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1. Introduction 

Perhaps the most outstanding problem of light-cone quantization is to com- 

-pute the bound state spectrum and relativistic wavefunctions of hadrons at strong 

coupling. In quantum chromodynamics (QCD) one needs a practical computa- 

tional method which not only determines the hadronic spectra, but also provides 

nonperturbative hadronic matrix elements. [l] 

In addition, it is particularly important to compute the relativistic wavefunc- 

tions needed to calculate structure functions, form factors and other hadronic ma- - 

trix elements. The computation of parton distributions is perhaps among the most 

interesting applications of light-cone quantization since these distributions are re- 

lated to. the Fourier transform of correlation functions along a light-like direction. 

Thus parton distributions are “kinematic” observables given the equal light-cone 

time wavefunction. 

A step in this direction has been undertaken by a method known as Discrete 

Light-Cone Quantization (DLCQ). S o f ar, the theory has been applied mainly to 

the elucidation of quantum field theories in one space and one time dimension. 

In l+l dimensional &CD, for example, the full spectra and wavefunctions could 

be obtained, using the DLCQ method [2] . Th ese results, which required only a 

minimal numerical effort, are in agreement with other calculations when available. 

The success of DLCQ, as well as a similar approach, known as Light-front Tamm- 

Dancoff method [3] , p rovide the hope for solving field theories in 3+1 dimensions. 
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However, the transition to dimensions higher than l+l is anything but straight- 

forward. Some of the reasons are the following: 

l Theories in l+l dimensions, quantized on the light-cone, are manifestly co- 

variant. This is because the operator of certain boost transformations, which 

is a kinematic Poincare operator in light-cone quantization, is the only gen- 

erator of continuous Lorentz transformations. This is generally not the case 

in higher dimensional field theories, since the underlying Poincare group in- 

cludes certain rotation operators, which are dynamical in the light-cone for- 

mulation. Thus, the recovery of Lorentz invariant physical observables is a 
. 

- 

nontrivial problem in light-cone quantized theories beyond l+l dimensions 

(as for any form of Hamilton dynamics) [4] . 

l The Hamiltonian formulation of gauge theories in l+l dimensions is effec- 

tively gauge invariant [5] . H owever, in higher dimensions the regularization 

imposed in such a formalism will generally spoil gauge invariance, since the 

gauge field quanta become a dynamical degree of freedom of the theory. Un- 

less a careful regularization is imposed, gauge invariant amplitudes are not 

recovered in the continuum limit. 

l Simple theories like the Yukawa model or gauge theories in l+l dimensions 

are superrenormalizable. In 3+1 dimensions, however, a renormalization 

scheme to all orders in the coupling constant and masses must be imposed 

for these theories in order to ensure a consistent treatment of their short 

distance behavior. 
-_-. 

l The number of degrees of freedom in 3+1 dimensional theories is drastically 

enhanced compared to the l+l dimensional toy world. 

Thus, a thorough investigation of light-cone properties which are characteris- 
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tic for higher dimensions is very important. The easiest way of addressing these 

issues is by analysing the perturbative structure of light-cone field theories first. 

Perturbative studies cannot be substituted for an analysis of problems related to 

a nonperturbative approach. However, in order to prepare for upcoming nonper- 

turbative studies, it is important to validate the renormalization methods at the 

perturbative level. A clear understanding of divergences in perturbation theory, as 

well as their numerical treatment, is an important step in such a program. [6] 

One objective of this paper is to explore some of these issues in the example of 
- 

the anomalous magnetic moment of the electron a = v to order (:)“. In partic- 
_ 

ular, the discussion shall focus on a renormalization scheme which is also suitable 

for a numerical treatment. This requires the construction of certain counterterms 
-. 

on the local level in order to prevent round off errors. 

The second chapter of this paper addresses problems associated with quadratic 

divergences in light-cone quantized gauge theories. It is shown that Feynman gauge 

leads to an infinite number of quadratic divergent LCPTh diagrams at one loop. 

The situation is significantly better in light-cone gauge since in the continuum only 

the self-energy and the vacuum polarization display a quadratic divergence at one 

loop. However, a computation in A+ = 0 gauge req uires a careful regularization 

of the associated gauge singularity. Most regulators reduce the small ZE behavior 

of the light-cone photon propagator to that present in Feynman gauge. Thus, an 

understanding of Feynman gauge is essential even if calculations are carried out in 

A+ = 0 gauge. 

In chapter 3 the fourth-order correction of g-2 in the light-cone gauge is com- 

puted. Two different descriptions for the regularization of the Ic+ singularity are 

discussed. The sensitivity of physical observables to a finite truncation is investi- 
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gated. 

In chapter 4 ultraviolet regulators, which are commonly used for the purpose of 

ponperturbative calculations in DLCQ, are tested. It is shown that these regulators 

do not recover the correct answer for a = 9 in fourth order, unless special 

- counterterms are invoked. 



2. Light-cone quantization in Feynman gauge 

In any gauge different from light-cone gauge, canonical light-cone quantization 

is anything but straightforward. This is due to the fact that, after solving the 

_ spinor constraint equation, the light-cone Hamiltonian in these gauges contains 

terms which are of arbitrarily high order in the A+ field. Thus, in this case, we 

will not attempt to write down the light-cone Hamiltonian. However, even without 

constructing the light-cone Hamiltonian explicitly, one can still derive light-cone 

- perturbation theory (LCPTh) 1 f F ru es or eynman gauge simply by separating the 
. 

various light-cone time-orderings of the Feynman amplitudes. A useful reference 

can be found in [7] [8] . 

Feynman perturbation theory in Feynman gauge has the advantage that even 

off-shell Greens’ functions exhibit the full Lorentz structure. This simple feature 

provides important consistency checks for light-cone quantized field theories, since 

manifest covariance is lost in this case. In addition, it helps to disentangle problems 

associated with singularities in the light-cone gauge propagator from problems 

intrinsic to light-cone quantization itself. 

We start our discussion with the evaluation of the fourth order correction to 

the anomalous magnetic moment of the electron (F-2) * 2 m LCPTh. The Feynman 

diagrams and the corresponding light-cone time-orderings are displayed in Fig. 1. 

The techniques we used for this calculation have been discussed elsewhere [9] so 

that-we only compare the LCPTh answer of the anomaly 

a!2 
a~cp~h = (-0.324f0.004)7 
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with the analytic result by Petermann and Sommerfield [lo] [ll] 

a2 
a = -0.327...,2. 

- 

_ Also some sixth order contributions have also been calculated using LCPTh. [9] 

It should be emphasized that, in order to obtain this agreement, additional 

renormalization, beyond usual procedures, is necessary for the self-energy diagram 

2 in Fig. 1. This is because the one-loop self-energy exhibits a quadratic divergence 

in light-cone quantization, which is rather atypical for gauge theories [12] . The 
_ 

“method of alternate denominators” has been suggested as a possible solution to 

this problem [13] . H owever, in the Appendix A we show that this method must 

be used-with caution if one wants to recover the usual Feynman answer for general 

perturbative processes. 

Whereas the problem of the one-loop quadratically divergent self-energy occurs 

also in A+ = 0 gauge, any gauge different from light-cone gauge, such as Feynman 

gauge, poses extra problems in light-cone quantization. To see this, we consider 

the “jellyfish graph” (Fig. 2 ) with n(n 2 0) external photons inserted into the 

loop. For any n we find a quadratic divergence in this diagram [14] . Furthermore, 

extra logarithmic divergences occur, which can be seen by power counting of the 

diagram in Fig. 3 [15] [16] . 

In the following we demonstrate that extra divergences in light-cone field theo- 

ries can be associated with certain non-covariant terms appearing in the light-cone 

formalism. As an example, we investigate the n = 0 jellyfish graph In=0 (which is 

actually just the one loop self-energy) with momentum p = (p+, p-, pl). We leave 

the explicit calculation to Appendix B and quote the result obtained after mass 
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renormalization (throughout the paper we use the notation p* = p” f p3, y* = 

?/O f r3> 

YS IT&=0 = (fi - mp + (b - m)2c(p2) + ‘p’ - (24 

or 

a tr(y-ln,o) = p-(B - 2mC(p2)) + -$C (2.2). 

In the following we want to imply that the integral J dX2p(X2) = 0 is always taken, 
- 

i.e. one Pauli-Villars subtraction is assumed. In the example of above we find 
. 

J 
d2 kl log 

m2 + ICI 
X2 + ICI 

(2.3). 

The quadratic divergence can be identified with the term C in (2.1) and is therefore 

associated with the non-covariant structure in the self-energy. 

We note that the occurrence of non-covariant terms of the form C$ is not 

restricted to the one-loop self-energy [17] . In fact, all non-covariant terms we 

have encountered have had this structure ( for a discussion of vacuum polarization 

contributions see [18] ). A s f ar as the self-energy is concerned, a method which 

is based on the correct tensor structure of the diagram can be proposed. This is 

possible since different tensor components should be related by covariance : 

where p’, p- correspond to the momentum of the fermion and IselfFenergy denotes 

the fermion self-energy. In one-loop it is straightforward to show that (2.4) is 
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equivalent to the effective replacement 

P-5) 

(see Fig. 4 ) in the Dirac numerator, where p;’ = p+, p$ = pr -k+, p&l-gy--shell = 

- p-. The momentap+, p- denote the total light-cone momentum and energy respec- 

tively. Here, k+ is given by the light-cone momentum of the virtual photon. More 

generally, &myy-shell defines the light-cone energy one would obtain if light-cone 

_ energy conservation was imposed. The replacement (2.5) expresses the “bad com- 

- ponent” (i.e. r+) in terms of the “good component” (i.e. r-) and thus renders 

the self-energy covariant by construction. Hence, the problem of the quadratic 

divergence is avoided in this case [19] . Eq.(2.4) can be generalized to higher loop 

self-energy diagrams, provided all subloops are first rendered covariant and the 

non-covariant piece is of the form C$.- 

Whereas the tensor method provides a useful practical tool for dealing with the 

quadratic divergence in self-energy diagrams, the application of the tensor method 

- for the cure of the jellyfish diagram with n 2 1 is not straightforward. This is 

because the different tensor components are not simply related in this case. 

It should be noted that in 3+1 dimensions the non-covariant term in Eq.(2.2) 

and all other jellyfish diagrams can be eliminated more systematically, if the spec- 

tral conditions [20] [al] 

J 
dX2p(X2) = 0 

J 
dX2X2p(X2) = 0 

J 
dX2X210g(X2)p(X2) = 0 

(2.6). 

are introduced which correspond to the introduction of three Pauli-Villars ghost 
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particles. This is in contrast to covariant perturbation theory, where at most one 

Pauli-Villars (P.V.) photon is needed to render all jelly-fish diagrams finite. Hence 

it is instructive to investigate the origin of these three P.V. conditions in light-cone 

quantization. In coordinate space, the one loop self-energy is given by 

_ where AF(z) and SF(Z) d enote the usual boson and fermion propagator respec- 

- tively. Clearly, light-cone perturbation theory (keeping z+ fixed while integrating 

out Z- and zl first) would give the same answer for C1’OoP as time ordered pertur- 

bation theory if there were no singularity at x 2 = 0. As the leading singularity of 

the propagators SF(X) N 3 and AF(x) N -$ are mass independent, there are two 

possibilities for regulating this singularity. Either both propagators are regulated 

by introducing one P.V. photon and one P.V fermion into the formalism, thereby 

reducing the leading singularity by two powers of x2, or only A,(X) is regulated , 

which has the advantage of preserving current conservation. In order to achieve the 

same degree of regularization in this case (reducing the singularity by two powers 

of x2) one needs not only to impose the condition lirn,~,~~~A~~(~~) = 0 but also 

Zirn,~,sA;;“~(~~) = 0. The expansion of the boson propagator around x2 = 0 then 

yields [22] 

AF(x2, X2) = -&-& + ‘2;f2) + -$ log T 

precisely condition (2.6)encountered earlier. 

However, such a large number of Pauli-Villars conditions is awkward from a 

numerical view, since the number of degrees of freedom is enhanced dramatically 
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in this case. For example, a typical two-loop Feynman diagram, Eq.(2.6) requires 

16 independent computations of its integrand at each integration point. This is 

in contrast to only 4 computations in a covariant approach. In addition, the 

quadratic divergences would be cancelled only among contributions from different 

. Pauli-Villars particles. However, for the purpose of numerical calculations, it is 

extremely inconvenient to cancel quadratic divergences among different diagrams, 

because of the limited accuracy of any numerical procedure. 

- Hence, for practical purposes, it is necessary to develop a recipe which re- 

duces the number of Pauli-Villars particles as well as subtracts quadratic diver- 

gences locally, i.e. before integration. In this context we shall introduce the “null- 

subtraction” as such a local procedure. For n = 0 the idea of the null subtraction 

is based on the observation that the troublesome term in Eq.(2.2) is given by 

c 
- = ~wI,=o)p-~O,p,=O P+ 8 (2.7) 

where C is independent of the external momenta. Hence, we define the null sub- 

traction as a procedure where the “bad” component of a quadratically divergent 

graph or subgraph is subtracted for vanishing external (with respect to the diver- 

gent graph or subgraph) p- and pl momenta, while keeping p+ > 0. In the above 

example we obtain for the null subtraction 

(2.8). 
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Performing replacements similar to those given in Appendix B yields 

I e2 y+ ‘dx 
J J 

d2k X2--m2 
null = --- 167r3 p+ 

0 
’ ky + X2(1 - x) + m2x 

e2 y+ ’ =-- 
JJ 

dx d2kL$ log( m2x + X2(1 - x) + k:) (2.9). 
16~3 p+ 

e2 y+ O =-- 
J 

m2 + ki 
167r3 p+ 

d2 kl log 
X2 + kt 

- What we encounter here is nothing but the non-covariant piece of Eq.(2.3) . Hence, 

t-he null subtraction removes the quadratic divergence automatically in the correct 

way. - 

Let us examine now the null-subtraction for the jellyfish graph for n = 1 (which 

is actually the one loop vertex correction in this case). The covariant answer is 

expected to be of the form [23] 

(2.10). 

Using the Gordon-decomposition, Eq.(2.10) can be rewritten as 

d?+u = TP/+u (Iqq2) + F2(q2)) - i(p + p’)+F2(q2) (p + p’)+ sxy 
dis- 

(2.11) 

ur-u = q-u (Iqq2) + lq$)) - i(p +p’)-F2(q2)(p+p’)+6xx, 
div 

(2.1% 

where X, X’.denote the initial and final helicity respectively. The momenta p and p’ 

correspond to the initial and final fermion respectively. If one inserts the analytic 

form for the second term on the r.h.s. of Eq.(2.11) and (2.12) , the sum Fr(q2) + 

.ic 

- 
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..- F2(q2) may be computed in two different ways: Fr(q2) + F2(q2) can be obtained 

from the I’+ current by means of Eq.( 2.11) . Th’ 1s is straightforward, since we do 

not expect trouble in this case [24] [25] . H owever, the extraction of Fr(q2)+F2(q2) 

by means of Eq.(2.12), i.e. by computing the I’- current requires a null subtraction 

_ which takes the form 

(2.13). 
.c 

Note that we only subtract the y+ component for zero external p- and pl mo- 

menta. If the null subtraction removes the quadratic divergences correctly, the . 

result for Fr (q2) + F2(q2) should be the same in both cases. We have checked this 

statement numerically [26] . Hence, the null subtraction restores the covariant 
-. 

answer also in the case of the n = 1 jellyfish graph. 

If we take those results, together with the fact that the one-loop Ward iden- 

tities are fulfilled for the good components in LCPTh, one can say that the null 

subtraction preserves the Ward identities at one-loop (for external fermion lines on 

shell ). 

It should also be mentioned that we have checked the null subtraction method 

for the case of the two-loop rainbow self-energy in Fig. 5 . More interesting, 

however, is the two-loop self-energy of Fig. 6 since it contains two n = 1 jellyfish 

sub-diagrams [27] . Th e corresponding null subtractions are 

(2.14) 
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where p2 = (1 - y,p- - x2:k2L ,pl - k2l) and 

e2 - I2 = (167r3)2 o jd2k,idx tj'd2k21dYxy(l _ x)(I la)(l - x - y) 

0 

X2+k2 1 + -P+kzL 1 r+ 
r-(A + 47, y 2L2y 7 

p 
y zp+y 

(P- - m2+(Pl-h1)2 _ 
l-x 

y:‘)( 7+t& _ g _ X2+yk,2L)(-myyzL _ k”$X2) 

(2.15) 

respectively. Fig. 6 shows the result of the numerical integration for different com- 

ponents. The result is that the null subtraction eliminates the quadratic divergence 
- 

and restores a covariant form within the error of the calculation. . 

The general definition of the null-subtraction of the n-photon jellyfish graph 

,2 p+ 
1.~ = c16r3> o 

J 
dk+d2kl 

@(p+ - k+)O(p+ - k+ - qr) . . . @(p+ _ k+ _ . . . _ q,$) 
k+(p+ - k+)(p+ - k+ - qf) . . . (p+ - k+ _ q; _ . . . _ q-t) 

YW? + mW1 (I& + m)yp2 - . - (fin + m)yp 
(p- - k- - w) . . . cp- _ k- _ m2+(::I::I~~.~~A,“)2) 

(2.16) 

with external fermion momentump = (p+, p-, pl) and momentum q; = (q’, q,:, q;l) 

for the i-th external photon line is given by [28] 

e2 ‘+dk+dk I” - Nu” = (1cr3) J 

@(p+ - k+)O(p+ - k+ - q;‘). . . @(p+ _ k+ - . . . _ q-t-> 

0 
‘k+(p+ - k+)(p+ - k+ - qf). . . (p+ - k+ _ qF _ . . . _ qz) 

-^ - y~~p,y+y~'~p~y+y~2...~p~~+~~ 

4:+X2 k-2 +x2 
k-t - p:-k+ >( 

-k;+P 
k+ - 

k;+P -k;+P 
k+ - 

k;+X2 
p+-k+-q: p+-k+-q$-q$ _... qn+ > 

(2.17) 

where k- = w. The fermion light-cone energies pi are given by p; = -w , 
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if pr is set on energy-shell i.e. the i-th fermion line does not extends over more than 

one intermediate state [13]. Th e on-mass-shell case yields pr = tp+-k~~q~~...qkj. 
11 I 

Note that the null subtraction in (2.17) is o t b e used in combination with only one 

Pauli-Villars particle. Thus the number of degrees of freedom is considerably re- 

- duced. The was possible since all higher-loop non-covariant terms are independent 

of the photon mass. 

The null subtraction was developed to deal consistently with quadratic diver- 

gences, in particular in the context of a numerical treatment. 
- 

3. Light-cone quantization in light-cone gauge 

For nonperturbative methods such as DLCQ or the light-front Tamm-Dancoff -. 

procedure, A + = 0 gauge is by far the most favorable choice among all gauges. 

This is due to the fact that ghosts and spurious degrees of freedom should not 

occur in this case. Furthermore, it seems to be the only gauge where canonical 

light-cone quantization is tractable, since it avoids having the A+ field in the de- 

nominator after solving the constraint equation for the left-handed spinors. In 

addition, only light-cone quantization in A + = 0 gauge provides a convenient ex- 

traction of hadronic structure functions and, therefore, ensures an intuitive picture 

of high-energy scattering processes. Due to our discussion of the previous chapter, 

we may add the fact that quadratic divergences and non-covariant terms are re- 

stricted to a much smaller set of diagrams, compared to any other gauge. However, 

as a non-covariant gauge, A + = 0 requires a careful regularization of its k+ singu- 

larity, in particular because the covariant structure in a Hamilton formulation is 

already lost. Many procedures have been given in literature to regulate the light- 

cone gauge singularity [ 29, 30, 311. I n any event, every prescription gives rise 
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. to the introduction of a regularization parameter e into the theory. It is essential 

for analytic, as well as numerical calculations, to ensure independence of physical 

quantities on the E regulator. 

In this chapter, we want to focus on 6 prescriptions, which are easy enough to 

.- implement, i.e. they are of potential interest for practical applications in DCLQ 

or the light-front Tamm Dancoff procedure. In addition, we investigate, in the 

particular example of the anomalous magnetic moment of the electron w , the 

sensitivity of physical observables to a truncation at finite 6. We start out with 
- 

the light-cone gauge propagator, which has the form 
_ 

d/w = -g,v -I- 77PkV + %k, 
rpk ’ (34 

where 7. k := k+ [33] . 0 ne p ossibility to regulate the q. k singularity is given by 

Note that the O-function of the second term does not regulate the gauge piece 

only, but also all energy denominators which will multiply this term. Since gauge 

invariance in QED should occur locally (or quasi-locally [34] ) we expect the 

correct result for the anomalous magnetic moment of the electron for any value 

for E between zero and one. Th’ 1s is exactly what we observe in our numerical 

calculations. It is instructive to see how the contributions of single diagrams add 

to the gauge invariant answer. This is shown in Fig. 7 and 8 . We remark that 

contributions of single diagrams grow logarithmically if E gets small, which makes 

it more difficult to maintain the numerical accuracy for small values of E. In order 

to obtain these results, it was essential to include the instantaneous self-energy 
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diagram of Fig. 9 which vanishes in Feynman gauge. This is because the external 

self-energy diagram does contain a double pole in A+ = 0. 

The price we pay for the complete c-independence of physical observables for 

the regularization introduced in Eq. (3.2) is that for 7 . k < e the computation is 

- carried out essentially in Feynman gauge. Indeed we find 

qP’(~) = -g+-(1 - O(q. k - 6)) # o (3.3) 

- for 77. k < e. Basically, any prescription which regulates the second term in Eq.(3.1) 

different from the first one exhibits this feature. This is why, even in light-cone 

gauge, the existence of ghosts cannot be excluded in general [35] . From a technical 

point of-view Eq.(3.2) means that the jellyfish problem does occur even in A+ = 0 

gauge. The only exception to this case is given by a regularization, introduced 

through 

d/w = - g,v + 77PkU + %Jk, 
7-k 

O(q - k - E) 

which means that A+ = 0 gauge is strictly obtained even at finite E. i.e. A+(c) = 0. 

The advantage of this choice is the absence of ghosts and the jellyfish problem 

at finite 6. However, regularization (3.4) will, in general, truncate also physical 

contributions to Feynman integrals. Thus, correct physical answers are recovered 

only in the c + 0 limit. For the purpose of practical applications, such as DLCQ, 

one can investigate the numerical significance of such a truncation. In Table 1 we 

prese_nt the result for the computation of 9 for finite E, using the prescription in 

Eq.(3.4) . 
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4. Regulators in DLCQ 

Nonperturbative methods should generally be compatible with perturbation 

theory in the weak coupling domain of a theory. In lattice &CD, for example, the 

_ data scale like the one loop p-function for weak coupling. This important feature 

indicates the recovery of the correct continuum field theory for small values of the 

lattice spacing. A Hamiltonian formulation of field theory, such as DLCQ, should 

. in principle reproduce correct perturbative results for any scattering process to 

- finite order in the coupling. Thus, the calculation of g-2 to fourth order provides 

a powerful consistency check as well as an ideal testing ground for those methods. 

We start our discussion with the test of the global cut-off, which is commonly 

used in-DLCQ [32]. The gl b 1 o a cut-off regulates an intermediate state with n 

particles according to 

(4.1), 

where xi, Icily m; refers to the light-cone x, the perp.momenta and the mass of 

the i-th particle respectively. A denotes the ultraviolet cut-off, which is taken to 

infinity at the end of the calculation. Our result for the calculation of graph 1+2 

in Fig. 1 is R1+2 = (-0.34 f 0.005)s w rc 1s o e compared with the analytic h’ h * t b 

result by Petermann : Rp = -0.3285...$ . The result for the ladder graph using 
-. 

the global cut-off is (0.658 f 0.006)s. H owever, the correct answer is given by 

R = 0.778s. Thus, the global cut-off does not recover the correct continuum 

answer in the limit A -+ co. In order to understand what has happened, we recall 
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--. the theta-function in the a+ 0 limit for the counterterm ( see graph 4 in Fig. 1 ) 

A2 + kiL + A2 
X 

(4.a 

where m, X denote the fermion mass and the photon mass respectively. Here, the 

variables k2l and x correspond to the loop momentum of the virtual photon [36] 

. However, the theta-function of the second intermediate state of the diagram 

corresponding to Fig. 13 is given by 

- o -m2 + (h + hd2 X2 + kil A2 + ktl 
+ A2 (4.3). 

. l-x-y - y - 2 > 

Obviously, (4.3) does not reduce to (4.2) in the large k2l limit and hence does not 

allow a factorization of its infinite contribution. This effect induces the observed 

deviation from the correct answer in the. A + co limit. 

Recently, the so-called local cut-off has been proposed [37] , which restricts 

the difference in the invariant mass locally, i.e. at a given vertex only, to values 

less than $. Here x is given by the fraction of the light-cone momentum which 

flows through the vertex under consideration. Hence, (4.3) gets related by 

I 
_ m2 + (h + k2d2 A2 + k;,- 

l-x-y - y 
+ 

m2 + kfl < A2 
l-x I -1-x 

(4.4). 

Changing variables according to y = (1 - x)jj , k21 = &,, - ijkll and A2 = A2 - m2 

reduces (4.4) to (4.2) and, thus, avoids the problem of the global cut-off. Indeed 

our calculations show that the local cut-off reproduces the correct result for the 
-. - 

ladder graph. Unfortunately, it leads to the incorrect answer for graph 1+2 in Fig. 

1. It is straightforward to show that the local cut-off violates gauge invariance 

already at the tree-level [39] . 
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Other theta-function cut-offs, which have been proposed [40] , are also doomed 

to failure, unless a non-covariant counterterm is invoked. The reason is that they 

depend on momenta, i.e. derivatives only. However, a gauge invariant regulator 

would require a functional dependence on covariant derivatives instead. 

In Appendix C we demonstrate the implementation of dimensional regulariza- 

tion on the light-cone. 

20 



5. Summary 

We have shown that light-cone quantization in Feynman gauge leads to an 

infinite number of quadratically divergent LCPTh diagrams at the one-loop level. 

The problem occurs for self-energy diagrams where n-photons (n 2 0 ) are inserted 

into the loop (“n-photon jellyfish problem”). We constructed a local representation 

of non-covariant counterterms, called the “null-subtraction”, in order to remove 

_ those divergences from the formalism. 

- In principle, also light-cone quantization in light-cone gauge exhibits this fea- 

ture for all n (and not only for n=O). This is due to the fact that most regulariza- 

tions of-the light-cone gauge-singularity reduce the small x behavior of the photon 

propagator to that in Feynman gauge. In this case, the null subtraction can be 

used in the same way. 

In chapter 3 we evaluated the fourth order correction to the anomalous mag- 

netic moment of the electron in light-cone gauge and reproduced the analytic Feyn- 

man gauge result by Petermann. It was shown that a finite truncation of the k+ N 0 

region can lead to a significant modification of the continuum result. 

Finally, several ultraviolet cut-offs, which are commonly used in DLCQ, were 

tested in perturbation theory. It was shown that those regulators do not recover 

the correct continuum field theory in the A + oo limit. 

Appendix C demonstrates the introduction of dimensional regularization into 

the light-cone formalism. 
-^ 
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6. Appendix A 

In this section we discuss the “method of alternate denominators” which was 

introduced in Ref. [13] as a possible way of removing quadratic divergences in the 

light-cone formulation. For illustration the one-loop correction to the Compton 

graph, shown in Fig. 4 , yields [41] 

IComp, = dk+d2k I Y(d - F + m)y, 
(pl - k)+k+(p; _ m2+(pl-k1)2 

P+ -k+ 
“‘&k:, 

- 

J 
dk+d2k Y”(Pl - F + m)yp (PI + m>k*u 

0 ‘(PI - k)+k+(pl - .w _ $$) 
p;t(pi _ m2+pfl > 

t 
Pl 

(6.1). 

The second term is the alternate denominator (a.d.) subtraction which is designed 

to cancel the quadratic divergence in the first term as well as perform the mass 

renormalization (see Fig. 11 ). Th e a.d. term is obtained by replacing the initial 

energy pf in the energy-denominator of the quadratically divergent subgraph by 

its adjacent energy pl which is, in case of the self-energy diagram in Fig. 4 , equal 

to the mass-shell energy fi; (see below). 

Obviously, the quadratic divergence is subtracted in this procedure since it is 

independent of the incoming energy. However, it remains to be shown that the 

mass subtraction of Fig. 11 is carried out correctly, using the a.d. method. Note 

that the a.d. term Iaa.d. of Eq. (6.1) is obtained by performing the k- integration 

of 

-^ - 
I ad. G- d4k 

J 
Ek(P1 + 4 YdPl - iF> + “W (PI + mm 

(PT - m2 + it) (($1 - k)2 - m2 + ic)2(k2 - X2 + if) (pt - m2 + ic> 

(6.2) 

Here, 111 is on-shell, i.e. fif = py for p # - and @; = 9. However, the usual 

23 



Feynman counterterm is given by 

16, = & J d‘$ ‘&h + m> ~Wrdfil - 6) + m)Y~(~l) 
> 

(P1+ m>k*u 
(p! - m2 + k) ((@I - k)2 - m2 + ic)2(k2 - X2 + ic) (pi - m2 + if) 

(6.3). 

Obviously there is a difference between these two expressions because of the spinors 

~(~51) and $@I) which project out the Sm piece from the self-energy in Eq.(6.3) . 

Thus, we conclude that the a.d. method must be used with caution. However, if 

- one ignores the double instantaneous graph of Fig. 12 for a moment, at least one 
. 

of the fermions is on-shell and the corresponding propagator 

Pl +m 
pi - m2 + ic 

gets replaced by 

so that the missing projection onto the Sm piece in Eq.(6.2) is achieved by the 

adjacent on-shell fermion line. The point is that, unless one is cautious, the a.d. 

method treats the double instantaneous graph incorrectly by subtracting a non-zero 

contribution [42] . 

Thus, if one modifies the a.d. method such that the subtraction is excluded 

from the double instantaneous self-energy diagram, the usual (Feynman-) answer 

can b_” -obtained [43] . 
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7. Appendix B 

In this chapter we prove that the n = 0 jellyfish graph (which is actually just 

the one loop self-energy) with momentum p = (p+,p-,pl) has the form 

In=0 = (p - m)B + (p - mJ2C(P2) + (5 - ~ ;;;;)c (7.1) 

after mass renormalization. In the following we want to imply that the integral 

_ JdX2p(X2) = 0 is always taken, i.e. one Pauli-Villars subtraction is assumed. 

- LCPTh yields for the y- and yl component for the n = 0 jellyfish graph 

. 1 

-&- = e2 
167r3 J 

dxd! kl 
0 

(h - PLX)~ - ~212~ - p-p+x(l - z) + (m2 + p”,)x + X2(1 - x)) 

(7.2) 

where the “good” vectors p = (p+, 0, pl), h = (k+, 0, kl) have been introduced. - 

The quantity x is given by the relative momentum carried by the virtual photon, i.e. 

z = $. Rewriting the denominator in terms of the four momentum p2 z p+p- -pt 

and shifting integration variables yields 

1 

C-J = I52 

J 
dxd2 kl pc1 - 4 

87r3 -“I+ x(1 - x)p2 - m2x - X2(1 - z) 
(7.3). 

0 

For the y+ component we find 

-^ - -g+ : -“2&y+ ’ dx&.. s *+p21(1 -x) 
8n3 2 p+ -kt + ~(1 - x)p2 - m2x - X2(1 - x) 

(7.4). 
0 

Since we are using Pauli-Villars regulator, the replacement k: t p2z(l - x) - 
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m2x - X2(1 - x) does not change the value of the integral [44] . Thus, 

1 

c+ = - 
e2 1 + 

--x dxd2kl 
xp2 + m2 - x2 +&(1 -x) 

8~3 2 p+ J -kt + x(1 - x)p2 - m2x - X2(1 - x) (7.5) 
0 

Using 

xP2 + Cm2 - X2) = - [ (1 - 2X)p2 - m2 + X2] + (1 _ x)p2 

= -$ [p2x(l - x) - xm2 - (1 - x)X2 - kt] + (1 - x)p2 

we obtain, 
- 

1 
e2 1 y+ -. c+=--- 

J 
2 d 

&35p+ d Icldx-& 1og(P2x(1 - x, - xm2 - (1 - x)X2 - kt) 
0 
1 (7.6). 

e21 1 
-z g&7+ J 

d2 kldx (1 - x)p- 

0 
-kt + x(1 - x)p2 - m2x + X2(1 - x) 

Obviously, the last integral corresponds to the integral in Eq.(7.3) and is there- 

fore part of the covariant answer. 

However, the first integrand in Eq.(7.6) is non-covariant and leads to 

J 
d2 kl log 

m2+kt 
X2 + k; 

(7.7). 

The total answer becomes 

e2 y+ ’ 
Sm + In=0 =-- 

1679 p+ J 
d2kldx-$ log(p2x(l - x) - xm2 - (1 - x)X2 - k:) 

0 

e2 ’ (1 - x:>(P - 4 -- -^ 
8~~ J 

d2 kldx 
0 

-kB + x(1 - x)p2 - m’Jx - X2(1 - x) 

+ -(l t x)m 
-kf t x(1 - x)p2 - m2x - X2(1 - x) 
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where Sm denotes the mass correction. Performing mass renormalization yields 

e2 
In=0 = s 

y+ 1 y+ 
- - -ii-u 
P+ 2m p+ > 

1 

x 
J 

d2kldx-& log (p2x(l - x) - xm2 - (1 - x)X2 - kt) 
0 

e2 ’ (1 - x)(P - 4 -- 
87~~ J 

d2 kldx 
0 

-kt + x(1 - x)p2 - m2x - X2(1 - x) 

e2 ’ 
- d2kldx 
87r3 J 

1 - 

0 
(-kl -I- x(1 - x)p2 - m2x - X2(1 -x)) 

X 
(1 - x2)xm(p2 - m2) 

(-k: +x(1 - x) m2 - m2x - X2(1 - x)) 

Thus, we obtain the form of the self-energy in Eq.(7.1) 

(7.9). 

8. Appendix C 

In this chapter, we demonstrate the use of dimensional regularization in light- 

cone quantization. For illustration we discuss the computation of the ladder dia- 

gram in Fig. 13. LCPTh yields 

e4 
FL = (167r3)2 

jdx d2k1 lxdy d2(1-‘)kzxy~1 _ x)2;l _ x _ y)2 
0 0 

qq, h 7 k2) 

( 
m 2 mz+q k:+P kf+X2 k;+P 

1-Z 
-- 

X >( 

,‘J _ m2+(h+k2)2 
1-x-y - - - - X Y > 

where m, X denote the fermion and photon mass respectively. The Dirac numer- 

ator is abbreviated by N(q, kl, k2) and will be specified later. Note, that the q 

dependence in the denominator can be dropped, in this particular example, since 
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it gives no contribution to the anomaly. Notice further that only the inner loop is 

ultraviolet divergent and requires regularization. The introduction of dimensional 

regularization according to 

J 
dx d2k + 

J 
dx d2(1--d (8.1) 

seems dangerous, in particular if the integrals are not absolutely convergent. How- 

ever, (8.1) is a direct consequence of the definition of dimensional regularization 

. [45] . We have not yet encountered an example where (8.1) leads to additional 

- difficulties ( in comparison to one Pauli-Villars photon and fermion for example) 

in the light-cone formulation. 

Shifting momenta and setting m = 1 yields 
-. 

e4 FL = (167r3)2 ]dxd2k1 id71 _ x)4x(1 ” ;Ty 
0 

kT)2 

J 
&(1-d k2 

%A I2 - &“d 

(k;-&k~t~(-lt~+k;t~))2 

(8.2) 

where & = k2 •t &kl and kl = F, kp = v. If we expand the numerator 

according to 

N(q) h, k2 - -+$d = Aji; + Ilk1 + c (8.3) 

the last integral can be performed analytically by means of 

J 
d2”l l?(A - 1 -w) 

@)2w (12 $2)A - (4&(A)& (M~)A-1-w ’ 

With the definition 

f(kl’x)Y) = (1 -yx)4x 
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one obtains 

,4 1 1 

TL = (1GT3)2 o d2k1 J J 
dyf(h, x, y) 

( 
(A t CA’)+ - e)(i - ceuz.) -t +?kl + c> 

> 
0 

(8.4), 

- where we have written A(c) = AtEA’ . A, A’, B can be computed, using a algebraic 

manipulation program like REDUCE. (8.4) can be integrated numerically. Cenl. is 

the Euler constant and given by Ceul. = 0.577.... 

- 
The counterterm to Fig. 13 ( see diagram 4 in Fig. 1 ) is computed in a 

similar way. It should be stressed that the pole in the one loop vertex correction . 

of diagram 4 in Fig. 1 not only cancels the pole in Eq.(8.4) , but also gives rise to 

a finite contribution [46] . 

We have redone the entire fourth order calculation using dimensional regular- 

ization. Unlike the computation of the ladder graph, in general one has to combine 

energy denominators first, before the analytic part of the integration can be carried 

out. In contrast to a covariant theory, only one additional LY parameter is necessary 

in light-cone quantization. This is due to the fact that the photon propagator & 

simply becomes & in this case. 

On the other hand, the coefficients A, A’, B are harder to extract in light-cone 

quantization since the fermion energies generally depend implicitly on the loop 

momenta. 

An understanding of dimensional regularization is essential, if one wants to 

exteGd LCPTh to non-abelian gauge theories. 
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1) 

2) 

3) 

- 4) 

.5) 

6) 

7) 

8) 

9) Instantaneous contribution to the external wavefunction correction in light- 

FIGURE CAPTIONS 

Feynman diagrams F with corresponding light-cone time-ordered diagrams 

contributing to the electron anomalous magnetic moment a = 2 ge2 to fourth 

order. 

n-photon jellyfish graph. 

Powercounting for the n = 2 jellyfish diagram leads to a logarithmic diver- 

gence. 

One-loop correction to Compton scattering. 

Two-loop rainbow self-energy diagram. 

The two-loop self-energy contribution of the electron is expected to be of the 

form A + BP, where p corresponds to the external fermion momentum. The 

result res shows the extraction of .B by means of the various components of 

P. 

Contributions res of single LCPTh diagrams to the anomalous magnetic 

moment of the electron a = G$ to fourth-order in light-cone gauge for 

different values of the light-cone gauge cutoff E. [47] 

Fourth -order correction to the electron anomaly in light-cone gauge for a 

different value of its gauge regulator. The analytic Feynman answer is given 

by -137.2 for $ = 10. 

cone gauge. 

lo)-Correction to e+e- scattering. 

11) Mass correction to electron Compton scattering. 

12) Double instantaneous diagram to electon Compton scattering. 
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13) Ladder diagram contribution to the electron anomaly in fourth order. 

TABLE CAPTIONS 

1: Total answer for the electon anomaly to fourth order in light-cone gauge for 

different values of the gauge regulator. The analytic Feynman answer is given 

by a = -131.4...(e)2. 
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