
SLAC-PUB-5648 
LU m 91-19 

September 1991 
U/E) 

PARTICLE PRODUCTION AND DECAYS IN AN 
OBJECT ORIENTED FORMULATION* 

Richard Blankenbeclera 

Stanford Linear Accelerator Center, 
Stanford University, Stanford, CA 94309, USA 

Leif Liinnbladb 

Department of Theoretical Physics, University of Lund, 
Wvegatan 14A, S-223 62 Lund, Sweden 

Abstract 

The use of Object Oriented Programming languages and techniques for the 
development of Monte Carlo simulators for particle production and decay is 
discussed. For illustration, two specific “template” programs are presented 

written in Objective-C and in C++, respectively. 

Submitted for publication. 

* Work supported by Department of Energy contract DE-AC03-76SF00515. 
a rbtheory@slacvm (bitnet) rzbth@thnextb.slac.stanford.edu (internet). 
b thepll@seldc52 (bitnet) leif@thep.lu.se (internet). 



Introduction 

In this article, the use of Object Oriented Programming languages [l] and 
techniques for the development of particle production and decay Monte Carlo 
simulators will be discussed. Such programs are very important in the 
analysis of high energy physics data; the coupling of such a program with a 
detector simulator and a logical data analysis package allows one to examine 
in detail a particular model of the processes involved and then to see what 
events look like after detection and processing. 

One important feature of decay Monte Carlo simulations is that the number 
of degrees of freedom, in this case the number and type of final particles, 
necessarily varies, indeed randomly, from event to event. It is in the ease of 
handling this feature that OOP provides one of its most important advantages 
over-procedural languages such as Fortran. It has several other useful features 
as we shall see. 

We will first describe the general strategy for applying OOP to this process and 
then give two specific “template” programs called McOOP and MC++, written 
in Objective-C and in C++, respectively. The two programs will differ 
somewhat in concept and goals, and considerably in details. Both, however, 
will illustrate an important feature of OOP in which the code itself directly 
mirrors the physics of the process. This implies that a new methodology can 
be extended and developed for general physics simulation problems; this will 
be discussed elsewhere. 

Particles are characterized by variables and by actions; both are generally 
unique to the particle type being described. A particular particle has general 
parameters such as mass, charge, which are identical for all members of its 
“class” and its own individual value of momentum, energy, position, 
helicity, etc. Unstable particles have additional parameters such as branching 
ratios, decay modes, decay matrix elements, etc. Keeping track of all these 
properties efficiently is generally a difficult design task for the programmer. 
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We shall see that OOP can be used to greatly simplify this task yet will 
produce efficient and flexible code. 

The general philosophy will be to let the OOP operating system handle 
memory management (it can undoubtedly do this more efficiently than we 
can anyway) so that storing and retrieving data from common blocks, and 
having to write the logic that handles the index to the data, will not have to 
be done explicitly by the programmer. Other useful features of OOP are that 
the data for a given particle is encapsulated into a convenient entity called an 
“object” and thus the structure of the code allows easy and straightforward 
maintenance and extension. As a consequence, there are NO dynamic data 
arrays in the code, and no exceeding array limits by accident during execution. 

The three basic concepts of object oriented programming relevant here were 
discussed in the earlier article by Kunz [ll. They are encapsulation, messaging, 
and inheritance. We shall make extensive use of all of these characteristics. 
Encapsulation will allow a simple and direct treatment of the (different) 
physics of each particle type; messaging and its associated polymorphism will 
clarify the operation of the code; inheritance, defined by a class hierarchy or 
family tree, will allow more concise code, guarantee consistency between 
particle types and greatly simplify the task of adding additional particles, new 
characteristics or new reactions to the program. All of these concepts will 
allow us to develop code that utilizes one of the main advantages of OOP, 
namely, that memory management and bookkeeping are the responsibility of 
the compiler and the run time system, NOT the programmer. 

As the decay process proceeds, many particle objects are created and stored in 
memory by the system. In order to keep track of these particles, a powerful 
and efficient filing system is needed. This is provided by a List class; this type 
of object stores an ordered list of pointers to the particle objects that have been 
created. List objects can add and delete objects from themselves and send 
messages to all members that are contained therein. The List class plays an 
important role in OOP, especially in simulation problems. 
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The OOP code that we have developed has the following characteristics: the 
program operations mirror in a direct way the physics that is going on, the 
basic entities of the physical process-particles-correspond directly to the 
objects of the particle class in the code, which, e.g., respond to familiar 
physics-related commands such as decay, propagate, setEnergy, 
chargeconjugate, etc. 

At an early stage in the implementation, one must make general design and 
style decisions and fix the structure of the inheritance hierarchy. Many 
variations of the choices given below are possible; we have implemented 
several which work well. One essential difference between particle types, i.e., 
classes, is the number of branching ratios and their associated decay modes. 
Once a mode is chosen, the code must produce an instance of each particle 
class in the mode and assign energy/momentum to each of them according to 
a specific matrix element. This procedure is treated very differently in the two 
template programs which will be discussed next. 

In order to implement this Objective-C version of the Monte Carlo, we must 
first decide what the most fundamental class is to be, i.e., what it should 
contain as instance variables and as methods. The concept of a “generic” 
particle is clear; it will be realized as the Particle class. Its variables are mass, 
four-momenta, charge, hypercharge, lifetime, its name, and if it is part of a 
branching decay process, its parent and a list of its decay products, or children. 
For a stable particle, this last list will be empty, of course. The action methods 
of a generic particle should include not only the factory method that produces 
particular instances of the class (the “objects”) but also general utility methods 
that set and return values of all instance variables, that produces a “family 
tree” to expose the particular branching of this event, and a “decay” method 
that allows the particle to decay (if it can) and produces instances of the 
children, sets their momenta stochastically via some decay matrix element, 
and then instructs each child to decay in turn. 
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It is also natural, in order to treat the general case, to have Fermion and 
Boson classes as immediate subclasses of the Particle class. These classes are 
quite simple unless one is symmetrizing matrix elements, etc. Under these 
classes, the familiar particle types such as photon, positron, pion, kaon, etc., 
will be subclassed. 

Before returning to specific particle classes, let us turn to some design 
questions. Where should the particle property data be stored? One can place 
the specific data that defines a particle type together with its branching ratios 
and modes with the individual class. That is the method utilized in the code 
samples given below; it has the advantage of being very simple to 
understand-the code reads as it does-but is not flexible. If one wants to 
modify a mode by adding a particle in the final state, for example, the code for 
that class must be changed and then recompiled. A more general method is to 
have a central data cache that contains branching fractions and lists of 
particular decay modes accessible from each particle class as it is needed; each 
mode is stored as a List object containing the appropriate class pointers to 
create the given final state particles. Each class then stores pointers to its own 
data as instance variables. This central data cache can be modified without 
changing the code of a class. This technique has many advantages for 
production code and will be implemented in the next example to be 
discussed, MC++, although it has been implemented in McOOP as well. 

In the particular McOOP code presented below, we have also chosen, rather 
arbitrarily, to implement the negatively charged member of a charge 
conjugate pair (such as piPlus and piMinus) as a subclass of the positive 
member. Thus the data, such as mass, charge, branching ratios, etc., can be 
stored in only one place in the code-thus avoiding data conflicts. All that is 
required is a general method that performs charge conjugation. Other choices 
are possible. 
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Explicit Code 

The McOOP class hierarchy is shown in fig. 1. The interface (header) and 
implementation files for the generic Particle class is shown in figs. 2 and 3. A 
few selected subclasses will be discussed as examples of coding philosophy and 
style. 

I 
Collision 

1 AntiQuark 1 

-I piZero 1 

1 rhoZero ] 

i rhoPlus I 

9-91 
7007A2 

FIGURE 1: The class hierarchy of the McOOP program. 

1 Fermion 

The Boson class does not contain any instance variables to add to those of the 
Particle class, but it does add methods such as chargeconjugate, which 
appropriately modifies the instance variables of a class object; this directly 
allows the instantiation (creation) of a piMinus object, for example, from a 
piPlus object. 
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@ interface Particle: Object /* Partic1e.h file */ 
{ char name[lO]; /* instance variables */ 

int type; 
float mass; 
int charge; 
int hypercharge; 
int spin; 
boolean isstable; 
boolean hasDecayed; 
id parent; 
id childlist; /* list of decay products */ 
float E; I* energy *I 
float px; /* momentum */ 
/* helicity, etc . . . . . . . . . */ } 
/* declaration of methods for the particle class: */ 

+ create:sender; //the creation method with parent’s id 
- (char *) name; 
- (float) energy; 
- setEnergy:(float) E; 
- decay; 

I* etc... */ 
@end 

FIGURE 2: The header file for the Particle class. 

@ implementation Particle /* Partic1e.m file */ 
+ create:sender N the creation method 

{ self = [ super new 1; 
childList = [ List new]; 
parent = sender; 
lifespan = rand(); return self; } 

- (char *) name 
( return name; } 

- (float) E 
{ return E; ) 

- setEnergy:(float) energy 
{ E = energy; return self; } 

- decay 
/* etc... */ 

@end 

FIGURE 3: The implementation file for the Particle class. 



#import Partic1e.h 
#import Boson.h 

// piP1us.h file 

@ interface piPlus:Particle 
( float br-muon; } 
+ create:sender; 

- - decay; 
@end 

// added instance variable 
// create method with parent’s id 

#import piP1us.h // piP1us.m file 
@ implementation piPlus 
+ create:sender // the creation method 

{ self = [ super create:sender 1; 
strcpy(name,“piPlus”); 
charge = 1.0; hypercharge = 0.0; 
mass = 0.139; br-muon = 0.75; 
isstable = NO; hasDecayed = NO; 
return self; } 

- decay 
{ if (has-decayed II is-stable) return self; 
i if (ranflat(&idum) -C bymuon) { 

[ childList addObject:[muPlus create:selfl]; 
[ childList addObject:[nuMuon create:selfl];} 

else { 
[ childList addObject:[positron create:selfl]; 
[ childList addObject:[nuElectron create:selfl];) 

has-decayed = YES; 
[ self SetKinematics]; //set kinematics, helicity of decay products 
[ childList makeObjectsPerform:@selector(decay)]; 

return self; } 
@end 

FIGURE 4: The header and implementation file for the piplus class. 

The specific particle classes are more interesting. The piPlus class has class 
definitions containing additional instance variables and a customized 
implementation of certain generic methods in the Particle class, especially the 
create and decay methods. This is illustrated in fig. 4. The resulting create 
method for the piMinus class is given in fig. 5. 
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#import piP1us.h // piMinus.m file 
#import piMinus.h 
@ implementation piMinus 
+ create:sender 

{ self = [ super create:sender 1; 
[ self chargeconjugate 1; 
strcpy(name,“piMinus”); 
return self; } 

@end 

FIGURE 5: The create:parent method for the piMinus class. 

In the decay method, the call to the random number generator, ranflat, 
determines the decay mode, the setKinematics method in the present code 
calls a FORTRAN subroutine that assigns the final state momentum (an 
illustration of re-using old code!). The final line is the recursive message that 
keeps the generator going; it sends the childList the message 
“makeObjectsPerform” which sends the message “decay” to each decay 
product in turn. 

The decay method in this code is customized for each particle class since each 
has its own individual branching ratios and decays. For example, the String 
class, a quark-antiquark pair plus string, decays into itself at high masses, and 
into ordinary hadrons as its mass decreases. Thus its decay method is quite 
analagous to the decay method for physical particles; the matrix element is, of 
course, very different. 

In the alternative data cache method discussed earlier, each instance of a class 
would contain pointers to an array of branching fractions and to an array of 
decayModeList objects, each of which contains a list of factories that create 
instances of each decay particle in the final state. There is then no need for a 
customized decay method for each particle class. 



MC++ 

We feel that this particular “McOOP” example shows clearly the benefits of 
OOP when writing a particle generation/decay program. It is, however, very 
far from a finished “product” from a user’s point of view. The user would 
typically want to be able to easily change branching fractions, switch on or off, 
add or remove decay channels and also, e.g., in B-decay where far from all 
branching fractions are known, switch between different models of the decay, 
i.e., different decay methods. To do this in the explicit McOOP example given 
above, the user would have to go into the code to do changes and then 
recompile, which is not a satisfactory situation. 

Therefore, in the next example, the goal will not be to write an event 
generator, but rather to try to define the structure of a general event generator 
using OOP. Or in other words, to take an OOP language, in this case, C++ [2] 
(see;also Appendix A), and customize it to create a “dialect” specially suited 
for event generators, i.e., a toolbox or a class Iibrary for particle decay. 

A first attempt along these lines is a “template” program which we call 
MC++. As it stands, it can only handle ordinary particle decays, but it is 
written to be expandable to a complete event generator. In designing the code, 
we defined a number of goals. These can be divided into two groups: 
requirements from the “user’s” point of view and requirements from the 
“model builder’s” point of view. The first group contained things like: 

1. The user should easily be able to add, remove and change decay 
channels, branching fractions and decay methods of particles as well as 
adjust their mass and lifetimes, etc. 

2. The user should just as easily be able to change between different 
models, e.g., partonic showers and fragmentation. 

3. The code should be portable between different machines. 
4. The code should be easily interfaced to a GUI. 

From the model builder’s point of view, we required that: 
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1. The code should be modular, so that a model just describing a small 
part of the event generating chain is easily added. 

2. The code should provide utilities to facilitate development of new 
“modules.” 

The result is presented schematically in fig. 6 which describes the class 
hierarchy of MC++. 

List P 

9-91 
7007Al 

1 ParticleFactory [ 

Random- 
Number- 

Generator- 

1 DecayChannel I 

ThreeVector 

FourMomentum 

Particle 

- TwoBody 

Sage 

I 
------ 

7 String 
------ I 
------ 

4 Cluster ( 
mm---- 

t 

------ 

i-----1 
Collision 

------- 
I 
I I 

FIGURE 6: The class hierarchy of the MC++ program. 

The first thing to note is that since the decay channels and decay methods, 
etc., are not fixed in the code, there is no longer any great difference between, 
e.g., a 7~+ and a K-. Hence there is no reason to have the “deep” hierarchy of 
McOOP where each particle is a class of its own. Instead they are all members 
of the same class called “Particle." Also String,Cluster and Collision 
are classes which are derived from particle. In this way, the complete chain 
in the event generation can be described in terms of Particles decaying into 
Particles. For example, we can have the (generalized) Particle “e+e- 
Collision" which is an object of the Collision class, decaying into a “20” 
which decays into a String, which, in turn, decays into Particles. 
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class Particle: public FourMomentum ( 

/* instance variables describing the particle type: */ 

char name[ lo]; 
int type; 
float mass; 
int charge; // charge is in units e/3 
int spin; // unit l/2 
boolean isstable; 

DecayList* decayTable; 

I* etc... 
instance variables describing this instance of the particle: */ 

ThreeVector creationpoint; 
ThreeVector decaypoint; 

ParticleList childlist; 
Particle* parent; 

- boolean hasDecayed; 

/ * etc... 
declaration of methods for the particle class: */ 

public: 

Particle(); //the creation method 
virtual void decay(); 
virtual void addChild(Particle* child); 
float charge(); 
float spin(); 
char* name(); 
int type(); 
void boost(double bx, double by, double bz); 
rotatePhi(float phi); 
rotateTheta(float theta); 
void setDecayPoint(ThreeVector point); 
void setCreationPoint(ThreeVector point); 
Particle* copy(); 
void print(); 
-Particle(); N the destruction method 

/ * etc... */ 

FIGURE 7: The definition of the Particle class. 
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The main structure of the code is contained in the definition of the particle 
class and we will therefore begin by describing its features. 

The Particle Glass 

The Particle class is derived from the FourMomentum class in an attempt to 
make life easier when developing new methods. The FourMomentum class 
has, besides its variables px, py pz and E, methods for boosting, rotating, etc., 

which are inherited by the Particle class. Inthis way, a Particle knows 
automatically how to be rotated and boosted [3]. 

The instance variables of the Particle class (see fig. 7) can be divided into 
two groups. One group describes the generic features of the particle type: 
name, charge, mass, decay channels, etc.; and one group describes the 
part&ular instance of a particle: fractional lifetime, creation point, a list of its 
children, etc. (its four-momentum is inherited). The decay channels are 
described by a pointer to a DecayList object, which is simply a list of objects 
of the DecayChannel class. Each DecayChannel contains a branching 
fraction, a pointer to a ParticleList containing a list of the decay products 
and a pointer to a Decayer object. 

When a Particle receives a message to decay (see fig. S), it will tell the 
DecayList to select a DecayChannel according to the branching fractions. 
Then it will send a message to the Decayer pointed to by the DecayChannel 
to perform the decay, giving the pointers to itself and to the list of decay 
products. Finally, the particle sends messages to its children to decay as well. 

In this way, the whole event generation is defined. The procedure would be 
to first define the different particles, their masses, the way they decay, etc., and 
then to generate, e.g., a LEP event you would simply create the generalized 
particle e+e-Collision giving it a mass of 91 GeV and tell it to decay. 
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void Particle::decay() { 

if( isstable II hasDecayed ) return; 

DecayChannel channel = decayTable->selectChannel(random.flat()); 
(channel->decayer)->decay(this,channel->products); 
hasDecayed = YES; 

Particle* child = childList.top(); 
while(child = childList++) child->decay(); 

FIGURE 8: The definition of the decay method in the Particle class. 

The problem here, as compared with the McOOP example, is that since the 
particles’ properties are not defined in the code, it is difficult to let the 
oper&ing system completely administer the creation of new particles in the 
program. Instead, we have defined a class called ParticleFactory to do this. 

The ParticleFactory Class 

The ParticleFactory class keeps a list of “templates” of all available 
particles and all available decay methods, and it is by passing messages to a 
ParticleFactory object that the event generating chain is defined. The 
Particle class itself is not equipped with any methods to change the generic 
features of a particle type such as decay channels and methods; instead, this is 
handled completely by the ParticleFactory through methods like the ones 
listed in fig. 9. This encapsulation is to ensure that everything is set up 
consistently so that, e.g., a 7~0 is not set up to decay according to string 
fragmentation. 

The ParticleFactory is also equipped with methods to read and write 
information to and from files. In particular, it should be able to use machine- 
readable and user-modifiable files with standard particle properties, decay 
channels and branching fractions. The procedure would be to have a file with 
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class ParticleFactory { 

DecayerList decayers; 
ParticleList particles; 

public: 

ParticleFactory(char * fileName = “pdg.ptab”); 
readFromFile(char*); 
saveToFile(char*); 

void addParticle(char* particleName, int particleNumber); 
void setParticleMass(int particleNumber, float mass); 
void setParticleMass(char* particleName, float mass); 
void setParticleSpin(int particleNumber, int spin); 
int addDecayChannel(int particleNumber, float branchingFraction, \ 
int decayerNumber, int numberofchildren, . . . ); 
void removeDecayChannel(int particleNumber, int channelNumber) 
void setBranchingFraction(int particleNumber, int channelNumber, \ 

float branchingFraction); 

void addDecayer(char* genericName, int number, char* name); 
void setDecayerOptions(int number, char* options); 

Particle* getA(char* particleName); 
Particle* getA(int particleNumber); 

/* etc... */ 

-ParticleFactory; 

FIGURE 9: The definition of the ParticleFactory class. 

a standard set of additions and modifications and then a set of files with 
changes corresponding to different experiments. 

When the event generating chain is completely set up, the ParticleFactory 
object can be made to produce copies of its template particles in the same way 
as the operating system does in the McOOP example. In this way, the 
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ParticleFactory can be thought of as an extension of the operating system, 
and we actually prefer to view the whole structure of MC++ as an extension 
of the programming language C++, customized for event generation in 
particle physics. 

TheDecayerClass 

The generic Decayer class is very simple. As seen in fig. 10, it has only three 
instance variables: a generic name for the type of decayer and a name and 
number for a particular instance of a decayer. Besides the creation and 
destruction methods, it has only two methods: decay and isAllowed which 
are virtual in the sense that for this generic class they do nothing except 
declares the method names to be inherited by the derived decayer classes. 

class Decayer{ 

char genericName[ lo]; 
char name[ lo]; 
int number; 

public: 

Decayer(char* name, int number); 
virtual boolean isAllowed(Particle* parent, ParticleList* children); 
virtual int decay(Particle* parent, ParticleList* children); 
-Decayer(); 

FIGURE 10: The definition of the Decayer class. 

The procedure for developing new decay methods would then be to write a 
new class derived from the generic Decayer class, modifying the decay and 
isAllowed methods. A very simple example, the TwoBody decayer which 
simply decays a Particle into two according to phase space, is shown in 
fig. 11. The isAllowed method simply checks that the list of decay products 
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class TwoBody: public Decayer( 

public: 

TwoBody(char* name, int number); 
boolean isAllowed(Particle* parent, ParticleList* children); 
int decay(Particle* parent, ParticleList* children); 

TwoBody(); 
1; 

boolean TwoBody::isAllowed(Particle* parent, ParticleList* children){ 
return children->count() == 2 ; 

int TwoBody::decay(Particle* parent, ParticleList* children); 

Particle* child1 = factory->getA(children[ 11); 
Particle* child2 = factory->getA(children[2]); 

if( childl->mass() + child2->mass() > parent->mass() ) [ 
delete child 1; 
delete child2; 
return 0; 

-1 
-float mass12 = (childl->mass())*(childl->mass()); 
float mass22 = (child2->mass())*(child2->mass()); 
float energy = parent->mass(); 
float energy1 = (energy*energy - mass22 + mass12)/(2*energy); 
float pz = sqrt(energyl *energy 1 - mass12); 
*child1 = FourMomentum(O.0, 0.0, pz, energyl); 
*child2 = FourMomentum(O.0, 0.0, -pz, energy - energyl); 
float theta = acos(random.flat(-1.0, 2.0)); // random.flat(-1.0,2.0) 
childl->rotateTheta(theta); // gives a random number 
child2->rotateTheta(theta); // between -1 and 1. 
float phi = random.flat(2*PI); // random.flat(2*PI) 
child1 ->rotatePhi(phi); // gives a random number 
child2->rotatePhi(phi); II between 0 and 2 pi. 
child 1->boostFromCMOf(parent); 
child2->boostFromCMOf(parent); 

childl->setParent(parent); 
child2->setParent(parent); 
parent->addChild(childl); 
parent-BaddChild(child2); 
return 1; 

FIGURE 11: The header and implementation files for the TwoBody decayer 
class. 
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consists of exactly two particles. The decay method performs the decay and 
we like to think that it is written in such a transparent manner that even 
readers with very poor knowledge of C++ will need no further comments. 

Finally, in fig. 12 there is an example of how to use MC++ to produce 10 K+ 
decays and to print them. 

main0 { 

ParticleFactory factory(“fileOfPartic1ePropertie.s”); 
factory.readFromFile(“MyFavouriteChanges”); 

Particle* p; 
for (int i=O; i40; i++)( 

p = factory.getA(“K+“, 0.0, 0.0, 10.0) 
- p->decay(); 

i 
p->print(); 

FIGURE 12: Example of a main program using the MC++ structure. 

As it stands, MC++ is, of course, just as far from a finished product as McOOP. 
A project is, however, planned by the theory departments at Lund and SLAC, 
to develop the MC++ idea into a product which (hopefully) may set the 
standards for the next generation of event generators. The form and time 
scale of the project is not fixed, and we would like to encourage anyone who 
is interested to contact us so that the base for this project can be broadened. 

Conclusions 

We have found that it is possible to write OOP code simulating particle 
production and decay and utilizing Monte Carlo methods in a very clear and 
understandable form; the code allows easy and straightforward extensions- 
the addition of new particle classes and/or decay reactions is simple, 
straightforward and without hidden pitfalls. 
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In summary, when bookkeeping and memory management DOMINATE the 
design of a simulation code, OOP offers many advantages over conventional 
procedural languages. When code must be flexible, maintainable and 
extendable, again, OOP should be considered. The slight pain experienced 
when learning a new computer language and the mastering of the quite 
different OOP design philosophy will be well worthwhile in the long term. 
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Appendix A: Objective-C vs C++ 

Both Objective-C and C++ are object oriented extensions of the C 
programming language. They differ, however, very much both in notation 
and in “philosophy.” We can only alert the reader to be on guard in this brief 
appendix. 

The notational differences are perhaps the most obvious. In C++, classes are 
implemented as an extension of the structures in C, which besides containing 
member variables now also may contain member functions which are 
accessed in the same way. In Objective-C the classes are implemented as a 
completely new feature, and the declaration of classes differs quite radically as 
can be seen in the code examples above. 

The-notational differences when sending messages to objects are also large. If 
"p" denotes a (pointer to a) Particle, to decay it in McOOP one would write: 

[p decay1 ; 

While in MC++ the notation would be: 

p->decay(); 

Which of these notations one prefers is, of course, a matter of taste. A more 
important difference is that C++ has what is called “strong typing.” This 
means, e.g., that it has to be decided at compile time what kind of object a 
pointer refers to. So that in the example above, "p" must be defined as “a 
pointer to a Particle object.” In Objective-C, however, p can be defined as a 
pointer to any object which makes it easier to construct general classes. As an 
example, the List class in Objective-C may contain any object, whereas in C++ 
there has to be a separate List class for each kind of object (cf. ParticleList 
and DecayList in MC++). This is accomplished in Objective-C because all 
classes are derived from the common (abstract) base class called "object ." 
The use of virtual functions [3] in C++ can, in fact, accomplish something 
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similar. Note, e.g., that the ParticleList class may also contain objects of 
classes derived from the Particle class. 

The advantage of strong typing instead lies in the run-time speed. In 
Objective-C it first has to be checked if p really is an object of the particle class 
before the decay method is invoked and this, of course, takes time. 

Another feature of C++, not present in Objective-C, is called operator 
overloading. This enables you to redefine any operator to perform different 
tasks depending on its arguments. As an example, in MC++ the operator ‘I*” 
is redefined so that if pl and p2 are two objects of the class FourMomentum, 

Pl * p2 gives the scalar product of the two, etc. 

For more details about the two languages, we suggest refs. [3] and [4]. The 
reader then can make his own comparisons and evaluations. 
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