Importance of the $B_s^0 \rightarrow \mu^+ \mu^-$ Branching Fraction (*)

A. Fridman (**) and A. Snyder

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

Summary.—We discuss the $B_s^0 \to \mu^+ \mu^-$ decay channel, which is sensitive to deviations from the standard model. We also consider the B_s^0 mixing information that could be obtained from these decays in the framework of the standard model. Finally, we comment on the experimental difficulties of observing the $B_s^0 \to \mu^+ \mu^-$ channel.

PACS13.20.-v -Leptonic and semileptonic decays of mesons. PACS13.20.Jf - Other meson decays.

1. – Introduction

To illustrate the usefulness of large $B\bar{B}$ data samples, we briefly discuss problems related to the measurement of rare *B*-decays, specifically, the $B_s^0 \rightarrow l^+ l^-$ channels where $l \equiv \tau, \mu, e$. These decays are expected to have small branching ratios (see below), but to be sensitive to deviations from the standard model. Moreover, these measurements could give additional information about B_s^0 mixing that could complete our knowledge of the mixing observed for the B_d^0 case with the $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B_d^0 \bar{B}_d^0$ experiments [1].

Submitted to Il Nuovo Cimento

^(*) Work supported by Department of Energy contract DE-AC03-76SF00515.

^(*) LPHHE, Université de Paris VI et VII.

Let us recall that in the standard model the B_s^0 mixing parameter [2,3] x_s is expected to be much larger than x_d , the B_d^0 case $(x_s/x_d \sim 14)$. Although the measurement of r_s ,

(1)
$$r_{s} \equiv \left[N \left(B_{s}^{0} \to \bar{B}_{s}^{0} \right) \right] / \left[N \left(B_{s}^{0} \to B_{s}^{0} \right) \right] = \left[x_{s}^{2} / (2 + x_{s}^{2}) \right] ,$$

appears to be possible [4] (N is the number of events), the extraction of the x_s value becomes difficult if x_s is large [5]. The distribution of the timedependent rate could, in principle, also allow the x_s value to be obtained [2] if the detector can measure the time-dependence with good precision [4]. Because this measurement will be difficult, an indirect estimate of x_s via branching ratio measurements might be very helpful (see below). In any case, the comparison of x_s measurements using different methods will be a further test of the standard model.

2. – The $B_s^0 \rightarrow l^+ l^-$ decay

These decays $(l \equiv \tau, \mu, e)$ have been investigated theoretically [6-9]. Estimates of the branching ratios [8] are given in Table I for a top quark mass, $m_t = 150$ GeV (here m_k is the mass of the k-type quark or particle). The $B_s^0 \rightarrow \tau^+ \tau^-$ decay has the largest branching ratio, but will not be easily detected (the momentum of the τ must be measured in order to know if they are coming from the same B_s^0 meson). It may eventually be possible to detect the $B_s^0 \rightarrow \mu^+ \mu^-$ decay in experiments where very large statistics could be obtained. For this decay the theoretical expression for the branching ratios [8,9] is:

(2) BR
$$(B_s^0 \to \mu^+ \mu^-) =$$

= $(G_F^2/2\pi) (\alpha^2/16\pi^2) f_B^2 m_B (|V_{tb}V_{ts}|^2/\Gamma_s) m_{\mu}^2 |C(y)|^2$

Here G_F is the Fermi coupling constant and α is the fine structure constant. The f_B (usually assumed to be ~ 0.2 GeV) is the B_s^0 decay constant and Γ_s is the B_s^0 decay width. The V_{jk} are the CKM matrix elements and C(y) is a function of

$$y = f m_t^2/m_W^2 ,$$

given in [8]. Figure 1 shows the dependence of $BR(B_s^0 \to l^+ l)$ as a function of the top quark mass. We see that the branching ratio increases rapidly with increasing m_t . Notice also from (2) that the $B_d^0 \to \mu^+ \mu^-$ branching ratio will be much smaller than that expected in the B_s^0 . Their ratio should be of the order of $|V_{td}/V_{ts}|^2 \sim 0.06$.

Equation (2) contains several quantities that also appear in the parameter x_s describing the B_s^0 mixing [10]:

(3)
$$x_s \equiv \Delta M / \Gamma_s =$$

= $(G_F^2 / 2\pi) B_B f_B^2 m_B (|V_{tb}V_{ts}|^2 / \Gamma_s) m_t^2 |F(y)|^2 \eta$.

Notice that B_B is the bag parameter (~ 1) corresponding to the B_s^0 meson, while the QCD correction factor is $\eta \sim 0.85$ [11]. In this equation, the mass of the top quark is not neglected with respect to the W mass. Then in the standard model, x_s will depend on m_t via the $m_t \times F(y)$ factor where [10]

4
$$F(y) = (1/4) \left(1 + \left\{ [(3-9y)/(y-1)^2] + [6y^2 \ln(y)]/(y-1)^3 \right\} \right)$$

Figure 1 also presents the m_t dependence of x_s . It is much weaker than the m_t dependence of the branching ratio. Using (2) and (3), we obtain

(5) BR
$$(B_s^0 \to \mu^+ \mu^-) =$$

= $x_s \left[(3\alpha^2/16\pi) \times (m_{\mu}^2/B_B \eta) \times \{ |C(y)|^2 / [m_t^2 F(y)] \} \right]$.

Using this approach, x_s can be obtained by measuring the branching ratio. Moreover, an increase of x_s increases the branching ratio and facilitates its measurement. This contrasts with r_s and the time-dependence rate measurements discussed above. Note that so far only upper limits on $BR(B^0 \rightarrow \mu^+\mu^-)$ have been measured [16] (3.2×10^{-6}) .

By using (4) with known values of m_t and B_B , we obtain the value of $r_s = x_s^2/(2 + x_s^2)$, where the error on r_s will be small if x_s is large. For instance, with 100 $B_s^0, \bar{B}_s^0 \to \mu^+\mu^-$ events, we find $\Delta r_s/r_s \leq 4 \ 10^{-3}$ for $x_s \geq 10$. Thus the comparison of the r_s values obtained from (1) and (4) could verify the standard model, and eventually may be used to obtain x_s .

3. – Experimental comments

In the case that $BR(B_s^0 \to \mu^+ \mu^-) \sim 10^{-9}$ (Table I), this decay channel could not be studied with e^+e^- colliders [4,12]. For pp interactions with the LHC (c.m. energy of $\sqrt{s} = 16$ TeV) or SSC ($\sqrt{s} = 40$ TeV) colliders, the production of events with B mesons is much larger [12,13]. Table II indicates the number of $b\bar{b}X$ events (X meaning anything) expected in one year (10^7s) of running with a luminosity of $L = 10^{32}$ cm⁻² s⁻¹. This is the luminosity usually proposed for studying B-physics, in order

to decrease multiple interactions per bunch crossing [13]. Since tagging is not needed for the measurement of the discussed branching ratio, we envision a larger luminosity. For instance, with $L = 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$, we obtain at the SSC (LHC) ~ 1.4×10^3 (~ 6×10^2) $B_s^0, \bar{B}_s^0 \rightarrow \mu^+\mu^-$ events in one year of running (corresponding, however, to a number of interactions per second of $N_{int}/s \sim 10^8$).

Let us roughly discuss the properties of a μ -detector necessary to obtain a signal-to-background ratio of $S/B \sim 1$. Due to the large multiplicity in pp interactions, we expect a large background in the data sample used to study the $B^0_s \to \mu^+ \mu^-$ channel. The background can initially be decreased with kinematical cuts by using only tracks (charged particles) with large momentum (p > 5 GeV/c) and transverse momentum $(p_T > 1$ GeV/c). The momentum cut will decrease the contribution of μ 's due to the π and K decays. The number of charged particles pairs having an effective mass corresponding to B_s^0 will be reduced by the p_T cut [12]. At \sqrt{s} = 40 TeV (and using tracks with $p_T > 1$ GeV/c), we show in Fig. 2 the efficiency (ϵ) for detecting the $B^0_s \to \mu^+\mu^-$ channel as a function of the maximum value of θ due to the size of the chosen detector. Here θ is the emission angle of the charged tracks with respect to the beam line. A minimum value of $\theta > 1^{\circ}$ is used in the Monte Carlo calculation [14] because of the beam-pipe cut. Figure 2 also indicates the influence of the p limits (p > 0, 5, 10, 20 GeV/c).

As an example, we present in Table III the ϵ , S/B, and number of $B_s^0 \rightarrow \mu^+\mu^-$ events expected in one year of running, using kinematical cuts. These values were obtained with a Monte Carlo calculation at

 $\sqrt{s} = 40$ TeV. We assume that the $B_s^0 \equiv \bar{b}q$ production rate is taken to be 0.15 with respect to all particles containing a \bar{b} quark. We also consider that the $B_s^0 \to \mu^+ \mu^-$ can be detected after a decay length corresponding to the average B_s^0 lifetime. From Table III we see that a background rejection factor of at least $\sim 10^8$ is needed to achieve a workable signal-tonoise (S/B \sim 1). Here, only background due to $B\bar{B}$ events is considered. Thus the detector must have μ identification and B_s^0 vertex reconstruction adequate to obtain this level of background rejection [15]. In any case, detailed investigations have to be done to evaluate the possibility of measuring the $B_s^0 \to \mu^+ \mu^-$. We must also take into account other sources of background, for instance, Drell-Yan μ pair production, as well as $B \to \mu X, \pi^+\pi^-$ decays and non- $B\bar{B}$ events.

4. - Conclusions

We have discussed the $B_s^0 \to \mu^+ \mu^-$ channel, which is sensitive to deviations from the standard model. In addition, information about B_s^0 mixing was obtained in the framework of the standard model. Using this approach, large values of the x_s mixing parameter were measured. We also discussed the difficulties of measuring the $B_s^0 \to \mu^+ \mu^-$ having theoretical predictions of $\sim 10^{-9}$ for its branching ratio. Clearly, detailed investigations of the various backgrounds have to be made to evaluate the possibility of identifying $B_s^0 \to \mu^+ \mu^-$ events

* * *

It is a pleasure to thank A. Ali, L. Dixon and M. Peskin for useful discussions.

REFERENCES

- [1] H. Albrecht et al. (ARGUS): Phys. Lett. B192, 245 (1987);
 M. Artuso et al. (CLEO), Phys. Rev. Lett. 62, 2233 (1989).
- [2] I.I. Bigi and A.I. Sanda: Nucl. Phys. B193, 85 (1981);
 Nucl. Phys. B281, 41 (1987).
- [3] The mixing parameter x_{d,s} = ΔM_{d,s}/Γ_{d,s} for the B⁰_{d,s} has the inconvenience of having a value between 0 and ∞. Here ΔM_{d,s} is the mass difference between the heavy and light neutral mesons while Γ_{d,s} is their average width; see also the lectures: Mixing and CP Violation in the B-System, A. Fridman: Cern Report CERN-EP/88-123 (1988).
- [4] The Physics Program of a High-Luminosity Asymmetric B Factory, SLAC Report 353 (1989).
- [5] For instance, the measurement of the small value of r_d (~ 0.2) allowed one to obtain $x_d = 0.66 \pm 0.11$ [1].
- [6] B.A. Campbell and P.J. O'Donnel: Phys. Rev. 25D, 1989 (1982).
- [7] G. Eilam and A. Soni: Phys. Rev. Lett. **215B**, 171 (1988).
- [8] A. Ali: DESY Report 91–080 (1991).
- [9] M.J. Savage: Report RU-91-22 (1991)
- [10] Report CLNS 91-1043 (1991) and references therein.
- [11] A.J. Buras, W. Slominski, H. Steger: Nucl. Phys. B238, 529 (1984);
 Nucl. Phys. B245, 369 (1984).
- [12] A. Fridman and A. Snyder: Proceedings of the Large Hadron Collider Workshop, Aachen, 4-9 October 1990, CERN Report CERN 90-10, Vol. II, 218 (1990).

- [13] A. Fridman, B-Physics Possibilities with pp Colliders: Invited talk to be published in the Proceedings of the 3rd Topical Seminar on Heavy Flavor, San Miniato, 17-21 June 1991, and references therein.
- [14] H.-U. Bengtsson and T. Sjöstrand: Comp. Phys. Commun. 46 43 (1987).
- [15] Vertex reconstructions for B → μμ are under investigation, see for instance, C.S. Mishra, the E-772 and 789 Collaborations : Dilepton and Dihadron Production in Proton-Nucleus Collisions at 800 GeV, FERMILAB-Conf-90/100-E (1990).
- [16] L. Pondrom, Proceedings of the 25th International Conference on High Energy Physics, Kent Ridge, Singapore, August 2-8, 1990, and references therein.

TABLE I. Estimates of $B^0_s \rightarrow l^+ l^-$ branch-				
ing ratios; $m_t = 150 \text{ GeV}, f_B = 200 \text{ MeV}$				
[8]. The B meson decay constant is f_B .				
$\tau^+\tau^-$	1.8×10^{-7}			
$\mu^+\mu^-$	8.3×10^{-10}			
e ⁺ e ⁻	$2.0 imes 10^{-14}$			

•

•

ļ

· • · · • • • • • • •

TABLE II. Comparison of the total (σ_T) and $b\bar{b}X$ $[\sigma(b\bar{b})]$ cross section of the LHC and SSC colliders at a luminosity L of 10^{32} cm⁻² s⁻¹ [12,13]. The number of $b\bar{b}X$ interactions per year $(N(b\bar{b})/10^7 \ s)$ and the interactions per second (N_{int}/s) are also given.

•

	LHC (16 TeV)	SSC (40 TeV)
σ_T	~ 110 mb	~ 120 mb
$\sigma(bar{b})$	$\sim 200 \ \mu { m b}$	$\sim 500~\mu{ m b}$
$\sigma(bar{b})/\sigma_T$	1/550	1/240
$N(b\bar{b})/10^7s$	2×10^{11}	5×10^{11}
N_{int}/s	1.1×10^{7}	1.2×10^{7}

TABLE III. Kinematical cuts for detecting the $B_s^0 \rightarrow \mu^+\mu^-$ decay, estimated by using a Monte Carlo calculation [14] at the SSC centerof-mass energy. Given are the fraction of the events passing the kinematical cuts, ϵ , and the corresponding signal-to-background ratio, S/B. The cuts are the μ momentum (p), its transverse momentum $p_T \ge 1.5$ GeV/c, and $1^\circ < \theta < 20^\circ$. Here, $N(\mu\mu)$ is the number of $B_s^0 \rightarrow \mu^+\mu^$ events passing the cuts in one year of running at $L = 10^{33}$ cm⁻²s⁻¹.

:

$p \ge$	5 GeV/c	10 GeV/c	20 GeV/c
ε	0.27	0.24	0.15
S/B	$\sim 5 \times 10^{-9}$	$\sim 5 \times 10^{-9}$	$\sim 5 \times 10^{-9}$
$N(\mu\mu)$	150	133	84

FIGURE CAPTIONS

:

Fig. 1. – The $B_s^0 \to l^+ l^-$ branching ratio and the x_s mixing parameter as a function of m_t , the top quark mass.

Fig. 2. – The efficiency ϵ of detecting the $B_s^0 \to \mu^+ \mu^-$ events as a function of the maximum θ value at $\sqrt{s} = 40$ TeV. Here θ is the μ emission angle with respect to the beam line. The curves are given with μ having $p_T > 1$ GeV/c and various p limits.

ļ

Fig. 2