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ABSTRACT 

We study the problem of linear instability in non-vacuum spacetimes. For vac- 

uum spa.cetimes linear instability occurs when the spacetime has Killing vectors. 

In the non-vacuum case, one must prescribe how the sources are to vary. For one 

natural choice, we show that the signal for instability is the existence of Integral 

Constraint Vector fields. These vector fields lead, as in the vacuum case, to nonlin- 

ear constraints on the first order perturbations to the metric and momentum. For 

other choices for variations of the sources, we show how to modify the definition 

of Integral Constra,int Vectors appropriately. Since Robertson-Walker spacetimes 

have Integral Constraint Vectors our results may have cosmological applications. 
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1. INTRODUCTION 

This paper will deal with the linear stability of solutions to the Einstein equa- 

tion 

G,, = &rT,w 

- 

A solution to the vacuum equations (Tpv = 0) is said to be linearization stable [l] if 

every solution to the linearized equations about that solution is tangent to a curve 

of exact solutions. For vacuum spacetimes with compact spatial surfaces it was 

shown by Fisher and Marsden [l] and Moncrief [2] that a necessary and sufficient 

condition for the linear stability of an exact solution is the absence of Killing 

vectors. For spacetimes with Killing vectors Moncrief [3] showed that additional 

constraints on the linearized solutions arise at second order in perturbation theory, 

as_a requirement for the solubility of the second order equations. These constraints 

require that a certain charge, which is given by the integral of a quantity quadratic 

in the first order fields, must vanish. There is one such constraint for each Killing 

vector. It may happen that a solution to the linear equations fails one or more 

of these nonlinear tests. Brill and Deser [4] gave a striking example of linear 

instability in a vacuum spacetime having the flat 3-torus for spatial hypersurfaces. 

They found that if the overall size of the S-torus is held fixed, then no perturbations 

of the metric at all are possible. 

For non-vacuum spacetimes there are a number of possible definitions of linear 

stability. If one allows the stress-energy to be freely adjusted, then every spacetime 

is trivially linearization stable, since any metric solves the Einstein equations with 

the stress-energy tensor given by the right hand side of (1). From this point of 

view the only constra.ints would come from energy conditions imposed on the stress 

tensor. If instead we consider solutions of (1) with prescribed perturbations to the 

sources at some initial time then an interesting structure emerges which extends - _ -~ 
-that found by Fisher and Marsden and Moncrief in the vacuum case. Note that in 

vacuum, perturbations to the stress-energy vanish by definition. So the definition 
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of linear stability, which we use in this paper, is consistent with that used in the 

vacuum case. We will show that a necessary condition for a solution of (1) to 

be linearization stable in this sense is the absence of Integral Constraint Vectors 

(ICV’s), which were defined in [5]. The presence of ICV’s in the background 

spacetime leads to nonlinear constraints on first order perturbations at second 

order in perturbation theory similar to those found by Moncrief [3] in the vacuum 

case. In vacuum the ICV’s are precisely the Killing vectors, so our results reduce 

to those of refs. [1,2,3]. 

In practise the physical situation in which one is interested will determine an 

appropriate notion of linearization stability. For example, if one wants to study 

perturbations which are pure gravitational radiation in which the sources are ini- 

tially unperturbed, then the above definition would be appropriate. This would be 

particularly natural in deSitter spa.cetimes. 

The additional nonlinear conditions on the solutions of the linear equations 

are expessed in terms of conditions on a charge Q, which is an integral of terms 

quadratic in Sg;j, 6r;jY and their spatial derivatives. In the vacuum case, when the 

ICV’s are actually Killing vectors, Q is “Taub’s conserved charge” [6]; it is the 

time component of a conserved current constructed from a Killing vector and the 

second variation of the Einstein tensor. For example, when the Killing vector is 

timelike, Q can be interpeted as the “energy in the gravitational perturbation”. 

One interesting thing in the non-vacuum case is that there are constraints on the 

perturbations in the absence of a. spacetime symmetry-the ICV’s are not killing 

vectors. Q is not conserved, but evolves in a well-defined way. Though Robertson- 

Walker spacetimes do not have a timelike killing vector, the charge associated with 

one of the constraint vectors is like an energy in the gravitational field, as we shall 

describe. 

F 

- _ -~ In Section 2 we review the definition of integral constraint vectors given in 

- reference [5]. In Section 3 we describe the consequences of the existence of ICV’s at 

first and second orders in perturbation theory. At second order we see the relevance 
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of ICV’s to the problem of linearization stability defined in an apropriate way. 

Section 4 contains examples showing the nontriviality of the nonlinear constraints 

on the first order variations of the initial data. In Section 5 we discuss a definition of 

a generalized ICV, which is appropriate for studying the linear stabilty of particular 

matter theories coupled to gravity. In Section 6 we comment on the relationship 

between the nonlinear charge Q and the quadrupole formula. In Section 7 we 

make some concluding remarks. Appendix A contains formulas relevant to the 

computations of the varied constraint operators. Appendix B gives the explicit 

forms of the ICV’s in Robertson-Walker spacetimes. 
c 

2. INTEGRAL CONSTRAINT VECTORS 

As in the vacuum case, we proceed by studying solutions of the Einstein con- 

straint equations, which determine the space of initial data. for the evolution equa- 

tions. Initial data consists of a 3-metric gij and a momentum ~“j specified on 

a spatial hypersurface C. These must satisfy the Hamiltonian and momentum 

constraint equations 

H[g, 7T] E j (7Tij7Tij - $T2) - R = -167rp, (2) 

ik = -16aJk, (3) 

where 9 = det(gij) and Di and R are the 3-dimensional covariant derivative oper- 

ator and scalar curvature. The constraints and sources will be denoted collectively 

by @ = (H,Hk) and S = -167r(p,Jk). 

Suppose there exists a one parameter family of exact solutions to the constraint 

equations g(X), r(X), S(X), with expansions around X = 0 

gij(X) = Sij + Xhij + $X2jlij + . . . 

rij(x) = Fij + xpij + $2jjij + . . . (4) 
- _ -~ 

S(X) = s + ASS + +x2tT2s + . . . 

Expand the constraint equations !P[g(X), r(X)] = S(X) around X = 0. At first order 
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we have 

SQ 
Dfqh,p) c - * 

S$lij 
hij + $ . jj = ss, (5) 

where the functional derivatives are evaluated at the background metric and mo- 

mentum gij, ?iz3. Similarly at second order 

D2!P(h,p)2 + D!P(i,j) = S2S. (6) 

Now ask when the first order variation of the constraints can be assembled into 

a total S-divergence. Does there exist a function F and a S-vector field ,B” on the 

surface such that for all variations of the metric and momentum hij, pij 

(F, p”) . DQ(h,p) E FDH(h,p) + /31cDHk(h,p) = D[B’(h,p). (7) 

This is the defining property of an ICV [5]. In terms of the four dimensional 

spacetime this requires that 

2Vpn,DGap = DlB’, 

where Va = Fna + ,B”, na is the unit normal to the three surface C, and pana = 0. 

Integrating (7) over the hypersurface C 

J 
(F,Bk) e D*(h,p) = 

J 
(h,p) - D@*(F,P”) + 

J 
hB’(h& (8) 

c c ac 

we see that a vector field V” is an ICV if and only if 

D\lr*(FJ”) = 0, (9) 

.- _ -~ 

- that is, (F, /?“) is in the kernel of the adjoint of the constraint operator. Explicit 

calculation gives the following set of differential equations which the constraint 
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vector field must satisfy [5] 

(-DiDj + SijDlD’ + Rij) F = gijDk(p’Klk) - Dl(P’l(‘j) 

+ zi’DpP,l+ ri;zD[lPi]l 

Dipj + DjPi = 2FlTij 

For (F, pk) satisfying (10) the boundary term in (8) is then given by 

16xBi(h,p) = (D”h - Dlh”) F - hD”F + h”‘D,F 

(10) 

(11) 

- 
where on the right hand side h = g”jhij and indices are raised and lowered using 

the background metric Sij. 

In vacuum the ICV’s are the Killing vectors and equation (7) holds independent 

of the choice of hypersurface [5]. I n g eneral the existence of an ICV depends on 

the choice of slicing. Robertson-Walker spacetimes with the preferred slicing all 

have ten ICV’s [5]. S ix of these are the spatial Killing vectors. The remaining four 

have nonzero time components. In deSitter spacetimes the time dependence of 

these vector fields can be chosen so that they are Killing fields. In general though 

Killing vectors are not necessarily ICV’s. 

3. 1s~ AND END ORDER CONSTRAINTS 

The existence of an ICV for an exact solution Sij, ?ij of the constraints has 

a number of consequences for perturbations around this solution. If hij,#j is a 

solution to the linear equations with perturbed sources given by SS, then at first 

order in perturbation theory equations (5) and (8) give 

J (FJ”) e SS = J dqB’(h,p) (12) 
V t3V 

- If the boundary integral on the right hand side vanishes, then (12) is a restriction 

on possible perturbations to the sources - a necessary condition which the sources 
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must satisfy in order that there exist solutions to the linearized equations. The 

boundary term will be zero when the spatial hypersurface is compact and the inte- 

gration volume is taken to be the entire hypersurface. The boundary term will also 

vanish on open hypersurfaces for perturbations which are created by local, causal 

processes, if the integration region is taken to be sufficiently large. This situation 

is quite similiar to the relation between charge density and electric field imposed 

by Gauss’ Law. The result for closed surfaces is analogous to the requirement in 

E&M that the net charge vanish on a closed hypersurface. 

- 

In general for isolated systems (12) g ives a relation between moments of the 

source and the behavior of the field far from the source. A familiar example is the 

case of a nonvacuum spacetime which is almost Minkowski. One of the constraint 

vectors is the time-translation Killing vector, and the boundary term (11) is just 

the ADM mass [7], which perturbatively is equal to a volume integral of the mass 

density. Implications of these first order integral constraints for cosmology were 

discussed in [8,9]. 

At second order in perturba.tion theory we find a result which bears on the 

issue of linear stability of the background spacetime. Integrating (6) over a spatial 

volume and using equation (8) we have 

J dcqB’(?1,fi) = - J (FJ”) . D2’@(h,p)2 + J (FJ”) . S2S 
W V 

We will refer to the first integral on the right hand side of (13) as Q(h, P)~, 

Q(h,p)2 = /(ML). D2Ww)2. 
V 

(13) 

- ^ -~ 
-Q is quadratic in hij and pij and their spatial derivatives. Explicit expressions for 

the second order variations of the constraint operators are given in appendix A. If 
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the boundary term in (13) vanishes, then we are left with 

Q(h,pJ2 = JR pk) - h2s 
V 

(14) 

- 

which relates the first order variations in the metric and momentum to the second 

order variation of the sources. In the vacuum case (14) gives the result of Moncrief 

[3] that on compact spatial surfaces the charge Q must vanish. So, we can see in 

a straightforward way how linearization instability occurs: Suppose the linearized 

vacuum equations have been solved for hij, p”j. This solution must now satisfy 

the additional nonlinear constraint (14), which may fail to be true. That this is 

nontrivial will be discussed below, but already we have the example of Brill and 

Deser [4] for the vacuum case. 

The non-vacuum case is more complicated because there are more possibilities 

for the perturbed sources - we must define what rules the perturbed sources are to 

obey. This will depend on what physical problem one wants to solve. The simplest 

case is the initial value problem with prescribed sources (like specifying the charge 

and current densities in E&M) taking 

Of course, one can not usually solve this problem exactly, so one uses a perturbative 

approach for small A. In perturbation theory, the variation of the sources are then 

by definition first order in A. Higher order variations of the sources, such as S2S 

on the right hand side of equation (6) are absent. For sources specified in this way 

equation (13) becomes 

Q(h,d2 = - J ~~l~‘Cii) (16) 
dV 

-On compact spatial surfaces, or for peturbations which have been created by local, 

causal processes (with sufficiently large region of integration), we then have the 
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requirement 

Q(h,p12 = 0. (17) 

For example, in a closed Friedman universe any linearized solution must satisfy 

Q = 0. The perturbed fields which describe a loop of cosmic string, or some other 

lump of matter, “appearing” in an open Freidman universe, must satisfy Q = 0, if 

the boundary is outside the forward light cone of the initial perturbation. 

- 

A special case is when there are no sources perturbations, only metric pertur- 

bations - for example, transverse-traceless gravitational waves in Robertson-Walker 

spacetimes. In deSitter spacetimes this is particuarly of interest, since it is natural 

to consider metric perturbations with the cosmological constant fixed. 

The expression for Q simplifies considerably for transverse traceless modes in 

Robertson-Walker. One finds 

I Q = J dvF (ipi jp’j 

V 

-2($-2$) hijh”-~~h,p”+l(lt) 

- 2 v dV $L?k6rkjlg’ J (18) 

Km is the spatial-gradient kinetic energy in the transverse traceless modes, given 

in general in appendix A. For flat spatial sections 

J li-tt = (2743 J d3kik2]tij(lc)]’ 

V 
(19) 

where cij is the polarization tensor. 

If the background is Minkowski spacetime (b = 0, k = 0 above), Q is precisely 

the energy of transverse traceless fluctuations, as defined by the energy-momentum 
- ^ -~ 

pseudotensor (see e.g. [lo]). I n an expanding universe, with a nonzero background 

energy density, Q has positive definite contributions from the momentum squared 
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and the wave vector squared, but there are also negative definite (and sign indefi- 

nite) contributions to Q from the expansion. In the negatively curved Robertson- 

Walker spacetimes, which approach Minkowski spacetime at late times, the ICV’s 

approach the four translational killing vectors, and Q does approach the usual 

expression, which is positive definite and conserved in the background spacetime. 

In this flat space limit Q can be interpeted as an energy. In general though Q is 

not positive and is not conserved. Q evolves in a well defined (but not particuarly 

transparent) way. Motivated by the connection for assymptotically flat spacetimes 

between Q and the standard quadrupole formulae discussed below, it would be in- 

teresting to see if the evolution of the boundary term to which Q is equal, provides 

a useful notion of energy flux in spacetimes which are asymptotically Robertson- 

Walker. 

So far we have been discussing the implications of equation (13) when the 

sources p and jk are considered as fixed, and when the boundary term vanishes. 

When the boundary term is nonzero, we do not learn anything about the linear 

stability. In this case equation (13) is a relation between the volume integral 

defining Q and the second order far field*. 

4. AN EXAMPLE OF THE LOSS OF SUPERPOSITION 

We will now give an example of linearization instability in a Robertson-Walker 

spacetime with flat spatial sections and periodic boundary conditions. Flat spatial 

sections make the integrals for Q transparent and the toroidal topology imposes 

the requirement that Q = 0. For the torus the integral constraint vectors are 

not so interesting - the only constraint vectors consistent with periodic boundary 

conditions are the spatial translations. However, this is sufficient for an example 

of the loss of superposition of linearized gravitational radiation. 

~- ̂  - 
-k Indeed, summing equations (12) and (13)t o e g th er with all higher orders gives an equality 

between a volume integral of the perturbed matter fields and the nonlinear terms in H and 
Hk and a boundary term. 
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Consider the two transverse traceless metric perturbations 

h~j = jL(t)e;jsink * X, hfj’ = fkl’(t)eijcosk + x (20) 

where kie’j = 0, eii = 0, and f’, f’I are two linearly independent solutions to 

VaVaf(t) = 0 in flat Robertson-Walker, where Va is the four dimensional co- 

variant derivative. Then with ki = nir/Li, these are solutions to the linearized 

Einstein equations with the correct boundary conditions and with the stress-energy 

unperturbed. 

For the constraint vector which is translation in the x-direction and transverse 

traceless perturbations, 

Q = k Jdv(iLjl+ 2~hjl)arhj’. 
V 

(21) 

Therefore, for each of the above waves, Q vanishes, Q(hI) = 0 and Q(h”) = 0, 

but for the sum 

which in general is not equal to zero, since the waves may be out of phase. 

The torus is a simple example, but the S-sphere is much the same. Pertur- 

bations in a universe with closed spatial sections must satisfy Q = 0, and it is 

straightforward to verify that this is nontrivial: take for a solution to the linear 

constraints the transverse traceless perturbations generated by the tensor spherical 

harmonic with eignevalue n (as described e.g. in Lifschitz and Khalatnikov [ll]). 

The weighting funciton F in the integrand of Q is the second order scalar spherical 

harmonic Q c2) (see appendix B and [ 1 l]), or equivalently, F N D1i2, where the ~- ̂  
-Dh, are the hyperspherical harmonics, which form 2L + 1 dimensional irreducible 

representations of SU(2) [12,13]. Th e ransverse traceless perturbations generated t 
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by a pure 23’ mode is a solution to the linear constraints. Such a solution also 

satisfies Q = 0, since the tensor product L 8 L contains no L = l/2. However, the 

sum of two such solutions with L values differing by l/2 have a nonzero Q, since 

L @I (L t l/2) N (l/2) $ * * . . In terms of the tensor spherical harmonics in [ll], 

this corresponds to the principal eignevalue n differing by one. 

5. GENERAL CONDITIONS FOR LINEAR STABILITY 

If the stress energy is ,described by a particular field theory, one may want 

to specify a particular field configuration at an intial time, rather than the mass 

and current densities. For example, for matter described by a scalar field q5 one 

could take the field q5 = C$ $ X&q5 and its time derivative as initial data. This in 

turn implies what the initial perturbation to the background stress energy is. Here 

the field perturbation is order A, so there are order X2 contributions to the stress 

energy, which can in general come both from the matter field and the perturbed 

metric. For a free scalar field in a background Robertson-Walker spacetime, the 

perturbed stress-energy is independent of the perturbed metric through terms of 

second order in A: 

(23) 

where we are using gaussian normal coordinates. Hence in this example there is a 

second order contribution to the perturbed sources, but it is fixed by the initial data 

on the matter fields only. So again, there is an additional nonlinear constraint on 

the linear metric and momentum perturbations- again, when the boundary term 

vanishes, then hij, pij must satisfy Q(h, P)~ = s(F, ,B”) . S2S, which is some fixed 

number. 
- 

In the general case though, the second order sources may depend on the first 

and second order metric perturbations. In this case the analysis of the previous 
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section tells us nothing about linear stability. The right hand side of equation (14) 

will depend on second order fields. We simply have a relation which presents no 

apparent obstruction to finding a solution. 

These observations point to a more general criterion for linearization stability. 

The general strategy is to “leave on the right hand side” of the constraint equations 

(5) and (6) terms in the perturbed stress-energy which are independent of the 

metric perturbations, and “move to the left hand side” everything else. The “left 

hand side” is now an operator DO which acts on a set of fields. If the kernel 

of the adjoint DO* is nonempty, then there will be constraints on perturbations 

analogous to those discussed above. Explicitly, if the matter stress-energy has 

direct dependence on the metric, S = S(gij, A), w h ere A denotes the matter fields 

(not necessarily scalars), then 

6S 
DO(hij,p”j, A) = D9 - ahij. 

9i.J 
(25) 

There are restrictions on the perturbations of the matter if there is a vector Va = 

fna + bk in the kernel, 

Do* - (f, 

If a constraint vector 

bation must satisfy 

bk) = DQ* . (f, bk) - (26) 

(f, bk) exists, then again at linear order the matter pertur- 

J (f, bl;) * g&A = boundary term 

V 
(27) 

in order that solutions to the linear equations exist. And at second order, there 

are additional nonlinear constraints on the solutions to the linear equations, 

- ^ -. - -Q' t Ju, b"$$ . (SA)2 = boundary term, 
(28) 

where we have set the second order variation of the matter fields S2A equal to zero, 
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and 

Q’ = J(/, bk) * D2Q(h,p)2 - $ * (hij)2 - $& * (hii, A) 
9. > 

(29) 
11 1 

V 

is the new second order charge. 

As an example of when DO* is relevant for linearization stability, rather than 

DXP*, suppose the stress energy is generated by electromagnetic fields. The energy 

density is given by 16~~ = g”jKj, where Kj = 2(EiEj + BiBj) (the notation is 

meant to emphasize that the stress energy is generated by a vector field, rather 

than a scalar, which at least in Robertson-Walker, leads to a difference between 

D9 and DO). Th e current density is 4?rJk = tklmEIBm. In this case, unlike that 

of the scalar field, the first order metric perturbation does appear in the first order 

variations of the energy and current densities. These are given by 

-. sp = & (-h”jGj + g”jSEj) 

6j, = +h& + -&ck,m &jBm + &&j” - h’ EnBrn - h” &fjn n n > (31) 

In this case, the generalized ICV (f, bk) must satisfy equation (10) with the left 

hand side of the first equation replaced by 

Lijf - Gjf + 16~ $gijt?k + &Ckm(iE,)Brn - ~Zl,(iEm~j) 

> 
bk, (32) 

where Lij is the operator on the left haad side of the first equation in (10). 

We can now check to see whether or not Robertson-Walker spacetimes filled 

with radiation can have constra.int vectors in this generalized sense. For Robertson- 
-^ 

-Walker the stress-energy can’t have the above form, since this picks out preferred 

directions. However, we can take a statistical a.verage of radiation propagating in 

F 
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various directions, so that 

and the zeroth order current vanishes. g satisfies the same equation (10) as before, 

but f must satisfy 

for both the open and closed universes. This is the equation for a conformal 

killing vector, and it can be checked that the conformal killing vectors for the 

three-surfaces of constant curvature do not satisfy this equation. Hence there are 

no solutions for these vector fields, and therefore no linearization instability in 

the Einstein-ensemble averaged Maxwell system. This example is contrived in the 

sense that one has to “bend over backwards” to respect the Robertson-Walker 

symmetries, and generate the stress-energy in a way that the metric peturbation 

enters at first order. In this averaged system, the perturbation to the sources from 

the Maxwell fields is zero until second order, since < AEiEj >= 0. 

We note that Arms [14,15] h as also studied the linearization stability of solu- 

tions to the Einstein-Maxwell equations. Her definition of linearization stability 

and hence also her results differ from ours. In Arms’ approach the variations of 

the sources are not prescribed, either by specifying Sp and 6jk or by specifying SE; 

and SBi. The analogue of the operator DO then depends on the variation of the 

matter fields as well as on the variation of the metric and momentum. The prob- 

lem defined in this way is similiar to the vacuum case, with a larger set of fields. 

Arms finds [14,15] that, under a number of conditions, linearization instability of 

the Einstein-Maxwell system can occur if the background solution has continuous 

spatial symmetries. 

- 
We have looked at a different question, where one fixes something about the 

sources. If one prescribes the variations of the electric and magnetic fields 6Ei and 
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SBi away from their background values, then for any solution hij, p”j to the lin- 

earized constraint equations with these sources, do there always exist higher order 

variations in the metric and momentum such that the constraints are satisfied? 

In this case one looks for solutions f and bk in KerDO* equation (32)(instead of 

the operator Da* considered in [14]). One finds that solutions with nonzero f are 

possible (unlike the result in [14]). Th a is, there may be an instability, even if t 

there are no simultaneous symmetries of all the fields on the initial value surface. 

6. VACUUM CASE,TAUB'S CONSERVEDCHARGE,AND QUADRUPOLEFORMULA 

In the vacuum case the charge is conserved because it is the spatial integral of 

the time component of a conserved current. Let gab be a solution to the vacuum 

Einstein equation, and assume that this spacetime has a killing vector t”. Taub [6] 

noted that the current J” = tbD2Gab(h)” is conserved in the background spacetime 

sax, if hcd is a solution to the linearized, four dimensional Einstein equation. This 

follows because the Bianchi identity implies that if the background is vacuum, and 

if hcd is a solution to the linear vacuum equations, then the second variation of the 

Einstein tensor is covariantly conserved, VaD2Gab(h)2 = 0. In the non-vacuum 

case, even with a killing vector, the second variation is not conserved. The time 

component of J” is exactly the constraint integrand, so Taub’s conservation law 

states that 

$Q= -$ J JffTZ,dv = - J<"D2Gkadak 

6V 
(35) 

If the killing vector is timelike, then one can call the charge the energy in the 

gravitational perturbations, in the sense tha,t Q is conserved. 

On the other hand, we know tha,t not only is the time rate of change of Q a 

boundary term, but since Killing vectors in vacuum are constraint vectors, Q itself 

is also a boundary term, 
.- ^ 

Q=J da’B’(k,fi) 
(36) 

t.W 
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Hence as Moncrief [3] noted, for vacuum spacetimes with compact spatial surfaces, 

the charge actually vanishes, Q = 0. Further, we see that the time rate of change 

of the boundary term of the second order perturbation is equal to the flux defined 

by the pseudotensor, 

$ J da,B’(j2,$) = - J da’laD2G’, (37) 

The right hand side of (35) or (37) is th e usual starting point to find the flux of 

gravitational radiation crossing some big sphere, and yields the usual quadrupole 

formula for perturbations off Minkowski spacetime. This suggests that there is 

a relation between the quadrupole formula and the time rate of change of the 

boundary term defined by the constraint vectors. The “quadrupole formula” is 
_ supposed to be the energy radiated due to sources, so the above formulas, true for 

vacuum, do not immediately apply. With time dependent sources, but considered 

as small, one still looks for solutions for the metric which are perturbations off 

Mmkowski-at zeroth order, the stress energy and hence Einstein tensor vanishes, 

and at first and second order there-are perturbative corrections to the stress energy. 

Since the background Einstein tensor vanishes, the Bianchi identities imply that 

V,DG”, = 0 a,s an identity. Therefore at second order, 

va(D2Gab. h2 - S2Ta,) = -VDG,” . ?A = 0. (38) 

One can then check that the current defined by this quantity and the time trans- 

lation Killing vector [” of Minkowski is conserved. Therefore, if the sources are 

compa.ct, and vanish on dV, then 

g J ~anp(D2Gpa - S”Tc)dv = - J JffD2Gkadak (3% 
V dV 

-Equation (39) 1 1 t re a es a flux in the gravitational perturbations to the time rate of 

change of Q minus the time rate of change of the second order sources. Suppose the 
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sources are independent of time after some time. Then during the “quiet time”, the 

gravitational flux is just determined by 0, that is, equation (39) reduces to (35). 

So now we can relate the boundary term defined by the constraints in equation 

(36), to the quadrupole formula, 

where q is the traceless quadrupole moment tensor of the source, evaluated at 

retarded time. 

7. CONCLUSION 

, We have seen that if a spacetime has an integral constraint vector, then it is 

linearization unstable. Some of the solutions to the linearized constraint equations 

must be discarded, although at linear order they appear to be good solutions. This 

occurs, for example, in Robertson-Walker cosmologies. The definition of linear 

stability must include a specification of how the sources are allowed to vary; the 

simplest case is when the mass and momentum densities are prescribed as part of 

the initial data. 

It will be of interest to answer some obvious questions about the boundary 

term (11). C an it provide a useful notion of differential mass, in the spirit of the 

ADM mass? Is the time rate of change of the boundary term related to the flux 

of gravitational energy? 

One of the original motivations for this study was to understand how lineariza- 

tion instability must be taken into account in a functional integral approach to 

gravity. In the functional integral, though the fields are not necessarily solutions 

to the equations of motion, they are required to satisfy the constraints. Since in 

practice one uses an expansion to a,pproximate the integral, spurious solutions to ~- ̂  
<he linearized constraints should presumably be excluded. Recall, for example, that 

for desitter spacetime with S-spheres for spatial sections, solutions to the linear 
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constraints must also satisfy Q = 0. This question has been studied for a number 

of vacuum spacetimes in [16,17]. 
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APPENDIX A 

. 

Here we collect some formulae on second order variations of the constraints. 

Barred symbols, such as ~;j and F ij, denote tensors in the background geometry. 

Indices in the varied equations are raised and lowered with the background metric, 

g = det(g;i), and h = hijgi’, p = pi’gij. With the exception of the exact constraint 

equations, the three dimensional covariant derivative operators Dl are with respect 

to the background metric. 

(41) 

Dg=tjh 

D2g = 3 (h2 - hiihii) 

DP = 2~;ip2’ - %p + 
( 

2*i”$, _ &i hii 
> 

DR = -D’Qh + DiDihii - @hii 

(43) 

(44) 

(45) 

(46) 

c 

DH = -bh + LDP - DR 
s s 

(47) 
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DHk=$ (Dip”k + hkiDirii + ?rlibI”kil[h]) + $Dir; (48) 

D2p = piip.. + jfiijfklh.th ., “.I 2 I 
+ 4+ji,Pk1hi, - $p2 _ + (fiih;j)2 

- Tpiihii _ F’jphij 

D2H = (h2 + hiihij) IF - 2iDP + iD2p - D2R (51) 

c 

- 
D2R = giiD2Rii - 2h”jDRij + h”,h”jR;i (52) 

DRii = DkD~i h”i) - $DiDih - iD,D’hii (53) 

-. 
D2Rij = iDihlmDih’m + $D’hin (Dlhy - Dnhjl) 

+ $hmn (DiDjhmn - DnDihmi - D,Djhmi + DmDnhii) (54) 

+ i (iD”h - Dmhmn) (Dihni + Dihni - Dnhij) 

For Robertson-Walker spacetimes 

DP=Z;&p-4 gh (55) 

DR = -D2h + DiDihii - sh (56) 

(57) 



,&D~H = -$ (pijpij - ip2) - ZP (hijp”’ + hp) 
a 

2k 
- 7-h” + hijh (59) 

+ KS + I-tt a 

I(9 = -3&h”’ (iD;Djh - DiD’h,j) + fi ($Djh - Dih’j) ($Djh - Dlh”) 

(60) 

I&t = fi -ih’jD/D’h, - iDih,mDihnm + +DlhijDjh”’ 
> 

(61) 

$jD2& = -2$‘bI’ki/ - 2hjkDip”j 

+ 2hDipik - 4:&h (D/h’, - ;Dkh) 
(62) 

-. 
APPENDIX B 

Explicit formulae for the four Robertson-Walker ICV’s which are not purely 

spatial Killing vectors (from ref. [5]). 

For closed and open spatial sections (k = +l, -1 respectively) define the fol- 

lowing harmonic functions 

k=+l: Q(O) = cos x, Q(l) = sin x cos 0, 

Q(‘) = sin x sin 0 cos 4, Qc3) = sin x sin 0 sin 4. 
(63) 

k= -1: Q(O) = cash x, Q(l) = sinh x cos 0, 
(64 

Qc2) = sinh x sin 0 cos 4, Q13) = sinh x sin 0 sin 4. 

where x, 0, $ are the standard hypersherical (hyperbolic) angular coordinates. The 

21 



four ICV’s are then given by 

qa, = Q(.)$ + k&aDjQ(a)d dxj ’ a = 0, 1,2,3. 

For flat spatial sections, 

k = 1,2,3, 

where x1, x2, x3 are standard Euclidean coordinates. 

(65) 

(66) 

- 
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