumption, that the strange-quark sea does not exceed the value corresponding
to an SU(3) symmetric sea, 25 < U + D, leads to a lower bound [32], |V,| > 0.59.
It is more advantageous to proceed analogously to the method used for extracting

. Vus| from K3 decay; namely, we compare the experimental value for the width of
D.3 decay with the expression (The result for M = 2.2 GeV is found in ref. [36])

that follows from the standard weak interaction amplitude:
T(D — Ketve) = [£P(0))%|Ves|*(1.54 x 10 sec™). (9.7)

Here ff(qz), with ¢ = pp — pk, is the form factor relevant to D3 decay; its
. variation has been taken into account with the parametrization fP(t)/fP(0) =
M?/(M?—t) and M = 2.1 GeV/c%, a form and mass consistent with Mark III [35]
and TPS [37] measurements. Combining data on branching ratios for D3 decays
(35, 37]

(3.4+£0.5+0.4) x 102 MARK III

BR(D® —» K~ etv,) = (9.8)
(3.84+0.5+0.6) x 1072 TPS

with accurarte values for 7po from the E691 [38] and E687 [39] experiments in

Fermilab,
4.22 4 0.08 £ 0.10) x 10713 sec E691
(0% =1 ) ° (9.9)
(4.24 £ 0.11 £ 0.07) x 10713 sec E687
gives the value (0.85 £ 0.10) x 10! sec™! for I'(D — Ke%tv,). Therefore
1£2(0)[?|Ves]? = 0.55 £ 0.07. (9.10)

AlVery conservative assumption is that |f2(0)] < 1, from which it follows that
|Ves| > 0.70 . Calculations of the form factor either performed [40,41] directly at
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q®> = 0, or done [42] at the maximum value of ¢> = (mp — mg)? and interpreted
at ¢®> = 0 using the measured ¢ dependence, yield ff(O) =0.7+0.1. It follows
that

[V = 1.06 £ 0.18 . (9.11)

The constraint of unitarity when there are only three generations gives a much
tighter bound (see below). The ratio |V,q/Ves| is free of the uncertainties in 7(D?).

Moreover, it depends on the ratio |fP==/fP—&| which is 1 in the SU(3) limit,
and expected to hold within 10%. We get |V 4/Ves| = 0.25 £ 0.06.

9.5 MEASURING |Vy|

The ratio |V,p/V,p| can be obtained from the semileptonic decay of B mesons
- by fitting to the lepton energy spectrum as a sum of contributions involving b — u
| aﬁdl b — c¢. The relative overall phase space factor between the two processes
is calculated from the usual four-fermion interaction with one massive fermion (c
quark or u quark) in the final state. The value of this factor depends on the
quark masses, but is roughly one-half (in suppressing b — ¢ compared to b — u).
Both the CLEO [43] and ARGUS [44,45] collaborations have reported evidence
for b — u transitions in semileptonic B decays. The interpretation of the result in
terms of |V, / V4| depends fairly strongly on the theoretical model used to generate
the lepton energy spectrum, especially for 6 — u transitions [41,42,46]. Combining

the experimental and theoretical uncertainties, we quote

g = |Vip/Vip| = 0.11 £ 0.05. | (9.12)

The heavy quark symmetry holds promise to allow a determination of |V,| in
a much more accurate (and less model-dependent) way [23]: the ratio |Vys/Ve4|
6’5}11136 achieved by a comparison of the spectra of B — Xev and D — Xev for

some charmless final state X.
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For X = 7, a measurement of the spectrum from D decay will allow predictions
of the kinematically similar portion of the spectrum in B decay. Of the two form

factors,

(7|VuID) = f+(pD + Px)u + f=(PD — Pr)us (9.13)

only f4 is measurable because |pp — px| ~ me. However, f2 and f£ are not simply
_related by mass rescaling. If the 1/Mp corrections are ignored, uncertainties of
order 20% in the determination of |V,| are introduced (the model of ref. [42] was
us-ed for this estimate). A correction for this error can be made only at the price

of some model dependence.

A potentially better way is to use the final X = p state. (This mode has been
recently observed [47] with BR(Bt — p%*v) = (1.13 £ 0.36 £ 0.26) x 1073.) In

_ this case an angular analysis is needed to separate the form factors for D — pev,

(p|ValD) =igeurse™ (pp + pp)*(PD — Pp)°, (9.14)

(plAuID) =ife;, + ay (" - pp)(pD + pp)u + a—(€* - pD)(PD — Pp)u>

and make any predictions for B — pev. Again, one of the form factors — a_ — is not
measurable. However, two of the measurable ones, f and g, can be obtained for B
by simple scaling. If the a4 form factor contributes negligibly to the total rate, then
a rﬁeaSur'ement of the total B — pev rate would suffice to accurately determine
" |Vaup/Ved|- Various models seem to differ in their predictions of whether this is
indeed the case. Fortunately, one can avoid this model dependence altogether if
there is sufficient data to measure angular correlations in B — pev decays and

thus separate the fZ and ¢® form factors.

Another alternative would be to fully analyze the D — K*ev form factors
and use flavor SU(3) symmetry to predict those for D — pev. It may be best to
determine |V, in all the above methods and use the spread in the results as a

measure of the uncertainty.
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Finally, if one could measure the differential width for inclusive charmless
semileptonic B decays, then the HQS provides sum-rules that will allow model-
independent determination of |V,;3| [48]. However, the task is probably experimen-

tally impossible.

9.6 MEASURING |V

. ~. The magnitude of V,; itself can be determined if the measured semileptonic

bottom hadron partial width is assumed to be that of a b quark decaying through

the usual V — A interaction:

BR(b— cliy)  Gpmj
Th 19273

I'(b— clvg) = nF(me/my)| V|, (9.15)
where 7, is the b lifetime, 5 is a QCD correction factor and F(m./m;y) is the phase
" space factor noted above as approximately one-half. (The spectator quark model
has been shown to hold for the inclusive rate in the heavy quark symmetry limit
[48].) From various measurements held at the Y(4S5) resonance, the semi-leptonic

branching ratio is found to be [47]
BR(B — tvX) = (10.34+0.2) x 1072, (9.16)

New results from various LEP measurements are consistent with this range [49].

~ The lifetime of bottom hadrons is [§]
75 = (1.18 £ 0.11) x 107! sec. (9.17)

Adding to this average the recent LEP results yields [49] 7, = 1.28 4 0.06 psec.
However, most of the error on |V,3| derived from (9.15) is not from the experimental
uncertainties, but in the theoretical uncertainties in choosing a value of m;. Instead
oﬁéf@arkb model, we quote the value derived from the By decay, B — D{i,, by

~ comparing the observed rate with the theoretical expression that involves a form
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factor, f£(¢%). This is analogous to what gives the most accurate values for |Vys|
(from K.z decay) and |V¢s| (from Dy decay). It avoids all questions of what
masses to use, and the heavy quarks in both the initial and final states give more
confidence in the accuracy of the theoretical calculations of the form factor. With

account of a number of models of the form factor, the data [50 — 52] yield

V| = 0.044 £ 0.009 . (9.18)

PO

The central value and the error are now comparable to what is obtained from
the inclusive semileptonic decays [51], but ultimately, with more data and more
confidence in the calculation of the form factor consistent with the heavy quark
symmetry, exclusive semileptonic decays should provide the most accurate value

of |Vip| . The mode to study is B — D*ev for which 1/M corrections vanish at

o . the kinematic limit point (the leading model dependent corrections are of order

A? /M?%). The model dependence arises principally from the extrapolation to the
end point of the spectrum and hence can be significantly reduced with a high
statistics study of that region. A recent calculation [53] using a modified version

of the model of ref. [41] to calculate the corrections to the HQS gives
|Ves| = 0.045 £ 0.007 . (9.19)

In what follows, we use this range for |Vy|.
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10. Unitarity

10.1 INTRODUCTION

The requirement of unitarity can be simply stated as VIV = 1. This imposes

the following conditions on the matrix elements:
n n n

- MVl =1 Y IVulf=1 ) Vik,=o. (10.1)
k=1

(In the last equation ¢ # j.) Unitarity may be used in several ways:

1. If we directly measure enough of the matrix elements, we may check whether
their values are consistent with the unitarity constraint. We illustrate this
in a two generation model, and explain the present situation in the three

generation case.

- 2 Within the minimal SM, where neutrinos are all massless, the number of
generations is known to be three. We may then find values (or allowed

ranges) for the matrix elements which have not been directly measured.

3. In extensions of the Standard Model, where neutrinos of higher generations
may be very massive, the number of generations is only known to be at least

three. We may still give upper bounds on the unmeasured matrix elements.

10.2 TWO GENERATIONS

To demonstrate how unitarity gives a consistency check on our measurements,
we now pretend to know of two generations only [54]. The mixing matrix is the 2x 2
Cabibbo matrix. Direct measurements give the following range for the absolute

values of its elements:

“ L 0.9744 + 0.0010  0.2205 + 0.0018
Ve| = . (10.2)

0.204 £ 0.017 1.06 £0.18
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Unitarity implies that the above matrix depends on one parameter only:

C S
Ve=|( 7 7). (10.3)
—S812 €12 )

With the above measurements we have certainly overdetermined the Cabibbo an-
gle. The test of the two generation Standard Model is the following: Can we find
. a range for the Cabibbo angle which is consistent with all measurements? The

answer is in the affirmative if
0.220 < 512 <0.221. (10.4)

Thus, a two generation picture is consistent within the experimental errors on the
matrix elements; we could not tell that there is a third generation if it were not for
' its direct observation (or from C P violation). From our knowledge about |V,;| and
|Vis] we know that the third generation mixings would be probed only if we reached
an }a,ccuracy level of 10~* in the determination of |V,;| or 1072 in the determination
of |Vii| (¢ = d, s); this is well beyond the present level of accuracy. At present, the
values in (10.2) imply only the following mild bounds on the possible mixings of a

third generation:

0 —0.07
V] = : : 0—0.51 (10.5)
0-013 0-050 0-—1

The results derived here have some bearing on the three generation analysis. We
have directly measured six elements, which should give a consistency check on the
four parameters of the CKM matrix. However, due to the small values of |V,;| and
|Vep| together with the present level of accuracy, four of the elements overdetermine
§123_just as described above for two generations, and there is no overdetermination

% . .
yet of the other parameters.
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10.3 THREE GENERATIONS

The recent measurements of the number of light neutrinos [55], N, = 2.99 +
0.05, imply that, within the minimal SM and some of its extensions, the number of
generations is three. This makes it very likely that the 3 x 3 CKM matrix exactly
fulfills the unitarity constraints. Consequently, we may deduce the allowed ranges
for the V;; elements, and also further restrict the allowed ranges for elements which

»were directly measured.

= 1. The value of |V3| is derived from
Vasl® + [Ves|* + [Vio|* = 1. (10.6)

As both |V,3| and |V,| are measured to be much smaller than 1, the |Vj| value is

- very close to I:

0.9986 < |Vis| < 0.9993. (10.7)
2. The value for |V}, is derived from
Vu*sVUb + ‘/ct;‘/cb + V;:‘/tb =0. (108)

As the first term on the left hand side is much smaller than the other two, and as

both |V.s| and |Vj| are very close to 1, the |Vis| value is very close to |Vy):

0.035 < |Vis| < 0.053. (10.9)

3. The allowed range for |Vj4| is derived from

b Vad + Vi Vea + VigVia = 0. (10.10)

X

As both V,4 and V}; are very close to 1, and as V.4 & —s12, we may approximate
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(10.10) by

Viy + Vaa = 12V (10.11)

u

This gives:

0.002 < |Vyq < 0.020. (10.12)

v« Full information on the ranges for the absolute values of the CKM elements

(at one sigma) from both direct measurements and unitarity is summarized by:

0.9749 — 0.9754 0.2187 — 0.2223  0.002 — 0.009
V| = 0.218 — 0.221  0.9735—0.9752  0.038 — 0.052 (10.13)
0.002 — 0.020 0.035 — 0.053  0.9986 — 0.9993

. In-terms of the parameters we get:
512 = 0.2205 + 0.0018; s23 = 0.045 4 0.007; ¢ = s13/s23 = 0.11 £ 0.05. (10.14)

There are no direct constraints on the phase §. Among the three real angles, there
are large uncertainties in s13 only. Therefore, it is useful to present the information

coming from indirect measurements as constraints in the ¢ — é plane.

10.4 THE UNITARITY TRIANGLE

As is apparent from (10.13), the only poorly determined matrix elements are V34
and V3. They are related to each other by the unitarity constraint (10.10) or, to a
very good approximation, (10.11). The information that we may get from indirect
measurements will have to comply with this constraint. It is very convenient to
present such information and to discuss further predictions by using the unitarity
tgfangle, which is just a geometrical representation of the relation (10.10) in the

Acorn?lex plane: The three complex quantities, V,Vyq, V3 Vea and V3 Vig should
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form a triangle, as shown in Fig. 1. Rescaling the triangle by [1/(s12|Ve|)], the

coordinates of the three vertices A, B and C become

Re Ve Im Vi
s12|Vasl” s12|Ves|]’

B(1,0), C(0,0). (10.15)

In the Wolfenstein parametrization [11], which is just the small mixing-angle ap-

proximation of the standard parametrization, the coordinates of the vertex A are

~tp,m).

*
Vod Vcb
691
6960A4

~Figure 1. The unitarity triangle is a representation in the complex plane of the triangle
formed by the CKM matrix elements V4V, VeaVy} and Vi4Vj;. The angles , # and 7 are
measurable through CP asymmetries in B decays, as explained in Chapter 16.
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III. THE NEUTRAL MESON SYSTEMS:
MIXING AND CP VIOLATION

11. Introduction and Notations

We consider a neutral meson P° and its antiparticle P°. An arbitrary neutral

~ P-meson state

-,

a|P%) +b|P%) (11.1)

is governed by the time-dependent Schrédinger equation

5()-1()=C-m () e

Here M and T" are 2x2 Hermitian matrices. C PT invariance guarantees M1 = M2z

and T'y; = I'g. T, the anti-Hermitian part of H, describes the exponential decay
of the P-meson system, while M, the Hermitian part, is called a mass matrix. If
all the I'’s were zero, the system would evolve without decay, but the off-diagonal

elements in the mass matrix would still cause mixing of P® with PC.

The mass eigenstates are

|P1) =p|P%) +q|P°),

0 o (11.3)
|P2) =p|P°) — q|P”),
with eigenvalues
)
H12 = Mo — -2—F1,2. (11.4)
Here M; 3 and Ty 2 denote the masses and decay widths of P 2. Define:
W _
Ap=ps - =AM - %AF. (11.5)

30



The eigenvalue problem
det (M— %r—,u) =0 (11.6)
leads to the condition

[Ap)* = 4(M7y — iT7,/2)(Miz — iT12/2). (11.7)

-

The real and imaginary parts of (11.7) can be rewritten as

(AM)? — (AT)?/4 =4(|My2|* — |T12[*/4)

(11.8)
AMAT =4Re(M121],)
For the ratio ¢/p we find:
q —Ap
== : . 11.9
P 2(M12 - lF12/2) ( )
We choose the following convention for charge conjugation:
C|P°) =|P%, C|P%) =|P%). (11.10)

Then, because the P’s are pseudoscalars, the states with zero three-momentum

satisfy
CP|P%) = —|P%, CP|P’)=-|P"). (11.11)

The CP even and odd states are then

1P°) = | P

P L L R L XL

A (11.12)

n""‘:‘._'ﬁl the absence of C'P violation, there is no relative phase between Mj, and

T12. In particular, we can choose a phase convention such that both M, and I'1o
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are real,

M12 = M{z, F]z = F){z, (CP). (1113)

Then

AM = :E2|M12|, ATl = :{:2|F12|, q/p = :l:l, (CP) (11.14)

The last equation in (11.14) demonstrates that in the absence of C' P violation, the

PO

mass eigenstates are C'P eigenstates.

12. The Neutral K System: Mixing

Much of our discussion of mixing in the K system is based on two textbooks.
The theoretical discussion follows the presentation in ref. [14], while the description
- -of-the experimental aspects follows that of ref. [56]. Further reading in both

references is highly recommended.

The mixing in the K® system depends on m, and sinf¢. Historically, it led
Gaillard and Lee to predict the mass of the charm quark [57]. At present, both
parameters are known rather accurately. This will allow us to realize how indirect
measurements are useful even though the uncertainties are large. The discussion of
K% — K% mixing is simplest in a two generation framework. The effects of the third
generation are small (as long as we do not discuss C'P violation) and therefore our

analysis holds even quantitatively.

12.1 PHENOMENOLOGY OF NEUTRAL KAONS

1. The neutral kaons have very different lifetimes.

In the two generation framework, C'P is conserved, and the mass eigenstates
coincide with the C P eigenstates. These states have very different lifetimes because
fﬁgi_r_nonleptonic decay modes are radically different. Two pions, 7°x° or 7 ¥7~

in an L = 0 state must be CP even. On the other hand, the small @Q-value (70

Y
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MeV) for the decay into three pions suggests L = 0, that is, the three pions are in
a relative S-state. The C P-parity of 717~ is still +1. The 7° has C = +1 (since
it decays to two v’s) and P = —1, and therefore CP = —1. So, combining the
70 with the 777~ system, we obtain one of CP = —1. For L > 0, both positive
and negative C P eigenvalues can result, but such decays are strongly suppressed
by angular-momentum barrier effects. Thus, if CP is conserved, only K can
decay into two 7’s, while K_ decays into three pions. As mentioned above, this
;a:escription is exactly true in our hypothetical two generation world, but as in
nature C P violation is a very small effect, our picture looks very much like the real

world.

The two-pion final state has much larger phase space than the three-pion final
state. Thus, K4, which can decay into two pions, decays much faster than K_,

which cannot. The two mass eigenstates,
|Ks) =|K+), |Kr)=|K-), (12.1)

(S stands for Short and L stands for Long) have very different lifetimes. Experi-

mentally

7g =09 %1070 sec, 77 =5.2x% 1078 sec. (12.2)

Al(;ng a beam of neutral K’s one observes many two-pion decays close to the
source while three-pion decays are further downstream, where essentially only the

K component survives.
2. Pure-K% beams can be produced.

The K° mesons with strangeness S = 1 and K° with § = —1 are the states that
are produced by the strangeness conserving QCD strong interactions (interaction

eigenstates). The K° can be produced by

Lo

™ +p— A+ KO, (12.3)
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while the K® can be produced by

mt+p oKt + K% +p,
o (12.4)
™ 4+p—oA+K'+n+n.

The threshold pion energy for (12.3) is 0.91 GeV, while for (12.4) it is much higher,
1.50 and 6.0 GeV for the respective processes. Thus it is possible to produce a

~pure K% beam by choosing incident pions of suitable energy.
= 3. Neutral kaons oscillate.

The amplitude of the states Kg or K at time ¢t can be written as

as(t) =ag(0)e~ (Ts/2HiMs)t

12.5
ar(t) =a(0)e=(Tr/H+MLL, 12

Now suppose that at ¢ = 0, a beam of unit intensity consists of pure K°. Then,

from (12.1), as(0) = ar(0) = 1/v/2. After a time ¢ the K intensity will be

I(K®) =(as(t) + ar(t))(a5(t) + al(t))/2

12.6
:i—[e_rst + e Tt 4 9o~ (Ts+To)t/2 cos(AMg t)], (12.6)
where AMyg = My — Mg. Similarly, the K-intensity will be
_ 1
I(K°) = =[eTst 4 e7Tet _ 9= (TsHTL)t/2 (o5 AM 1)), (12.7)

4

Thus, the K° and K intensities oscillate with the frequency AMk. If one measures
the number of K° interaction events (i.e. the hyperon yield) as a function of

position from the K® source, one can deduce AMk.
4. Kg can be regenerated.
x‘:‘w'S__uppose we start with a pure K° beam. After it coasts for say a 100 Kg

mean lives, all the Kg-component has decayed and we are left with K, only. Now,
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let the K beam traverse a slab of material and interact. The K° component has
more strong channels open and is therefore absorbed more strongly than K°. After
emerging from the slab, we shall therefore have a K® amplitude f [K 0) and a K°
amplitude f |K0>, where f < f < 1. The emergent beam is not a pure K,

1

Kp = _\/3( K% +|K°)), (12.8)
;qi;ut instead
L FIKY+ FIRY) = Y+ P IKD) + 3/ - DIKs).  (12.9)

V2

Since f # f, it follows that some of the Kg state has been regenerated. This
regeneration of short-lived Kg-states in a long-lived K-beam was confirmed by
-+ “experiment. It can be used to make an accurate measurement of the mass difference

between Kg and K.
5. The mass difference between neutral kaons.

The result of such experiments is
AMpg = My — Ms = (5.3540.02) x 10° sec™! = (3.52£0.01) x 107° eV, (12.10)
or a fractional mass difference

AM]\' —-15
=7x107"°°. 12.11
A =7 (12.11)

It is this number that we will use in our investigation of the quark sector.
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12.2 BACK TO THEORY

We would like to calculate
AMg = 2Re(Mj2) (12.12)

within the SM. While M is just the K° mass, M3 is a AS = 2 effect and therefore
, @(G%) (the weak interactions in lowest order change strangeness only by +1). If
this were not the case, the mass difference AMg would be much larger than what

is observed. Thus we must work to second order in the weak interactions.

Following ref. [14], we write the Hamiltonian as a power series in G,
H=Hy+ H +Hy+--- (12.13)

where H; is proportional to (Gr)?. The |K0> and |R0> states are eigenstates of
Hy because they are degenerate, stable particles when the weak interactions are

turned off. Therefore

- 0
ey £ S

The leading contributions are both second order in G because Hy only changes
strangeness by 1. In terms of states with the conventional normalization, the

first term is

My, = (K°|H2(0)|K°) (12.15)

2M g

where H3(0) is the second order weak Hamiltonian density. We are able to estimate
this term, as we shall soon do. The second term in (12.14), however, depends
§En31t1vély on the details of low-energy strong interactions because it involves long

-distance contributions from low lying S = 0 mesonic states. ‘We hide our ignorance
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of the long distance contribution by defining a parameter D,

0 H I_(O
D-Mu=Y (K ”?4';3 S"L 1K) (12.16)

We will calculate only the short distance contribution to the mass difference,
(AMk)s.p. = AMg(1 — D). Nevertheless, this estimate is interesting and im-

portant, as we will see.

v -,

~ The leading contribution to H2 comes from the box diagrams in Fig. 2.

v ~ + W ; W ;
——NANNNS—— —¢ <
&9t W

Figure 2. The box diagrams for neutral meson mixing.

It gives

ro=2(38) Soasnn [ 5 (i)

(d La7* ;j)+m;)7" “) (d wu—(;#rm—z)wsli) :

(12.17)

' J

Thus, it is indeed O(G%), namely fourth order in the weak coupling. Furthermore,
the contribution is proportional to sin’ 0¢ cos? fc. (In the absence of charged
current mixing, sin 8¢ = 0, there would be no K 0 — K° mixing.) However, the GIM

mechanism introduces an additional suppression factor ~ m2/M%,. The important
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point is that for large loop momentum, the contributions of the u and ¢ quarks
cancel on each quark line: all strangeness-changing interactions would disappear
if the charge 2/3 quarks were degenerate. Thus, each quark line in the figure is
proportional to m2 — m?2 and the diagram is quadratically convergent. The final
result is:

G%L . -

L Ha = sin? 6, cos? OCmgw%(d'y”(l — 75)8)(dy,(1 — 7s5)s). (12.18)
(Sbme useful tricks in the actual evaluation can be found in ref. [58].) To proceed
would require some estimate of the matrix element of the AS = 2 operator. Gail-
lard and Lee [57] used the vacuum insertion approximation: one inserts a complete
set of states in the middle of the operators in (12.18). This is a peculiar thing
to do: the renormalized operator cannot really be considered as a product of two

- factors. But then in the sum over states, only the vacuum state is kept. This is an

even.more peculiar thing to do, but at least it makes the calculation easy:
015 - - 8
(17" (1 = 5)s10) (Oldyu(1 = 75)s|K®) = 2 [ M- (12.19)

Again, the peculiar assumptions are hidden by a new parameter,

<I\'0|J'yl‘£1 — 75)s|0> <_O|J7It(1 _ 75)_3II_{0>
(K°ldy#(1 — y5)sdyu(1 — ys)s| KO)

By = (12.20)

We later return to estimates of Bg. Combining (12.18) with (12.19) (and incor-
porating QCD corrections denoted by 7;) gives a contribution to AMf,

G2 .
(AMk)s.p. = AMg(1 - D) = 6TFQ‘U1MK(BKfIZ()mz Re[(ViVes)?].  (12.21)

ngividé the parameters in (12.21) (other than m., V.4 and V) into two cate-

-gories:
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1. Parameters which are known to a high level of accuracy. We collect many

of them into

672 A My 5
Cr = =1.8x10" 12.22
K G MM, X | )

where we use:

Gr =1.166 x 107°GeV™2, Mw =80 GeV

- (12.23)
o f2 = (0.165 GeV)?, AMg /My =7 x 10715,

and 1 = 0.7.

2. Parameters with large theoretical uncertainties. The D parameter gives the

relative part of long distance contributions to AMg. We use
0<D<0.5. (12.24)

The Bk parameter gives the ratio between the short distance contribution to AMpg

and its value in the vacuum insertion approximation. We use

<Bg <l (12.25)

W | —

A few comments are in place:

a. If the D-parameter were very close to 1, or if the By -parameter were very
different from 1, then our calculation would not be useful, because it would

not indicate to us even the order of magnitude of AM.

b. While there is no known rigorous way to calculate D or Bg (except for,
in principle, a lattice calculation of Bp), they are estimated within various
models and approximations. The hope is that, if the various results do not

differ dramatically, this gives a fair estimate of the parameters. Different

* _models have very different systematic errors, and it is unlikely that all of

them miss the correct value in the same direction and amount.
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c. The ranges for the parameters in (12.24) and (12.25) reflect the spread of
results from various models. While this seems a reasonable thing to do for
the reasons explained in the previous comment, there is some danger that a

single wrong model would lead to pessimistically large errors.

d. When using the results from K — K mixing, one should always carry in mind
the uncertainties. The information on the CKM parameters is much less

accurate than from direct measurements.

v .

- Eq. (12.21) can then be rewritten as

1-D
CK(—BF) = m(m2/Miy)(VeaVes)*. (12.26)
34

(In the two generation case all matrix elements are real.) When the original study

. .of-K — K mixing [57) was performed, the c-quark was not yet experimentally

discovered. Thus, one could use (12.26) to predict the mass of the c-quark. In the
original calculation, the vacuum saturation approximation was used (Bg = 1), and
neither long-distance contributions nor QCD corrections were taken into account
(D =0, g = 1). This led, somewhat coincidentally, to the correct prediction [57]:
me = 1.5 GeV. With the full range of Bx and D,

0.9x107° < CK(l—_—l—)l <53x1075, (12.27)
By

and with the correct value for 77, one would have predicted 1.3 GeV < m, <
3.2 GeV. If, on the other hand, we use m; = 1.4 GeV, we get 0.20 < V4V, < 0.50.
This is to be compared with the constraints from direct measurements and unitar-
ity. Note that a third generation is unnecessary in explaining K — K mixing. Thus,
somewhat disappointingly, we learn that at the present level of accuracy, the com-
bination of direct measurements, unitarity constraints and indirect measurements
?)";f::;_ll th'é parameters that do not directly involve the third generation, could not

‘have revealed to us the existence of the third generation.
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With three generations one has to take into account contributions from inter-
mediate t-quarks. The RHS of (12.21) becomes more complicated [59] and depends
also on my, Vi, and Viq. However, the contribution of diagrams involving the -
quark is suppressed by more than an order of magnitude compared to the c-quark
contribution. With the large theoretical uncertainties, it is impossible to derive

any useful information on m; and V4.

“12.3 D — D MIXING

A measurement of D — D mixing is experimentally difficult and, moreover, will
not provide us with clean information on the CKM parameters. The reasons for
that are easy to understand [60] on the basis of our discussion of K — K mixing in

the previous section.

__a. The valence quarks in the neutral D-mesons belong to the up sector. That
méz-x_ns that the intermediate quarks in the box diagrams are the d and the s quarks.
Tilus., D — D mixing would vanish in the flavor SU(3) limit. Even though SU(3)
breaking effects are not necessarily small, D — D mixing is expected to be a very

small effect.

b. It is very likely that D — D mixing is dominated by long distance contribu-
tions. In other words, the equivalent of the D-parameter of Eq. (12.16) for the D°
system is ekpected to be very close to 1. That, as explained in the previous sec-
tion, wouid render a calculation of the short distance contribution to AMp quite

useless.
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13. The Neutral B System: Mixing
13.1 B — B MIXING

The discussion of mixing in the neutral K system is simplified by the fact that
it is accounted for, to a good approximation, by physics of two quark generations,
and that CP violation can be ignored. (The two facts are, of course, related.)

. Mixing in the neutral B-system involves, of course, the third generation and there
is no reason to assume a small phase between M;2 and I';3. However, here the

discussion simplifies because
F]Q(BO) < Mlz(BO). (13.1)

(Remember that T'j3(K°) ~ 2M;2(K?).) Within the SM one can explicitly calcu-
~* 14te the two relevant quantities (assuming that a quark-level description is appro-
priate) and get ['12/ Mg ~ 10~2. However, this order-of-magnitude estimate holds
far beyond the SM (see discussion in [61]). The argument is further supported by

experimental evidence: while
zg=AMp/Tp =0.66 £0.11, (13.2)

(upper limits on) branching ratios into states that contribute to I'1 are at the level

of 1073, When I'12 can be neglected relative to Mj2, one finds
AMp = 2| Miq|, (13.3)

to be compared with (12.12).

Within the SM, the mixing of the neutral B’s comes from box-diagrams and is
completely dominated by intermediate ¢-quarks (see ref. [62] for a comprehensive
Hscussion of B — B mixing in various models). The CKM-factors IquVq‘:ﬂ2 are

comparable for ¢ = u, c or ¢, the large mass of the top makes its contribution
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much larger than that of any other quark. A detailed calculation gives (similar to

(12.18) and (12.19)):

2 )
va = iy Mp (B 5 ME a(m? /M3y ViVl (13.4)
where [59]
3y(l+ 2
P =1- S0 [y Bgy)). (13.5)

The parameters in (13.4) (other than my and Vi) can be divided into:

1. Parameters which are known to a high level of accuracy. We collect them
into
62

Cp=
5= G MM},

=13 x 107 GeV (13.6)

where, in addition to the previously given parameters, G and Mw, we use
Mp = 5.28 GeV. (13.7)

The parameter n is a QCD correction, n = 0.85. To a very good approximation

[Vis| = 1.

2. Parameters with relatively large theoretical ambiguities (Bp f3), experimen-

tal ‘errors (z4), or both (7|V,4]?).

One should note that |V;| and 7, appear only in the combination 74|V,3|2, which
does not depend on 73 (see eq. (9.15)). Therefore, the error on this combination is

somewhat smaller than on |V|? alone:
| Vip|2 = (3.5 0.6) x 10° GeV 1. (13.8)

'ﬁg_hadronic parameter Bp (analogous to Bg of the Kaon system) is believed

to be close to 1. However, there is much uncertainty involved in the calculation
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of the B decay constant fg. (Note that for the K, the decay constant fx is
experimentally determined.) A range of values for fg has been derived from QCD

sum rules and lattice calculations:
v/Bpfp =0.151+0.05 GeV. (13.9)

(Recent lattice calculations in the static quark approach give much higher values,
48 ~ 0.3 GeV [63]. We have not included these calculations in (13.9).) The
ARGUS and CLEO collaborations observe By — B; mixing with

{ 0.21 £0.06 ARGUS
ry =

(13.10)
0.14 £0.05 CLEO

The z4 parameter is related to rqy by rg = z3/(2 + z2). We take the combined
result of the two experiments, r4 = 0.18 £ 0.05. This is very similar to an updated

 “average quoted in ref. [47]: rg = 0.184 + 0.043. We get

zq =0.66 £0.11. (13.11)

Eq. (13.4) can then be rewritten as

Cp (Tblvcbif)d(BBf%) = nyif2(y0)|Vaa/ Ves . (13.12)
With the standard parametrization we get
CB(Tb'Vcblzx)d(BBf_,z;) = nyif2(ye)(sTz + ¢° — 25129 cos §). (13.13)
From the ranges given abqve:
Tq

0.044 < Cp < 0.35. (13.14)

(7|Ves1?) (BB SE)

Eq-__(1312) together with the unitarity constraints on |Vi4| gives my; & 50 GeV,

-which is below the bound from direct searches, but may be useful in extensions of

44



the Standard Model [64]. Eq. (13.12) together with the upper bound on m; gives
Via| > 0.005. (13.15)

For m; & 185 GeV the upper limit on |Vy4| that follows from (13.12) is stronger
than the unitarity bound.

... Finally, let us mention that the z4 value provides further evidence for the
existence of the top quark [65] (see our discussion in chapter 8). If by were an
SU(2)-singlet, then the non-diagonal Z-couplings (see Eq. (8.1)) would give a

tree contribution to x4,

Mp(Baf§)Ual*, (13.16)

(xd)tree =Tp

V2G F
6

~ which is about two orders of magnitude larger than the upper limit on z,.

13.2 B, — Bs MIXING AND OTHER INDIRECT MEASUREMENTS

Mixing in the Bs system is not yet experimentally measured (though part of
the mixing observed in hadron colliders is certainly due to B,). Although the
calculation of both z4 and z, is subject to large uncertainties, the ratio between
them is expected to be reasonably approximated by

ts/zq = |Vie/Vidl*. (13.17)

Deviations from (13.17) are due to flavor SU(3) breaking effects that shift the ratio
fB./fB, away from 1, its value in the symmetry limit. With the parametrization

(5.4), Eq. (13.17) reads

- : xs/zd = 1/|512 — qei6]2- (13.18)
. - .

Note that the ratio does not depend on my; and s»3. It is minimized when é ~ 180°
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(the phase é cannot be exactly 180° because it would lead to € = 0),
To/Tg > 1/(s12+ )2 R 7, (13.19)
where the second inequality results from ¢ < 0.16. This gives

Ty > 3.8 =51, > 0.88. (13.20)

P

Thus a large B, — B, mixing is expected, independently of ms. An exact deter-
mination of z, from a measurement of rg is difficult because rs is near-maximal.
Consequently, a time-dependent measurement of Bs — Bs oscillations is called for,
but that would be an experimentally difficult task if z; & 15, in which case the

oscillation length is very short.

* “““We note that there are additional indirect measurements that may provide
useful information on the CKM parameters, most noticeably BR(Kj — pp) and

BR(K — wvv). The most recent experimental results are [66,67]

BR(K? — pp) = (7.0 £0.5) x 1077,

(13.21)
BR(Kt — ntww) <5 x 107°.

The implications for the CKM parameters together with a careful description of

the uncertainties involved can be found in ref. [68].
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14. The Neutral K System: C' P Violation
14.1 THE ¢ PARAMETER

The C P violating phenomena in the neutral kaon system that we study in this
section arise because My, and I'12 in H cannot be made simultaneously real. Note

that the each of arg(Mj2) and arg(I'12) is phase-convention dependent: They would

change by changing the relative phases of the K® and K° states, which amounts

to making a diagonal unitary transformation of H. But we cannot change the
relative phase between My and I'12. It turns out that in Nature the relative phase
is indeed nonzero (Mj2I'}, is complex) and CP violation shows up in neutral K

decays.

Our analysis here follows the one given in ref. [69]. With C'P violation, the

eigenstates of H are not K4 and K_, but

Kps= ——1-——< 1+9 ) (14.1)
’ V2(1 + [e?) \ £(1 —¢€)

where € signifies the deviation from the C'P limit. We switched notations here from
146 1—¢€ t
p and ¢ to ST and T so that (11.9) now réads
(I+e€) -9 My —il'12/2 lAM—iAF/Q
(1—€  ~ AM —iAT/2 2 M}, —il%,/2°

(14.2)

Note that while the observable quantities AM and AT depend only on the relative
phase between Mj2 and T2, as they should (see (11.8)), the parameter € does
depend on the choice of phase.

We would now like to relate € to measurable quantities. We study the decays

of neutral kaons into two pions. We define the amplitudes:

((xm) 1| Hw|K®) = are®, ((xm)i|Hw|K®) = afe’™, (14.3)

L

—

-where I = 0 or 2 is the isospin of the two pion system, and ér are the strong
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- interaction phases. Using (14.1) we find

ei&]
ars ={(rn)|Hw|Ks) = ——=———= 14 &as+ (1 —€ajl,
(em il Hir 1) = sl (1 -+ € + (1 = O]
5 (14.4)
arp ={(zm)1|Hw|KL) = ——=————==[(1 + €)ar — (1 — €)a]].
()l K1) = sl (1+ s = (1 = )]
With
(w7 = ((xm)r=0l 4/ 3 = ((7m)1=2] /3,
(14.5)
(rtr=| = ()=l /2 + ()12l /1,
we get
Ago,s(r) = {*°n°|Hw|K(p)) = \/gao,su;) - \/gaz,sm, (14.6)
Ay sy = (| HwlKsy) = \/Baa s +y/Sazsi
We further define
€ = ap,/ao,s; (14.7)
t;r = Im(ar)/Re(ay). (14.8)
Then, using (14.4) we find
_ € + ity
€= i (14.9)

The standard convention is to choose the phase of K and K states to remove the
phases from their Al = % decay amplitudes except for the effect of the final state

interactions between the pions. This means that ag of eq. (14.3) is real and thus
€=¢& (14.10)

‘fﬁigms‘bé,sis, Mjis and TI'j2 would be real if there were no CP violation. Then

because C'P is a small effect, the phases of Mi2 and I'y2 are small, and we can
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usefully work to first order in e (we shall soon find that || ~ O(107%)). Then
(14.2) implies

iImMyy + ImIy5/2
N M AT (14.11)

AM = 2Re(M;2), AT = 2Re(T'12). (14.12)

In the standard basis, we expect Im(I'12) to be much smaller than Im(M;2). This

’ Tollows because to = 0 implies that the contribution to I'j2 from the (77);=o states
that dominate the decay is real. Thus, on top of the usual suppression of C' P
violating effects, Im(T'12) should have an additional suppression of at least a few
hundred (the ratio of the (77);=¢ final state to everything else). The phase of ¢ is
then determined by the phase of the denominator in (14.11),

AM ~ —-AT/2 = arg(AM —iAT/2) = 7 /4. (14.13)

It has become standard to use these empirical relations to simplify the expression
for ¢,
eim/4 ImM;, ™/ ImMi2
€~ 2./2 ReMi, ~ V2AM

(14.14)

The value of Re(e) (or, equivalently when the phase convention is fixed, |e|)

can be determined in various ways. In particular, let us define the following three

observables:

e | = BR(Kp — ntrn™) TS 172

T-1= L BR(Ks — n+1-)]

Im00| = BR(K[ — 7%9) 7S e (14.15)

001 = - BR(Ks — 1979 | :
5 (K — 7 ty) = T(Kp — 7tv)

o " T(Kp = 7= 0tv) + T(Kp — nt—v)
LoE

‘To derive the relation between the |p|’s and ¢, we write them in terms of the
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amplitudes of eq. (14.6),

In+-| = 1A4— L/A+—sl, Inoo|l = |Aoo,z/Avo,s]- (14.16)

Experiment shows that the two quantities

e2fe =axrfaor, w=as/aos, (14.17)

are very small and we may neglect them for our purposes here. Then (14.16) gives

In+—| = lel,  |nool = e (14.18)

. Asfor 4, eq. (14.1) implies

e
e e

~ 2Re e. (14.19)

The first demonstration of C'P violation was in 1964 in an experiment by Christen-
son, Cronin, Fitch and Turlay [70], who showed that K, could also decay to 7tz ~
(with a branching ratio of order 1073). At present, all three observables have been

measured. The results quoted in (8] are

In4—| =(2.268 £ 0.023) x 1073,
|noo| =(2.253 £ 0.024) x 1072, (14.20)
§ =(3.2740.12) x 1073,

They all give

le| ~ 2.26 x 1073, (14.21)

W

‘We can now use this measurement to get a potentially interesting constraint on
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the C P violating phase in the CKM matrix. One gets [59]:

G%‘ Mg 2 \as2
= B ¢ M
x {myeIm [(VgVes)?] + mayefo(ye)Im [(VigVas)?] + 203 f3(ye)Im [V Ves Vi Vas] }
(14.22)
where
Yt 3 Yt
) =In(=]—-- 1 1 . 14.2
At =in (2) =32 1 Vg (14.23)
The parameters (other than those in the curly brackets) are divided into:
1. Well-known parameters, which we collect into
Ce = V2|¢|Cx = 5.6 x 1078, (14.24)

"2, Parameters with large uncertainties. The long distance contribution to €
"+ is small and introduces an uncertainty smaller than 5%. Thus, the large

uncertainty is in By, which we have already encountered above.

Eq. (14.22) can be rewritten as

g; = —|ValIm(Via) {[n3f3(ye) — m1yelVeal + n2yefo(ye)|Ves|Re(Via)},  (14.25)

or, using the standard parametrization,

g_;( = (s23)%qsin 6 {[13f3(ye) — mlyes12 + mayefa(ye)(s23)*(s12 — g cos &) } .
(14.26)
For the terms in the curly brackets we use m. = 1.4 GeV and [71] 5, = 0.7; n2 =
0.6; 73 = 0.4 (the n; are QCD corrections). The constraint on the phase é depends

on the yet-unknown parameter m;. Thus, the uncertainties are large, and we find

- 20° < 8 < 178° (14.27)
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14.2 THE ¢ PARAMETER

There is actually another C P-violating parameter in the neutral kaon system,

' €2 — WeE

7

where €3 and w are defined in (14.17). The exact and convention-independent

¢ (14.28)

. expression for € is

y_ ¢ (Reay 2y i(62—80) _t2—to
=4 1— 0) 2= 0 .
€ 7 (Re a()) (1 —€)e (1 icto)? (14.29)

In the phase convention used above where o = 0, this simplifies to

' 1 Re ar i(82—50)
~— tpelt2=00), :
~ ( - ao) 2€ (14.30)

" When we neglect w compared to one (we know experimentally that |az/ao| = 1/20),

we, éét instead of the approximate expressions in (14.18)

N4— € + 6,a
(14.31)
noo € — 26’.
Thus ¢ # 0 signifies C'P violation in the decay processes when amplitudes of

different phases interfere. This is called direct C' P violation, in contrast to € # 0

which signifies C'P violation in mixing.

The most recent measurements give [72]

, (2.34£0.7) x 1073 NA31

€/e= (14.32)
(0.6 £0.7) x 1073 E731

The extraction of constraints on the CKM parameters from (14.32) (see ref. [73]) is
a complicated theoretical task, as large hadronic uncertainties are involved. While
j;&e;‘e is a strong theoretical effort in this direction (see, for example, ref. [74] and
reférences therein), at present the value of € /e is useful to test our understanding

_of hadronic physics rather than for CKM fit.
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15. Constraints from Indirect Measurements

We studied the various constraints on the CKM parameters for
89 < my < 200 GeV. | (15.1)

The lower bound comes from the direct search for the top in CDF [75 — 76]. The

upper bound is a conservative upper bound from electroweak precision measure-

“nients. Ref. [77], for example, quotes m; < 182 GeV at the 95% C.L.

m; =120 GeV

| ] 1 1 | !
0 50 100 150 0 50 100 150

10-91 d (degrees) 7031A3

_...Figure 3. Constraints from |Vys/Ves| (dotted lines), z4 (dashed curves) and € (solid curves)
ofkthe parameters ¢ = s;3/523 and § for m; = 90, 120, 160 and 200 GeV. The shaded region is
the finally allowed range.
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my = 120 GeV
240 T
7

/7

10-91

Figure 4. Constraints from |Vys/Ves| (dotted lines), z4 (dashed curves) and ¢ (solid curves)
on the rescaled unitarity triangle for m; = 90, 120, 160 and 200 GeV. The shaded region is that
allowed for the vertex A(p, 7).

We present our results for the CKM parameters in two equivalent ways:

1. Allowed regions in the ¢ — § plane. We use (13.13) involving z4 and (14.26)
involving €. For each relation, we use the full range of parameters. For a
fixed top quark mass, we get allowed bands in the ¢ — § plane. The final
allowed region is within the two bands and within the direct limits on qg. We
show the constraints for m; = 90, 120, 160 and 200 GeV in Fig. 3.

© 2. Allowed region for the vertex A of the unitarity triangle. The analysis is

—done using the z4 relation as given in (13.12) and the ¢ relation as given in
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(14.25). The constraints are shown in Fig. 4.

16. The Neutral B System: CP Violation
16.1 FORMALISM

We consider a neutral meson B® and its antiparticle B° [78,79]. The two mass

- gigenstates are By and By (H and L stand for Heavy and Light respectively):

|BL) =p|Bo) +¢|B°),

- (16.1)
|Br) =p|Bo) — ¢|B°).
We neglect the tiny difference in width between By and By:
'p=T;=T. (16.2)

(AT < T because it is produced by channels with branching ratios of 0(1073)
which contribute with alternating signs [80].) We define:

M= (Mg + Mp)/2, AM =My — Mj. (16.3)
With T'12 < Mg (see discussion in chapter 13), we have

lg/pl = 1. (16.4)

The amplitudes for the states By or By, at time ¢ can be written as

(lH(t) =aH(0)e—(F/2+iMH)t’

16.5
ar(t) =ap(0)e~(F/2+iML)t, (16.5)

W

The proper time evolution of an initially (¢t = 0) pure B° (ar(0) = ag(0) = 1/(2p))
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or B% (a(0) = —ag(0) = 1/(2¢)) is given respectively by

Ithys(t)> :g+(t) |BO) (q/p t IBO> (16 6)
| Bonys(1)) =(p/2)9-(1) |Bo) + 9+(2) | B}, '
where
9+ () =exp(—T't/2) exp(—iMt) cos(AMt/2), (16.7)
g-(t) =exp(—T't/2) exp(—iMt)isin(AM1/2). .

We are interested in the decays of neutral B’s into a CP eigenstate fop. We
define the amplitudes for these processes as

A={fcpH|B%), A= {fcp|H|B°).

(16.8)
~* “We further define
- _qA
\ = ;Z (16.9)
Then
(fepH|Bphys(1)) =Alg+(t) + Ag- ()], (16.10)
(fop|H| By (1)) =A(p/q)lg-(t) + Mg+ (t)].

The time-dependent rates for initially pure B® or B? states to decay into a final
C P eigenstate at time ¢ is given by:

[T+ AZE 1= |02
I‘(Bphys() fCP) =|A|2e Ft[ , l + I l

5 5 cos(AMt) — ImA sin(AMt)] ,
2 2
F(Bphys( ) — fop) =|Al%e T [1 +2IM 1 ZI)\I cos(AMt) + ImAsin(AM?)| .
(16.11)
We define the time dependent C' P asymmetry as
N o MB o DNELOZ)
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Then

(1 — |A\)?) cos(AMt) — 2ImAsin(AMt)
ajep(t) = T\ .

If, in addition to (16.4), |A/A| = 1 so that || = 1, then (16.13) simplifies consid-

(16.13)

erably:

af.»(t) = —ImAsin(AM?). (16.14)

“The quantity Im(A) which can be extracted from ay., is theoretically very inter-

esting since it can be directly related to the CKM matrix elements.

16.2 MEASURING THE ANGLES OF THE UNITARITY TRIANGLE

The measurement of the C' P asymmetry (16.12) will determine ImA through
(16.13). If |JA/A| = 1 (in which case the simpler expression (16.14) holds), then

" ImA depends on electroweak parameters only, without hadronic uncertainties. The
cdnclition which guarantees |A/A| = 1 is easy to find [81]. In the general case, A

and A can be written as sums of various contributions:
16 10,
A= E Aje'dietd

o, (16.15)
A= Z A56‘6i6_1¢‘,

where A; are real, ¢; are CKM phases and §; are strong phases. Thus, |A| = |A] if
all amplitudes that contribute to the decay have the same CKM phase, which we
will denote by ¢p. In such a case

AJA = e B0, (16.16)

As mentioned above, for I'12 <« M;is

W

| q/p = \/ M/ Myz = 720, (16.17)
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where ¢y is the CKM phase in the B — B mixing. Thus
A= e #0Mtd0)  — Im) = —sin2(éy + ¢p)- (16.18)

(Note that each of ¢pr and ¢p is convention dependent, but the sum ¢p + ¢p is
not.) Indeed, Im) depends on CKM parameters only. In what follows, we discuss
only those processes which, within the SM, are dominated by amplitudes that have
.a single CKM phase.

_. There are two systems of neutral B mesons. For mixing in the By [B;] system

Myz < (VisViy)? [(VisVis)?). Consequently,

*\/ V*
(2) AL (2) /ALY (16.19)
p/p, VuVy p/B, VoV

There are several types of relevant decay processes. We concentrate on tree decays.

- - For decays via quark subprocesses b — @;u;d;

Vi V35

A
- = . 16.20
A ViV (16.20)
Thus, for By, decaying through b— ﬂ,'u,'cij,
Van Vi
ImA = sin |2ar Y 16.21
[ : (vu,v;;) e

For decays with a single Kg (or K1) in the final state, K — K mixing is essential
" because B® — K° and B® — K°, and interference is possible only due to K — K°

mixing. For these modes

B (z%) (§> (;%)K’ (%)K = %VZ—Z " (16.22)

Note that sign(Im\) depends on the C'P transformation properties of the final state.
The analysis above corresponds to C P-even final states. For C' P-odd states, ImA
Hﬁ's:.f@e opposite sign. In what follows, we give Im\ of C P-even states, regardless

of the C'P assignments of specific hadronic modes discussed.
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C P asymmetries in B® decays into C'P eigenstates provide a way to measure
the three angles of the unitarity triangle independently of each other and without
hadronic uncertainties. The three angles of this triangle (see Fig. 1) are defined

by

Y

VidVis VeaV3 Vud Vo
o = arg (—T/tj—v-t%) , B =arg (— V,ZVC*I‘)) , 7 =arg (— VZVu*b) . (16.23)
ua Yy b caVch

The aim is to make enough independent measurements of the sides and angles that
this triangle is overdetermined and thus check the validity of the SM. We now give

three explicit examples for asymmetries that measure the three angles o, 8 and 7:

(1) Measuring sin(24) in B — ¥ K.
The ¢ K5 mode is the only C P-eigenstate that has been experimentally observed
 so far. The average of ARGUS and CLEO results is [47]

BR(B® — ¢Ks) = (3.0 £ 1.5) x 1074, C(16.29)

iy . N ViV
‘The mixing phase in the By system is given in Eq. (16.19), (¢/p)B, = %—‘ﬁ%.
With a single final kaon, one has to take into account the mixing phase in the K
system given in Eq. (16.22), (¢/p)k = (VesV.5)/ (Vi Vea). The decay phase (16.20)

in the quark subprocess b — ccs is

A VaVi

—_ = —=, 16.25
A 02%3 ( )
We get
*V V*V, =V
A Kg) = (1 cs /b cd 7C3 Im\ = —sin(28).  (16.2
(B - ¢Ks) (thv;i VoVt Vv = Im sin(26). (16.26)

(X";QKS is a CP = —1 state, there is an extra minus sign in the asymmetry which

‘we ignore here.)
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(i1) Measuring sin(2a) in B — ntn~.
The mixing phase in the By system is given in Eq. (16.19). The decay phase
(16.20) for the quark subprocess b — uid is

/i Vuqu*d
— = —ue 16.27
A Vu*bvud ( )

We get
_ ViiVid * Vb )
AMB - rtr =(tbt)(“d“)=>lm/\=s1n2a. 16.28
( )= (i) (74 (o). (1623)
(11¢1) Measuring sin(2y) in By — pKj.

The mixing phase in the B, system is given in Eq. (16.19), (¢/p)B, = (&:K‘.’ . Due

to the final Kg, the mixing phase for the K system has to be taken into account.

" The qua-rk subprocess is, again, b — uud. We get

- | ViVie (V5 Vi (VEVid ,
M B, (o) = th ud ( cs Ve ) I - _ ) .
(Bs — pKs) (thvt;) (VudVJb) VeV, = ImA\ sin(2v). (16.29)

The three examples that we gave above demonstrate that the three angles of
the unitarity triangle can in principle be measured independently of each other.

The SM predictions for the three asymmetries are described in refs. {82, 73].
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IV. RELATIONS AMONG QUARK MASSES AND MIXING PARAMETERS

17. Schemes of Mass Matrices

Within the SM, the quark sector is described by ten free parameters. In the
physical (mass) basis, these are six quark masses, three mixing angles and one
- phase. These parameters can all be experimentally determined. Whatever their

experimental values are, the SM remains self-consistent.

In the interaction basis, our parameters are entries of the yet undiagonalized
mass matrices. If we had some theoretical principle from which we could determine
the mass matrices, we would predict the values of the physical parameters. In
several schemes of mass matrices, the number of independent entries of the mass

_matrices is less than ten; either some entries vanish or there are relations among
‘the non-vanishing entries. These schemes provide us with relations among quark

masses, angles and phases.

The motivation to consider relations among quark masses and mixing angles

comes from several sources:

1. There are “too many” parameters in the SM. The CKM picture of the quark
sector has ten independent parameters and one would like to find a theory where

this number is reduced.

2. Various quantities in the SM diverge (in lowest order) when quark masses

are taken to infinity (for example, the =4 parameter of B — B mixing). Thus,
- arbitrarily heavy quarks do not decouple from the physics of low energy. If mixing
angles were inversely proportional to the mass of the heavy quark, (for example,

[Vid| x my Y %) then these observables would remain finite.

3. Quark masses and mixing angles have a common “origin”, the mass matrices
n tffsffr}_t’era,ction eigenbasis. It is not unlikely that these matrices indeed have less

than ten independent parameters.
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4. It was noticed that the numerical values of the two generations quark sector

parameters fulfill quite accurately the relation

sinf¢ = Td (17.1)

mg

It was further recognized that such a relation would follow if the mass matrix were

. of the form

- M; = (2 Z) . (17.2)

Most schemes for quark mass matrices, even in the three generation case, try to

retain this relation.

One should check that the various relations are consistent with the experimen-
" tal data. If the relations suggested by a certain scheme are not compatible with
the experimental constraints, then either the scheme is incorrect, or the use of its

pi‘edictions should await the finding of additional new physics.

We note that the existence of new physics beyond the SM is inherent in the
suggestion of schemes for quark mass matrices. The validity of our discussion lies
in the assumption that this new physics itself does not significantly contribute to
C P-violation and B — B mixing. This is the case, for example, if the new physics

takes place at a sufficiently large energy scale.

18. Quark Masses

The masses of the quarks, which are the eigenvalues of the mass matrices to
be discussed, are not the physical masses but parameters in the Lagrangian. This
means that they are running masses which should all be taken at a single energy
sadle. In the different schemes, the three mixing angles and the phase depend on

mass ratios rather than on the masses themselves. As mass ratios are, to a good
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approximation, independent of the energy scale, the scale itself can be arbitrarily
chosen. We use [83]
mg/ms =0.051 & 0.004,

ma/me =0.0038 + 0.0012, (18.1)
ms/my =0.033 £ 0.011.

The relations that we will get involve the undetermined mass ratio m¢/m;. In

. «arder to confront these relations with the x4 and € bounds, involving the physical

mass of the ¢t quark mfhys, we must

(a) Specify m, at a certain energy scale . We take p =1 GeV:

me(p =1 GeV) = 1.35 £ 0.05 GeV. (18.2)

(b) Translate the relations involving m./m; into relations which depend on the

running top mass my(u = 1 GeV).

-(¢) Write these relations in terms of the physical mass of the ¢ quark. The
relation between the physical mass and the running mass, including a first

order QCD correction, is
phys 4
my O =my(p=my) |1+ 3—7ra5(mt) . (18.3)

In order to relate my(p = m¢) to my(p = 1 GeV') we use the usual equation

for the running mass

. 28170 In L + 1 871> (L)"m/ﬁ"
=m(l- = 18.4
m(u) m( 7 7 +ﬂ3L 5 5 (18.4)
where
| 2

Bo=11— 3Ny, 70 =2,

38 101 5 (18.5)
=102 - =N = — - = :
b g M= T th
oL L =1n(p?/A?), A=0.1GeV,

and m is the renormalization group invariant mass. A good approximation for
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mfhys in the interesting range between 90 and 200 GeV is mfhys ~ 0.6my(p =

1 GeV). In what follows we will denote the physical top mass by m;.

19. The Fritzsch Scheme for Quark Masses

The best known scheme for quark mass matrices is due to Fritzsch [{84]. We

_ discuss it here in detail as an example to the type of predictions and tests suggested

v

by quark mass matrices. As we shall soon see, the heavier the top quark is known
to be, the more difficult it becomes for the Fritzsch scheme to be consistent with

the CKM picture [85].

We study mass matrices of the form

0 a* 0 0 ale' 0
Mt=|a* 0 ], MiI=] ale i 0 bl |. (19.1)
0o & 0 ble—192 P

(Either M™ or M 4 of the Fritzsch form can always be made real without any effect
on low-energy parameters.) The six real parameters can be expressed in terms of

the six quark masses

a® ~y/mame, b & /momy, & my,

p g (19.2)
a® = /mgmg, b~ /mgmy, " = my.

The approximation is good to O(mg/ms) ~ 1/20. The two phases can be expressed

in terms of the quark masses and the two known mixing angles s12 and s23

m N m
S12 ~ ——d — € i1 =
mg me
/m s /m
$93 ~ ‘ — € b2 [ €
my my

{ hus, all eight parameters of the Fritzsch scheme are expressible in terms of seven

k]

(19.3)

known parameters (five quark masses and two mixing angles), and the yet un-

known mass of the top quark. Consequently, for every selected value of m;, we get

64



predictions for the poorly-determined mixing angle s13

i |2 [y i [ ([T i [P 10)
mp y my Mc my my
and phase 6
§ sin é N sin ¢ (19.5)

8;2323/813 —cosé  cos 1 — \/(mdmc)/(msmu).

Eq. (19.3) gives a lower limit on the unknown mass ratio m¢/m;,

2
me (, [T _ 323) . (19.6)
my mp
Using mg/my > 0.022 and s23 < 0.052 we get

¢ > 0.009 — my(p = 1 GeV) < 151 GeV. (19.7)
my

When the bound (19.7) is translated into a bound on the physical top mass, we

find that only a very narrow range if left,

89 GeV < my < 91 GeV. (19.8)

(The lower limit is the direct CDF limit [75 — 76].) This is the main difficulty for
the Fritzsch scheme at present: the value of s93 is much smaller than (ms /mb)l/ 2,
Fine tuning between mg/my and m./m; is required to allow such a small s3-value.
This fine tuning is impossible if the top is too heavy. Note, however, the upper
bound on my is sensitive to the upper bound on s33. For example, if we relax the

ﬁn_lgds “in (9.19) to s23 < 0.055 then my < 97 GeV is allowed. If, on the other
_hand, s23 < 0.50 than the Fritzsch scheme is excluded.
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A detailed comparison between the predictions of the Fritzsch scheme and the
allowed range for the CKM parameters shows that, in order to get a consistent
solution: (a) the mass ratio ms/m; has to be close to its lower limit, mg/mp ~
0.022, (b) the mixing angle sz3 should be close to its upper limit, s23 ~ 0.052, (c)
the B — B mixing parameter has to be close to its lower limit, z4 ~ 0.55, (d) the
B decay constant fp should be close to the upper limit of its theoretical range,
Bpf% ~ (0.20 GeV)?, and (e) the By constant should be close to the upper limit

“7of its theoretical range, By ~ 1. Only if all these conditions are simultaneously
fulfilled will there be a narrow range of (my, s13,6) space which is consistent with

both the Fritzsch relations and the experimental data. The following values are

predicted for the various parameters:

my ~90 GGV,
|s13/s23] ~0.07, (19.9)
6 ~100°.

These constraints give many specific predictions that can be tested in the near
future [86]. In particular, an improvement in the lower bound on m; may soon

exclude the Fritzsch scheme.
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20. Outlook

In this series of lectures, we have described in much detail the determination

of the CKM elements from direct measurements, three-generation unitarity and

indirect measurements. The only poorly determined elements are V,; and V4.

Equivalently, in the standard parametrization there are two poorly determined

parameters, s13 and 6. The constraints on these parameters are presented in Figs.

- 3.and 4. To give a better picture of the uncertainties involved, we present in Fig.

5 the constraints on the unitarity triangle for any top mass in the range 89 to 200

GeV.

Let us now summarize the prospects for improvement in the determination of

the CKM matrix:

a. The mass of the top is likely to be measured in Fermilab. This will make

the information on the CKM elements from B — B mixing and from the

- e-parameter much more accurate.

. The value of the By parameter is likely to be better determined by lattice

calculations. This will provide more accurate information from e.

. The value of the fg decay constant is likely to be better determined. The

improvement may come from lattice calculations; from a measurement of fp
and the use of the Heavy Quark Symmetry to relate the two; or, somewhat
less likely, from an actual measurement of BR(B — 7v;) in a B-factory.

This will provide more accurate determination of |Vi4| from B — B mixing.

. The value of |V| is likely to be better determined from higher statistics

measurements in CLEO or in a B factory and from a model independent
interpretation of the results using the Heavy Quark Symmetry (see discussion

in chapter 9).

. The value of |V, is likely to be better determined by, again, a combina-

tion of higher statistics experiments and better theoretical understanding, as

discussed in detail in chapter 9.
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2

Tt P 7031A4

Figure 5. Constraints from |Vus/Ves| (dotted lines), z4 (dashed curves) and € (solid curves)
on the rescaled unitarity triangle for 89 < m; < 200 GeV. The shaded region is that allowed for

the vertex A(p, n).
f. The value of z,, the B, — B, mixing parameter, may be determined in a
B-factory (or in a Z-factory). The ratio |V;q/Vis| will thus be known rather
accurately from z4/z,. Its extraction will be independent of the mass of the

top, and depends on fg,/fp, which is much better known than fg itself.

g. The values of the angles of the unitarity triangle will be measured in a B
factory. The angle B can be determined from B — 3 Kg, the angle a from
B — 77 and, somewhat less likely, the angle 4 from B, — pKg.

*To démonstrate the combined power of all these significant improvements, we
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2.0
1.5 <
n >
--1.0 \\T‘\
0.5 ]
2

Figure 6. Future constraints from |V, /Ves| (dotted lines), z4/z, (dashed curves), € (solid
curves) and the CP-asymmetry in B — ¢ Kgs (dot-dashed curves) on the rescaled unitarity
triangle. The ranges for the various parameters are given in Eq. (20.1). The shaded region is
that allowed for the vertex A(p,n).

show in Fig. 6 how the constraints on the CKM parameters will look like if all the
%Qve measurements are made. To make this Figure, we used the following values

and lncertainties:
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my =160 £ 8 GeV,

Bk =0.7+0.1,
fg =0.12 £ 0.02 GeV,
V5| =0.047, (20.1)

|Vaus/Ves] =0.11 £ 0.01,
|Via/Vis| =0.32 £ 0.04,
b sin 23 =0.28 1 0.09.

If the final picture of the various measurements indeed looks as in Fig. 6, and in
particular if the measurements of € and ImA(¢ Ks) are consistent with each other
and with all other information, then the CKM explanation of C'P violation will
at last be tested and confirmed. Of course, one would hope that the beautiful

consistency imagined in this Figure will not realize and a window to New Physics

- . .will be opened.
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