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Superstring theory appears to be a viable candidate for a consistent theory of 

quantum gravity which also bears the possibility of unifying of all known inter- 

actions!” However, in order to extract physical properties of string theory at the 

weak scale various technical and conceptual problem have to be solved. First, it 

is presently not understood how supersymmetry can break at a scale much lower 

than the Planck scale. Such a hierarchical supersymmetry breaking seems to be 

a necessary ingredient for obtaining the right low energy physics. Secondly, the 

(unified) string gauge coupling constant is determined by the vacuum expectation 

value (Vev) of a gauge neutral scalar field called the dilaton S. To all orders in 

string perturbation theory S turns out to be a flat direction of the effective po- 

tential and thus the value of the gauge coupling constant remains undetermined. 

Thirdly, there is no known mechanism which keeps the cosmological constant at 

zero after supersymmetry breaking. Finally, there is an enormous degeneracy in 

string vacua and it is not understood how the theory chooses between these vast 

number of possibilities. It is believed that all four problems can only be addressed 

(or solved) when string non-perturbative effects are taken into account. Unfortu- 

nately our understanding of the non-perturbative structure of string theory is very 

limited. Therefore the theory is commonly analyzed under the assumption that 

the dominant non-perturbative effects are field theoretical in nature. This then 

leads to a ‘superstring-inspired’ treatment of non-perturbative effects. 

Recently there has been considerable progress in understanding non-perturba- 

tive properties of (non-critical) string theories in lower space-time dimensions!] In 

particular it has been argued that ‘stringy’ non-perturbative effects are larger than 

their field theory counterparts!’ If this situation persists for critical string theory 

any field theoretical treatment of non-perturbative effects in string theory would 

be invalidated. Here, however, we focus on supersymmetry breaking in a purely 

field theoretical context. 

The prominent non-perturbative effect for breaking supersymmetry dynami- 

cally is gaugino [*I condensation. This was already investigated in the context of 

supergravity in the early 80’ies and was first applied to the heterotic string in 
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ref. 5. 

Let us briefly summarize the mechanism proposed in supergravity which ex- 

plains the hierarchy of the weak scale Mw, the supersymmetry breaking scale MS 

and the Planck scale i&q!] This is done in two steps. First, imagine that super- 

symmetry is broken by the Vev of a dimension 2 (auxiliary) field F ((F) - MS) 

in a so called ‘hidden sector’ which has no renormalizable couplings with the ob- 

servable sector. This breaking is then communicated to the observable sector via 

gravitational interactions and results in masses m, for the supersymmetric partners 

of the observable spectrum of the order m, - Mz/Mpl. Thus for m, to be in the 

TeV range one needs MS N lOlo - 10”GeV. In a second step (which will occupy 

the rest of the talk) one explains the generation of MS from Mpl. The favorite 

scenario is to assume the hidden sector to consist of an asymptotically free non- 

abelian gauge theory which is weakly coupled at Mpl but becomes strongly coupled 

at some lower scale AC. In such a theory the gauginos X will condense and possibly 

induce supersymmetry breaking at a scale 44: - A,“/Mpl. In order to achieve the 

above hierarchy the condensation should occur at A, N 1013 - 1014GeV. A, can 

be estimated by RG-invariance to be”’ 

A, N MPl exp( - 
87r2 

bOS2(MPl) 
) 

where g is the gauge coupling constant and bo the one loop coefficient of the ,8- 

function. Thus, to achieve the desired hierarchy one needs to adjust the gauge 

coupling constant and the size of the hidden gauge group. 

The scenario can be applied to superstring inspired models. The occurrence of 

a hidden sector is very generic in string vacua; the hidden Es of the heterotic string 

is only one of many examples. The new ingredient is a dynamical gauge coupling 

constant which is determined by the Vev of the Dilaton superfield (l/g2 = (ReS)) 

at the string tree level. This relation is further corrected at the one loop level by 

so called threshold corrections A which arise from integrating out heavy modes of 

the string spectrum!’ If the masses of the heavy fields depend on the Vev of a light 
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field T (Higgs or modulus) the threshold corrections can also be field dependent 

and we have altogether 

l/g2 = ReS + A(T, T) . (2) 

Such a field dependent contribution to l/g2 occurs frequently in string theory!” 

Thus, from eqs. (1) and (2) we see that the essential difference in these ‘string 

inspired’ scenarios is the fact that the condensation scale is field dependent and 

undetermined. A self consistent analysis must be invoked which assumes the for- 

mation of the condensates, then derives an effective potential for it which indeed 

leads to a non-zero condensate after minimization. 

It has not been entirely clear how to incorporate field dependent gauge cou- 

plings into a manifestly supersymmetric gaugino condensation mechanism. There- 

fore let me first mention some recent investigations about the structure of gauge 
[T-IO] 

couplings in supersymmetric theories. At the tree level, supersymmetry con- 

strains field dependent gauge couplings to be the real part of a holomorphic function 

f(4). (Its imaginary part is related to a field dependent e-angle.) This turns out 

to be no longer true once loop effects are included. In particular the threshold 

corrections A need not be the real part of any holomorphic function. Such non- 

holomorphic contributions can arise when massless particles contribute in loops to 

A. This situation was found to occur in some superstring models[” and a general 

formula for the non-harmonic contribution to A in terms of the tree level couplings 

of the massless fields was given in ref. 10. If there are no massless particles in the 

theory or if only the massive modes are integrated out l/g2 remains the real part of 

a holomorphic function also at the loop level. Therefore it is crucial to distinguish 

between the physical (running) gauge coupling and the Wilsonian gauge coupling 

gw18’ The latter is defined to receive loop contributions only from massive modes 

and thus continues to be the real part of a holomorphic function. It was further 
PJll shown that gw is not renormalized beyond one loop. 

Now we are prepared to discuss gaugino condensation in a supersymmetric 

framework including field dependent gauge couplings. Most of the effects of the 
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condensation are captured by a supersymmetric effective Lagrangian below the 

condensation scale where all gauge degrees of freedom have been integrated out!12’ 

One introduces a composite chiral superfield U describing the dynamics of the con- 

densate and derives the effective Lagrangian by demanding that the (anomalous) 

Ward identities of the theory are satisfied. For a hidden sector which contains a 

pure gauge theory the effective superpotential reads’12’13’8”01 

Weff(U,S,T) = $ 
1 

fw(S,T)+& ln(li 
%I )I 

where the new feature is the appearance of fw (which contains the Wilsonian 

gauge couplings gw as its real part) in eq. (3). As we just mentioned fw does not 

get corrected beyond one loop and hence eq. (3) is exact. Minimization of Weff 

with respect to U leads to 

We see that U is closely related to the condensation scale A, and as we expected 

depends on the fields S, 7’. (The precise relation between A, and U reads A,” = 

eK121UI where K is the Kahler potential.) Minimization of W with respect to 

S, however, leads to S = oo, U = 0. Thus the effective potential (3) predicts a 

vanishing gauge coupling constant, clearly an unacceptable state of affairs. A way 

out of this dilemma was proposed some time ago in ref. 14 and further investigated 

in ref. 15. It imagines a hidden sector of two gauge groups with very closely matched 

p-functions (e.g. SU(N) x SU(N + 1)) and a difference 6 (S = a - %) in the 

field independent, thus constant threshold corrections. Under these assumptions 

minimization of eq. (3) g enerates a dilaton Vev whose size is controlled by large N 

and to leading order in N is given by 

N2S 
ReS = - 

167r2 (5) 
(For example SU(9) x SU(10) with 6 = 4 leads to ReS = 2.1 or CXGUT - l/25 but 

a slightly too large A, - 10”GeV.) Unfortunately, without any 2’ dependence of 

fw supersymmetry is unbroken at this minimum. 
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However, once the dilaton is stabilized supersymmetry can be broken in the 

presence of a T dependent fw which seems to be generically induced in string 

models but has been calculated explicitly only for a certain class of string vacua 

(orbifolds) as a function of the (untwisted) moduli T!” In string theory one does 

not compute fw directly but rather A which includes contributions of the light 

fields. fw is obtained after subtracting these contributions of the light fields which 

leads in the case of the Es gauge group in symmetric orbifolds to[10’131 

f$ = S+ $lnq2(T) 

where q is the Dedekind v-function. Inserted into eq. (4) results in 

U- M;?, vs6(T) exp(-F) . (7) 

It was shown in ref. 13 that the superpotential corresponding to eq. (7) can lead 

to supersymmetry breaking via (FT) (th e auxiliary field in the T supermultiplet) 

once the dilaton is fixed. 

The T-dependence of eq. (7) was first derived from a slightly different point of 

view. For these orbifold vacua there is a discrete symmetry (modular invariance) 

acting on the moduli fields T!lsl Ref. 17 investigated the possible T dependence of 

weff which is compatible with modular covariance, holomorphicity and regularity 

of W”‘f. These requirements constrain the T dependence to the one of eq. (7). 

Since modular invariance is believed to hold to all orders in string perturbation 

theory, we understand the exactness of this superpotential from both points of 

view. 

Including the threshold corrections into the gaugino condensation mechanism 

(partially) solves another of the problems listed above. Similar to the dilaton the 

moduli T are also scalar fields whose Vev is undetermined to all orders in string 

perturbation theory. They parametrize a family of degenerate string vacua. The 

non-perturbative superpotential generated via gaugino condensation determines 

6 



their Vevs thus (partially) lifting the vacuum degeneracy. In the case of orbifolds 

the untwisted modulus T corresponds to the radius of the internal manifold. It is 

interesting that gaugino condensation seems to fix the radius at some finite value 

thus leading to compactification through a dynamical mechanism!131 Unfortunately, 

supersymmetry breaking does depend on the functional form of fw which prohibits 

a generic analysis for all string vacua. 

Finally, let us consider a hidden sector which contains Nf generations of (mas- 

sive) matter fields C’ in the fundamental representation of a hidden gauge group 

SU(N). This is a more realistic situation in string theory than a pure gauge hidden 

sector. The effective potential (3) is g eneralized for this case to read’12’18”01 

fw(S,T) + N8i2Nf lnU+ -J--lndet j@] 8+? @I$ +Wtree(H’ T, 1 (8) 
where IIIJ = (C’CJ) d enotes the condensate of the matter fields. The analysis of 

this superpotential becomes somewhat more involved and depends on the detailed 

form of Wtree (l&T) and in particular on the generation of the mass term. So far 

only special cases have been studied in detail!ls’lol However one can note a few 

general features. After integrating out all fields except S and T an equation quite 

similar to (7) emerges. (Again the T dependence follows from modular invariance.) 

The mechanism for stabilizing the dilaton can be implemented as before with the 

possibility of an improved hierarchy and supersymmetry can again be broken by 

(FT). One should also note that a hidden sector without a mass term but rather a 

quartic coupling can appear in string theory and it is straightforward to treat such 

a case in the framework of an effective Lagrangian. Overall, for a hidden sector 

containing matter representation a more detailed analysis is needed. 

Unfortunately, almost all of the above scenarios lead to a non-zero cosmological 

constant and they offer no explanation why it should vanish. 

To summarize, we have sketched a possible mechanism which stabilizes the 

dilaton at a phenomenologically viable value and leads to the generation of an in- 
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termediate scale via gaugino condensation. After including field dependent thresh- 

old corrections supersymmetry can be broken. Unfortunately the cosmological 

constant is non-zero. 
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