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1. Introduction 

Feynman perturbation theory has become the most practical tool for computing 

cross sections in high energy physics and other physical properties of field theory. 

Although this standard covariant method has been applied to a great range of 

problems, computations beyond one-loop corrections are very difficult. A number 

of examples of two-loop and higher calculations using Feynman methods are given 

in Ref. [l]. 

Because of the algebra.ic complexity of the Feynman calculations in higher-order 

perturbation theory, it is desirable to automatize Feynman diagram calculations so 

that algebraic manipulation programs can carry out almost the entire calculation. 

This pa.per presents a step in this direction. The technique we are elaborating on 

here is known as light-cone perturba.tion theory (LCPTh) [2,3,4]. 

LCPTh is similar to ordinary time-ordered perturbation theory, familiar in 

both non-relativistic quantum mechanics and quantum field theory, where each 

time-ordered amplitude is constructed from a product of energy denominators and 

interaction vertices. The covariant Feynman amplitude is, in principle, obtained 

from the sum of time-ordered non-covariant graphs with the same topology. Instead 

of ordina.ry time, the LCPTh evolution parameter is the time along the light-cone 

T = t - z/c. The r- ordered amplitudes are each invariant under a large class of 

Lorentz boosts, so that each r-ordered amplitude is itself frame-independent with 

respect to those symmetries. 

A straightforward way of relating the LCPTh amplitudes to the Feynman rules 

is by changing variables of the independent loop momenta k in a Feynman integral 

according to [5, 61 
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/d4k + ;Jdk+d2kldk- 

with k* = k” f k3, and performing the integration over k-. The residues give 

the LCPTh amplitudes. Alternatively, these amplitudes can be obtained directly 

from the Hamiltonian formalism derived at fixed 7. Thus by constructing LCPTh 

directly, only a three dimensional integral has to be performed for each loop. Since 

the complex contour integrations over energy or k- do not occur, the formalism is 

immediately suitable for numerical treatment. 

The price to pay for the simple features of LCPTh is that every Feynman 

diagram with n vertices gets decomposed into a set of light-cone time-ordered dia- 

grams. However, unlike time-ordered perturbation theory (which can be obtained 

after performing the k” integration of the independent loop momenta), the number 

of light-cone time-orderings corresponding to the Feynman amplitude is consider- 

ably smaller than n! For example, in the case of the fourth order (8,” correction 

to the electron’s anoma,lous moment ( without vacuum polarization ), there are 

516 individual time-ordered contributions, but only 8 of them are non-vanishing in 

the light-cone formalism. This example will be discussed further in the following 

sections. 

There are a number of other advantages of the light-cone perturbation theory 

formalism. 

l Since each amplitude describes the propagation of on-mass-shell particles 

with a specific time-ordering, the physical meaning of each LCPTh amplitude 

is immediate. General properties such as unitarity and cluster decomposition 

theorems become explicit. 
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l If one quantizes in a physical gauge, all intermediate states correspond to the 

propagation of physical particles with positive metric. The physical variables 

used to describe jets or particles in high energy physics have an immediate 

interpretation in terms of the LC variables. 

l The cancellation of infrared divergences is immediate and can be carried out 

for contributions with the same LC time-ordering. 

l The LC quantization of quantum chromodynamics leads to a direct physical 

interpretation of the theory. The implementation of current algebra becomes 

essentially a kinematic problem [7,8,9]. The current matrix elements J+ 

needed to compute form factors and structure functions can be written as 

diagonal matrix elements of the light-cone wavefunctions, since such currents 

do not couple to’vacuum fluctuations in the LC quantized theory [9]. 

Recently light-cone quantized field theories have been investigated in the con- 

text of developing non-perturbative methods for the solution of field theories [lo]. 

An outstanding problem confronting these non-perturbative Hamiltonian approaches 

to quantum field theory is the implementation of ultraviolet regularization and co- 

variant renormalization [l 11. A necessary first step for solving these problems is 

to validate the renormalization methods at the perturbative level. LCPTh thus 

serves as an essential testing ground for these studies. 
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2. A general algorithm for generating LCPTh 

In this section we develop a procedure which automatically constructs all light- 

cone time-orderings associated with a given Feynman diagram F. The only input 

required is the set of photon connections of F (first photon (4,1), second photon 

(5,2) in Fig. l), which d e fi ne the topology of the diagram. 

In the first part of this section we outline the procedure for quantum electrody- 

namics in the specific example of Fig. 1. In the remainder of the section a general 

algorithm, useful for higher loop calculations, is described. 

First we shall review a procedure introduced by Soper [2]. The Feynman answer 

F for the two-loop contribution to the electromagnetic vertex y*(q) + el(pI) + 

ey(pF) corresponding to Fig. 1 is given by [9,12] 

F = e4 
J 

d4x,d4x2d4x,d4x,d4xsG(xs, T)-f 

x is+5 - Z4)YXiSF(X4 - x3) 
y+e-iqz3 

d 

iSF(Z3 - x2)-/” 

x iSF(X2 - xl))ypqxl, J) @,X&4 - ~l)~~F,jw(X5 - x2) 7 

(2.1) 

where pt denotes the incoming light-cone momentum of the electron. Here we have 

chosen the helicity-flip amplitude (pp]$]pl) and the frame with Q+ = 0 which 

is appropriate for obtaining the anomalous magnetic moment of the electron and 

its Pauli form factor F2(q2) [13] . Th e e F y nman propagator can be written in the 

convenient form [3] 
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‘dx) - (2;;3 
- -Jd2pljht( o p+ O(X+)(fi + m)esiPx + @(-x+)(-h + ,)eiPx 

+ (2i)3 

mdp+ 
-&(x+):7+ J d2pl J -e -i($p+x--plxl) 

0 p+ 

= Sg+)(x) + s;-)(x) + $“s”.(x) , 
P-2) 

where the electron four-vector is on the mass shell i.e. p- = 9. This result 

follows from 

SF(X) = (id& + m)A&) (2.3) 

and 

‘FCx) = (21r;3 
ce dp+ ‘I J d2Pl - o p+ (@Cx+le --iPx + q-x+)eipx) . 

The third term in Eq. (2.2) gives rise to an instantaneous fermion interaction 

in light-cone quantized QED. The photon propagator in light-cone gauge 77 . A = 

A+ = 0 is given by 

DPv(x) = (2nJ3 -L- J d2kl 7% (esiLx@(z+) + ei’zO(-s+)) F eE(k, X)c,(k, X) 
0 

co 

+ J J d2kI dk+S(z+) (2:)3 ‘fi+‘v+&e 
-i(!jk+x--klxl) 

0 

where 

c $(k, +(k, X) = -gP,, + ‘)pk,-$7)yk, . 
x=1,2 
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This result can be obtained by performing the Ic- integration of 

&‘(‘> = (& J d4kemik2&. (2.5) 

The external field \kl for the incident electron is given by 

f&z(x) = uz(p, sprx (2.6) 

where ~z(p, s) is the solution of the free Dirac equation. In Feynman gauge the 

pola.rization sum Cx=1,2 cE(k, X)cy(k, A) in (2.4) gets replaced by -gP,, and the 

instantaneous contribution drops out. 

In order to compute the scattering amplitude, Eq. (2.1), using light-cone per- 

turbation theory, one first has to split up the integration region into all possible 

time-orderings. For illustration purposes we pick a typical time-ordering 714325 

and obtain the contribution 

F(‘) 
(14325) = e4 

J 
d4x1d4x2d4x3d4x4d4x5 

x 0(x,’ - x~)o(x; - Xa)C3(xl - x,‘)@(x,’ - x,‘) e+rpFz5U(pf-, t)-f 

x i$+)(x5 - x4)$ is9x4 - x3) 
y+e-iqx3 

d- 

#x3 - x2)7” 

x iS~)(x2 - x~)(y%-iJ%(p~ 1)) iD$+&(x4 - Xl) iI$’ 7 , ,&5 - x2) - 

G-8) 

The corresponding -r-ordered diagram is shown in Fig. 2. Note that the instanta- 

neous contributions in S~(x4 - x3) and S~(x3 - x2) do not contribute because of 
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Y+Y+ = 0. The instantaneous contribution of S~(x2 - x1) gives zero result in this 

case due to 

In the same way it is shown that the instantaneous contribution of SF(Z~ - ~4) 

vanishes. In general, instantaneous interactions give rise to a nonzero contribution 

only if they do not extend over more than one intermediate state for the same 

reason [5]. Eq. (2.8) lea.ds to a phase factor of the form 

exP{i bFx5 - P4(x5 - x4) •k p3(x4 - x3) $ p2(x3 - x2) 

-v3 - P&Z - x1) - ~1x1 - h(x4 - x1) - k2(x5 - x2)]} . 

The momenta p;, ki denote the momentum associated with the i-th fermion and 

the j-th photon line respectively. The momenta pl,p~ corresponds to the initial 

and final momentum respectively. The integration over xf, x; can be performed 

trivially a,nd demonstra.tes momentum conserva.tion of p+, pl at each vertex. 

In order to perform the xr integration, it is convenient to change variables 

according to [2] 

x; = xq+ - x; 

A$ = x; - xi 

x; = x; - x; 
(2.10) 

A,+ = x; - x; . 

The light-cone time part of Equation (2.9) becomes 

exp i [ix: (p; - k; - pk) + ;A: (-p; - p; - p; + p;) 

+ ix; (-p; - p; - P; + PF - q-) + #- (-k, - p; + p; - q-) + ix; (-pl - q- + p~)] 

(2.11) 
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This will play an important role in our discussion, so we have introduced the 

definition of a characteristic exponent CF(~) of a time-ordering 7. The integral 

over x;’ can be performed trivially and gives overall light-cone energy conservation. 

The remaining integrals over x+ can be performed by means of 

00 
J 

&rei(H+ic)T _ a -- 
H+ic * 

0 

The product of these denominators, and the factors && from (2.2) and (2.4) 

then lead to the LCPTh answer of the time-ordering (2.7). 

As far as the treatment of instantaneous diagrams is concerned, a simple sub- 

stitution allows the incorporation of instantaneous vertices [5]. To see this, consider 

the y+ contribution of,one fermion line to an arbitrary Feynman diagram 

F=...($$+&) . . . , (2.12) 

where d- = pr -p- - Cspec pi is the light-cone denominator containing the fermion 

line under consideration. In general, pr is given by the total light-cone energy of 

the incoming pa.rticles and the sum runs over all spectators of the corresponding 

intermediate state. 

The second term in Eq. (2.12) presents the instantaneous contribution to F. 

If we define p&,rgy--shell = p- + d-, both terms combine to 

F=... ~~+Penergy-shell 
P+d- *** * 

(2.13) 

Note that %iqgy-shell is the light-cone energy one would obtain if one required 

light-cone energy conservation at the vertex. Thus all instantaneous fermion con- 

tributions can be taken into account by putting those p- on energy-shell in the 
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numerator whenever that fermion does not extend over more than one intermediate 

state [5]. In the same way the light-cone gauge photon interaction in (2.4) can be 

handled [4]. 

Now we are ready to describe our general as a sequence of 10 steps (see Fig. 3). 

For illustration we again consider the order e5 contribution to the electron vertex. 

We start out noting that each two-loop r-ordered contribution to the electron 

vertex (which contains no vacuum polarization contribution [14] ) is of the form 

F(il, . . . , is) = 
e4 J dk,+d2kldk,+d2k2 O(p;)O(p;)O(p;)O(pf) 

( 167r3)” Pl P, P3 P, 1 2 + + + +k+k+ d-(l)d-(2)d-(3)d-(4) 

x 
( 

Tq~(i~)(s4~4 + +pqs3p3 + m)y4i3)(s2~2 + n-L)y~(“) 

x (s& + ?T+p5)U 
> D,(1)p(2)(kd Dp(4)p(5)(k2) 

(2.14) 

where the diagra,m is defined by its photon connections. The explicit construction 

of (2.14) is done a.s follows: 

l Step (I): the indices ir,i2 , . . . . is are specified. For the diagram of Fig. 1 we 

have ir = 5, i2 = 2, is = +, i4 = 4, is = 1. For the diagram of Fig. 4 we have 

il = 5, i2 = +,i3 = 2,i4 = 4,i5 = 1 . 

l Step (II): F or each of the n! = 120 time-orderings one defines a vector 

T(I),~ = 1, . . . . n = 5. r(1) d escribes the position of the I-th vertex of F. In the 

exa.mple of Fig. 1 we get r(1) = l,r(2) = 2,~(3) = 3, r(4) = 4,7(5) = 5. In 

the example of Fig. 2 we get r(1) = l,r(2) = 4,7(3) = 3,7(4) = 2,7(5) = 5. 

It is also useful to define 

A(T(~)) = I . (2.15) 

0 Step (III): 0 nce a time-ordering is defined we know which pieces out of 
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the propa.gators (2.2) and (2.4) are to be picked. The construction of CF(~) 

defined in (2.9) is straightforward. Note that the term which describes overall 

momentum conservation must be subtracted in order to obtain CF(~). 

l Step (IV): one changes variables to J!i = xztl - XL for k = 1, . ...4 and 

expresses the characteristic exponential in terms of Xk 

Cf’(T) = c X+d-(i) . 
i 

0 Step(V): I n g eneral5! different time-orderings can contribute to F. However, 

in practice most of them vanish. This is due to the fact that all light-cone 

momenta are greater or equal zero and conserved at each vertex [15] . An 

example is given, in Fig. 5, which contains a vacuum fluctuation at x4. A 

vacuum fluctuation at 2; can be formally identified when all terms of d-(i) 

carry the same coefficient (namely $1, or -1). The d-(i) can be obtained 

from CF(~) by setting Xk = 61;;. 

l Step (VI): To obt ain the form Eq. (2.14) all momenta p: and pf must be 

expressed in terms of the independent loop momenta and external momenta. 

This can be achieved by solving the equations 

d-(l) = 0, 

d-(2) = 0, 

d-(3) = 0, 

d-(4) = 0 . 

For example, for Fig. 2 we find 

(2.16) 

~;t=pf-k:, PU = PIL - h 
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p; = k;t + k2+ - p;, ~21 = ku + k2-L - PII 

p3 - 2 +k;-p;, m=ku+ku-pu + - k+ 

p;: = -k; -t p+,, ~41 = -h,1 + pFI . (2.17) 

l Step (VII): Th e expressions for the internal fermion momenta, obtained in 

step (VI), are substituted into d-(i) in order to construct all energy denom- 

inators d- (i) explicitly. 

l Step (VIII): Wh en setting up the fermion pi in the numerator it must be 

decided whether the fermion line pi extends over more than one intermediate 

state. A formal criteria for that is given by 

abs(A(i) - A(i + 1)) = 1 . (2.18) 

If (2.18) is correct, pi is set on energy shell, which means 

Pr = Pi,mass-shell + d-(ins> (2.19) 

where ins := min(A(i + l),A(i)),pi,ass-sheU = y. If (2.18) is not 

fulfilled we have p; = p~mass-sheu. 1 

l Step (IX). Th e only variables which are left to be determined in (2.14) are 

the signs si which define whether a fermion or antifermion propagates. The 

phase can be determined from 

A(xi+l) - A(xi) 
si = abs (A(zi+l) - A(si)) ’ 

(2.20) 

l Step (X): (2.14) can now be calculated. If necessary, the diagram can be 

regularized using Pauli-Villars regularization. 

12 



It should be noted that step 2 to step 10 can be readily carried out automati- 

cally, using an algebraic manipulation program like REDUCE. The algorithm can 

be generalized easily to higher loops. As an example, in Fig. 6 we present the 

time-orderings, generated by the algorithm, to a three-loop contribution of the 

electroma.gnetic vertex for q+ = 0. 

3. Numerical Results 

In this section we report on the use of the general LCPTh algorithm to redo 

the two-loop calculation of the anomalous magnetic moment 9 = a = Fz(O) 

by Petermann and Sommerfield [16,17]. F g i ure 7 shows all Feynman diagrams as 

well as the corresponding light-cone time-orderings, contributing to the anomaly 

in fourth order. 

The vacuum polarization dia,gram 6 can be computed by the effective replace- 

ment [18] 

1 
1 a J dt 

t2(1 
k2 - X2 + ic --+ ?r 

- St") 1 
1-P 

0 
k2 - ,g + ic (3.1) 

after performing the integration over k- [19,20], All diagrams in Fig. 7 (with 

exception of graph 5) are ultraviolet divergent and require renormalization. How- 

ever, by computing certain sets of diagrams simultaneously, the calculation can be 

arranged such that ultraviolet divergences cancel between diagrams of the same 

set. As an example, Table I shows the result of the numerical integration, using 

the a.daptive integration routine VEGAS [21]. of diagram 1 and 2 for different 

values for the ultraviolet cut off A2. After mass renormalization of the self-energy 
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diagram 2, we observe only a residual A dependence of the form 

-$ log A2 (3.2) 

which can be easily eliminated by an appropriate fit in A2 [22]. 

We obtain for our estimate of diagram 1 and 2, a = -0.326 f O.OOl$, which is 

to be compared with the analytic answer of Petermann [23] a = -0.327.. . $ and 

Sommerfield. Table II shows the result of the residual diagrams. The agreement 

with the correct result is better than 0.2% To obtain these results we needed 

typically only one minute of CPU per graph on a IBM3090. These successes 

encouraged us to attempt some sixth order moment calculations for the Feynman 

graphs shown in Fig. .8. In Table III we compare our estimate with the results 

obtained by Brodsky and Kinoshita [24]. For further references see also [25] . 

4. Summary 

We have presented a new algorithm for the automatic computation of Feynman 

diagram amplitudes. The method, which is based on light-cone perturbation theory 

(LCPTh), is explored for two- and three-loop calculations in QED. The amplitudes 

are constructed automatically and explicitly, given just the photon connections of 

the corresponding diagrams. The extension of the algorithm to higher loops is 

straightforward [26] . 

One of the most useful applications of LCPTh and this algorithm could be 

the computation of multi-jet processes in e+e-- annihilation, since LCPTh am- 

plitudes correspond closely to the quark and gluon jets identified in high energy 

physics. These reactions have not been completely calculated beyond the one-loop 
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order in perturbation theory. However, the extension to quantum chromodynamics 

requires a more careful regularization of the ultraviolet behavior of the theory. The 

implementation of dimensional regularization and other renormalization issues are 

described elsewhere [27] . 
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FIGURE CAPTIONS 

1) Two-loop QED cross diagram. The momenta pi and kj correspond to the 

internal momenta of the i-th fermion and j-th photon respectively. 

2) Light-cone time-ordering contributing to the cross diagram. 

3) Flow chart for the automatic computation of QED amplitudes. 

4) Two-loop “corner” diagram. 

5) Example for a vacuum fluctuation to the cross diagram. 

6) Example for a set of light-cone time-orderings which correspond to a sixth 

order Feynman dia.gram. 

7) Six Feynman dia.grams and the corresponding light-cone time-orderings con- 

tributing to the fourth order anomalous magnetic moment to the electron. 

8) Sixth-order Feynman diagrams containing one-loop vacuum polarization. 

TABLE CAPTIONS 

1: Result (Sa) of the numerical integration for diagram 1 + 2 after mass renor- 

malization in units of ($)2. The data converge for large values of the Pauli- 

Villars cut-off A (in units of the electron mass). 

2: Numerical results (6~) for the two-loop diagrams of Fig. 7. The results are 

compared with the analytic answer by Petermann. 

3: Numerical results (&a) for the sixth-order contributions of the diagrams in 

Fig. 8. The results are compared with the results given by Brodsky and 

Kinoshita. 
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ba 

-0.289 

-0.305 
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-0.324 
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Table 1 

diagram 6a result by Petermann 

1+2 -0.326 f 0.001 -0.327 

3+4 0.780 f 0.007 0.778 

5 -0.465 f 0.002 -0.467 

6 0.016 f 0.001 0.016 

Table 2 



1 

diagram 6a result by Brodsky and 

Kinoshita 

i 4+7 -0.114 A 0.002 

1+2 -0.0031 f 0.003 

5+6 0.053 f 0.002 

-0.09 f 0.02 

-0.115 

-0.0032 

0.053 

Table 3 


