SLAC-PUB-5640 August 1991 (M)



# STANFORD LINEAR COLLIDER MAGNET POSITIONING\*

Bernd T. Wand Stanford Linear Accelerator Center Stanford University Stanford,CA 94309

# ABSTRACT

For the installation of the Stanford Linear Collider (SLC) the positioning and alignment of the beam line components was performed in several individual steps. In the following the general procedures for each step are outlined. The calculation of ideal coordinates for the magnets in the entire SLC will be discussed in detail. Special emphasis was given to the mathematical algorithms and geometry used in the programs to calculate these ideal positions.

<sup>\*</sup> Work supported by the Department of Energy Contract, DE-AC03-76SF00515

To be presented at the 1992 ASPRS / ACSM (American Society for Photogrammetry and Remote Sensing / American Congress on Surveying and Mapping) Annual Convention Albuquerque, New Mexico March 3-5, 1992

# ACKNOWLEDGEMENT

•

This document would not have been possible without the help of Will Oren. Will Oren is now heading up the survey and alignment team at the Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, Virginia. He previously worked with the alignment team at the Stanford Linear Accelerator Center (SLAC) and was deeply involved in all the procedures described in the following document. I would like to thank him for all of his input and patience.

# TABLE OF CONTENTS

- <u>-</u> -

.

à. T

| 1.0 INTRODUCTION                                               | 4        |
|----------------------------------------------------------------|----------|
| 2.0 DESIGN COORDINATE SYSTEMS                                  | 4        |
| 2.1 IDEAL COORDINATE SYSTEM                                    | 4        |
| 2.1.1 DATUM FOR COLLIDER INJECTOR DEVELOPMENT (CID)            |          |
| AND WEST TURN AROUND (WTA) OF THE POSITRON                     |          |
| BEAM                                                           | 5        |
| 2.1.2 DATUM FOR DAMPING RING SYSTEMS                           | 5        |
| 2.1.3 DATUM FOR E+ SYSTEMS IN SECTOR 19                        | 6        |
| 2.1.4 DATUM FOR SLC EAST                                       | 7        |
| 2.1.5 DATUM OFFSETS                                            | 8        |
| 2.2 BEAM FOLLOWING COORDINATE SYSTEM                           | 9        |
| 3.0 MAGNET GEOMETRY                                            | 13       |
| 3.1 SPECIAL SECTION MAGNETS                                    | 13       |
| 3.2 ARC MAGNETS AND ACHROMATS                                  | 13       |
| 4.0 PREPOSITIONING OF SUPPORT SYSTEMS FOR THE ARCS (STEP 1 AND |          |
| STEP 2)                                                        | 15       |
| 5.0 ABSOLUTE POSITIONING OF THE MAGNETS (STEP 3)               | 17       |
| 5.1 ARC MAGNETS                                                | 17       |
| 5.1.1 C-CLAMP FIXTURES                                         | 18       |
| 5.1.2 PEDIGREES                                                | 19       |
| 5.1.3 CALCULATION PROCESS                                      | 22       |
| 5.1.3.1 IDEAL COORDINATES                                      | 22       |
| 5.1.3.2 IDEAL ROLL CALCULATION                                 | 25       |
| 5.1.3.3 DIAL GAUGE MOTION CALCULATIONS                         | 27       |
| 5.2 SPECIAL SECTION MAGNETS                                    | 28       |
| 6.0 SMOOTHING OF THE MAGNETS (STEP 4)                          | 29       |
| 6.1 ARC MAGNETS                                                | 32       |
| 6.1.1 FRONT FIDUCIALS                                          | 32       |
| 6.1.2 REAR FIDUCIALS                                           | 34       |
| 6.1.2.1 MTM WITHIN ACHROMAT                                    | 34       |
| 6.1.2.2 MTM FROM ACHROMAT TO ACHROMAT (WITH                    |          |
| ROLL TRANSITION)                                               |          |
| 6.2 SPECIAL SECTION MAGNETS                                    | 40       |
| 7.0 ROLLFIX IN THE ARCS                                        | 41       |
| 7.1 ROLLFIX CALCULATIONS                                       | 42       |
| 7.1.1 SEQUENTIAL ROTATIONS                                     | 43       |
| 7.1.2 ROTATION ABOUT DIRECTED LINE                             | 45       |
| 7.1.3 COMPARISON OF ROTATIONS                                  | 48       |
| GLOSSARY                                                       | 49       |
| ACRONYMS                                                       | 50       |
| APPENDIX ASign Conv                                            | ventions |
| APPENDIX B MEMO Dampir                                         | ng rings |
| APPENDIX C LINAC                                               | ; slopes |

#### 1. INTRODUCTION

•

This document outlines the general procedures for positioning beam line elements and calculating their ideal coordinates in the entire Stanford Linear Collider (SLC). The major goal is to position the beam line elements to their ideal positions within the final tolerances as follows:

- 1.) Two magnets within an achromat (defined beam line section) must point at each other with an angular accuracy of 0.04 milliradians.
- 2.) Transverse to the beam line (horizontal and in elevation) two magnets must be adjusted with an accuracy of 0.1 mm.
- 3.) The distance between two magnets must be adjusted with an accuracy of 0.5 mm.
- 4.) Roll must be set to within 2.0 milliradians of its ideal value.

The positioning of beam elements is done is several individual steps.

Step 1: Prepositioning of the support systems.

Step 2: Prealignment of the magnet adjustment system.

Step 3: Absolute positioning of the beam line elements.

Step 4: Smoothing of the beam line elements' position.

Special emphasis was given to the mathematical algorithms and geometry used in the programs to calculate these ideal coordinate positions.

#### 2. DESIGN COORDINATE SYSTEMS

# 2.1. IDEAL COORDINATE SYSTEM

The ideal coordinate system or absolute coordinate system is given by TRANSPORT. TRANSPORT is a program used to trace the path of a charged particle or group of particles through idealized magnets. These magnets can be strung together with intervals between them to form a sequence of elements called a beam line. The initial parameters which define an incoming beam's position and orientation relative to an absolute reference frame can be specified. These initial parameters along with the input parameters of a magnet string can be used to calculate a particle's path as it traverses the line. The program provides numerous pieces of information including coordinates, orientation angles of the particles, and the physical parameters particular to the optical elements. TRANSPORT coordinate system origins (datums) change depending on the section of the accelerator.

The datums listed below are all relative to the local gravity vector at the respective origin and define right-handed rectangular cartesian coordinate systems, with Y up and parallel to the direction of the vertical, Z pointing downstream (down the beam line) and X pointing to the left while looking down the beam line. Pitch is an exception to the right-handed rule. Pitch (down) means down in respect to gravity.

The slope of the LINear ACcelerator (LINAC) with respect to gravity is documented in Appendix C.

# 2.1.1. DATUM FOR COLLIDER INJECTOR DEVELOPMENT (CID) AND WEST TURN AROUND (WTA) OF THE POSITRON BEAM

Datum 1: The origin is a virtual point of the beam line at coordinates

Local TRANSPORT station# = LINAC station# = 0.0

Z = 0.0

•

X = 0.0

Y = 0.0

Roll = Yaw = 0.0

Pitch = -0.30023[DEG] (down)

= -0.00524[RAD] (down)

The scribe line on a brass plate embedded in the floor at the beginning of sector 1 defines the Z-position of the origin. <sup>1</sup>

# 2.1.2. DATUM FOR DAMPING RING SYSTEMS

Datum 2: The origin at beam height is 59.660[inches] upstream from the end of sector 1 which is at the center of girder  $1-9.^2$ 

LINAC station# = 003+28 [feet] Local TRANSPORT station# = 1.3228[m] = 4.33989[feet]

<sup>&</sup>lt;sup>1</sup> The scribe line on the brass plate is projected perpendicular to the beam line onto the beam line, rather than projecting it along the gravity vector.

<sup>&</sup>lt;sup>2</sup> See MEMO from W.A. Davies-White dated Nov. 24th 1980 (Appendix B).

Z = 0.0X = 0.0 Y = 0.0 Roll = Yaw = 0.0 Pitch = -0.29851[DEG] (down) = -0.00521[RAD] (down)

•

^

The start of the TRANSPORT run is 1.3228[m] (4.339894865[feet]) upstream of the origin of the coordinate system. This distance is measured along the beam line (sloped distance).<sup>3</sup> The starting coordinates are

Local TRANSPORT station# = 0.0 Z = -1.32278[m] = -4.33984[feet] X = 0.0 Y = 0.006892[m] = 0.02261[feet]Roll = Yaw = 0 Pitch = -0.29851[DEG] (down) = -0.00521[RAD] (down)

# 2.1.3. DATUM FOR E+ SYSTEMS IN SECTOR 19

Datum 3: The origin is a virtual point of the beam line at coordinates

LINAC station# = 060+00 [feet] Local TRANSPORT station# = 0.0Z = 0.0X = 0.0Y = 0.0

<sup>&</sup>lt;sup>3</sup> The pitch was chosen to be 0.00521[rad] according to a MEMO from Davies-White dated Nov. 24th 1980 (Appendix B). All TRANSPORT runs for the damping rings used this pitch. According to the design the pitch should have been set to 0.00523[rad]. (Appendix C)

Roll = Yaw = 0.0

•

Pitch = -0.2836[DEG] (down)

= -0.00495[RAD] (down)

A scribe line in a brass plate embedded in the floor at the beginning of sector 19 defines the Zposition of the origin.

# 2.1.4. DATUM FOR SLC EAST

Datum 4: Origin is a virtual point of the beam line at LINAC station 100+00 with coordinates LINAC station# = 100+00 [feet] Local TRANSPORT station# = 0.0 Z = 0 X = 0 Y = 77.64368[m] = 254.7365[feet]Roll = Yaw = 0 Pitch = -0.27158[DEG] (down)<sup>4</sup> = -0.00474[RAD] (down)

A scribe line in a brass plate embedded in the floor at the end of sector 30, station 100+00 witnesses the Z-position of the origin.

The start of the SLC-East TRANSPORT run is 15.26977[m] upstream of the origin of the coordinate system at the beginning of the last LINAC QUAD (Q81). This distance is measured along the beam line (sloped distance). Starting coordinates are:

Local TRANSPORT station# = -15.26977[m] = -50.09767[feet]Z = -15.26960[m] = -50.09711[feet]X = 0 Y = 77.71606[m] = 254.97396[feet]Roll = Yaw = 0 Pitch = -0.27158[DEG] (down) = -0.00474[RAD] (down)

<sup>&</sup>lt;sup>4</sup> At the beginning of the construction of the LINAC the pitch was chosen to be 0.00474[RAD]. All TRANSPORT runs for the arcs used this pitch. According to the design a pitch of 0.00476[RAD] = 0.27273[DEG] (Appendix C) should have been used.

The center of Q81 is defined as:

•

^

Local TRANSPORT station# = -15.23477[m] = -49.98284[feet]Z = -15.23460[m] = -49.98228[feet]X = 0 Y = 77.715897[m] = 254.973416[feet]Roll = Yaw = 0

Pitch = -0.27158[DEG] (down)

= -0.00474[RAD] (down)

# 2.1.5. DATUM OFFSETS

In order to distinguish the geodetic coordinates from the rectangular TRANSPORT coordinates and in order to always work with positive coordinate values the following offsets were agreed on:

| Origin         | Datum 1<br>Beg. sector 1 | Datum 2<br>SB0 Virtual<br>element on<br>girder 1-9 end of<br>sector 1 | Datum 3<br>Beg. sector 19 | Datum 4<br>Station 100+00<br>End sector 30 |
|----------------|--------------------------|-----------------------------------------------------------------------|---------------------------|--------------------------------------------|
| Offset in X[m] | 70000                    | 70000                                                                 | 70000                     | 70000                                      |
| Offset in Y[m] | 1100                     | 1200                                                                  | 1900                      | 2000                                       |
| Offset in Z[m] | 11000                    | 12000                                                                 | 19000                     | 90000                                      |

#### SLAC ALIGNMENT TEAM - SLC MAGNET POSITIONING





•

-

# 2.2. BEAM FOLLOWING COORDINATE SYSTEM

The beam following coordinate system is used to describe the orientation of the beam at any point along its path through the accelerator. This system remains tangent to the beam line with its positive z-axis pointing downstream. The system is rotated so that the positive x-axis generally points out from the bending arc and lies in the plane of the curve. The positive y-axis is oriented to complete the right handed coordinate system for the local beam.

Page 9



#### Figure 2. Orientation of the beam following coordinate system.

•

To bring the absolute coordinate system into coincidence with the local system, three shifts ( $Z_0$ ,  $X_0$ ,  $Y_0$ ) are executed first. This moves the origin along the beam line to the point of interest . Three sequential rotations are then applied which bring the axes of the shifted absolute system parallel to the axes of the beam following system. These three rotation angles are defined as follows:

yaw ( $\theta$ ) a rotation around the Y-axis of the shifted absolute coordinate system.

pitch ( $\phi$ ) a rotation around the once rotated X-axis.

roll ( $\psi$ ) a rotation angle around the twice rotated Z-axis.

These sequential rotation angles must be applied in the order specified. All rotation angles in alignment follow the right hand rule. Picture yourself standing in the origin of the coordinate system and looking down each axis. An angle is positive if it is a clockwise rotation. However, in TRANSPORT, this is not the case. The following chart explains the sign changes:

| TRANSPORT                                                                                                | ALIGNMENT                                                                                                 |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| $\boldsymbol{\theta}$ rotation (yaw, around y-axis) is positive when the z-axis turns towards the x-axis | $\theta$ rotation is positive when the z-axis turns towards the x-axis. This is the same as TRANSPORT.    |
| $\varphi$ rotation (pitch, around x-axis) is positive when z-axis turns towards the y-axis               | φ rotation is positive when z-axis turns away<br>from the y-axis. This is the opposite from<br>TRANSPORT. |
| $\psi$ rotation (roll, around z-axis) is positive when x-axis turns towards the y-axis                   | $\psi$ rotation is positiv when x-axis turns towards the y-axis.This is the same as TRANSPORT.            |

Figure 3.

.

-

TRANSPORT versus ALIGNMENT rotation directions.

With these six transformation parameters the beam-following system is defined and is called the  $z_i$ ,  $x_j$ ,  $y_j$  coordinate system.

The complete orientation matrix corresponding to the above rotations is formed from three single rotation matrices <sup>5</sup>:

 $R = R_{\psi}R_{\varphi}R_{\theta}$ 

with

$$R_{\psi} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\psi & \sin\psi \\ 0 & -\sin\psi & \cos\psi \end{pmatrix}$$
$$R_{\varphi} = \begin{pmatrix} \cos\varphi & 0 & -\sin\varphi \\ 0 & 1 & 0 \\ \sin\varphi & 0 & \cos\varphi \end{pmatrix}$$
$$R_{\theta} = \begin{pmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

<sup>5</sup> Moffitt "Photogrammetry" 1980: see pages 596ff

SLAC ALIGNMENT TEAM - SLC MAGNET POSITIONING

$$R_{\psi}R_{\varphi} = \begin{pmatrix} \cos\varphi & 0 & -\sin\varphi \\ \sin\psi \sin\varphi & \cos\psi & \sin\psi \cos\varphi \\ \cos\psi & \sin\varphi & -\sin\psi & \cos\psi \cos\varphi \end{pmatrix}$$

The product matrix is

$$R = \begin{cases} cos\phi cos\theta & cos\phi sin\theta & -sin\phi \\ sin\psi sin\phi cos\theta - cos\psi sin\theta & sin\psi sin\theta + cos\psi cos\theta & sin\psi cos\phi \\ cos\psi sin\phi cos\theta + sin\psi sin\theta & cos\psi sin\phi sin\theta - sin\psi cos\theta & cos\psi cos\phi \end{cases}$$

The total transformation equation is as follows:

$$\begin{pmatrix} z_i \\ x_i \\ y_i \end{pmatrix} = \underline{R} \begin{pmatrix} Z_i - Z_0 \\ X_i - X_0 \\ Y_i - Y_0 \end{pmatrix}_i \quad ; \ \underline{x}_i = \underline{R} (\underline{X}_i - \underline{k}_i)$$
(Eqn. 2-1)

Where  $Z_0$ ,  $X_0$  and  $Y_0$  are the initial coordinates of the origin.

Since R is orthogonal, the inverse transformation can be written as follows:

$$\underline{X}_{j} = \underline{B}^{t} \underline{x}_{j} + \underline{k}_{j}$$
 (Eqn. 2-2)

All regular rotation matrices represent a transformation from TRANSPORT to a beam following coordinate system. All transposed rotation matrices represent a transformation from a beam-following coordinate system to TRANSPORT.

The six parameters to perform this transformation are given by TRANSPORT at the beginning and end of drift spaces and magnets along the beam. The constant shift vector  $\underline{k}_i$  contains the actual beam coordinates at these points because the origin of the beam-following system lies on the beam line.

# 3. MAGNET GEOMETRY

Most beam lines are composed of box like magnets which guide and focus the beam through the system. However, the SLC combined function arc magnets are an exception. These magnets have a structure which greatly complicates the geometry of the system. Special section

elements in this document are all beam guiding and non-beam-guiding elements which are not combined function arc magnets.

# 3.1. SPECIAL SECTION MAGNETS

Normally the beam passes through magnets (dipoles, quadrupoles, sextupoles) and is either bent, focused, or defocused. The most important feature of placing these magnets is that their orientation is always the same as some single point along the beam line. In the case of dipoles, quads and sextupoles, the orientation point is usually the midpoint of the beam path through the magnet. For a bending magnet, this orientation point is the midpoint of a curved path. Unlike the arc magnets, most of the dipole's body does not follow the path of the beam. To steer the particles either up or down, the bend magnets can be rolled 90 degrees to form a vertical bend, or a magnet roll angle of less than 90 degrees can be applied to obtain a combination of horizontal and vertical bending.

# **3.2. ARC MAGNETS AND ACHROMATS**

The bending magnets of the SLC are combined function magnets, with magnetic properties of dipoles, quadrupoles and sextupoles. They are made by stacking and welding together 1,560 E-shaped laminations to form magnets approximately 2.5 meters long. The finished magnet is actually stacked in an arc with a sagitta of 2.75 mm.

The magnets are connected in a sausage-link fashion to form the arcs of the SLC. Figure 4 shows a typical two magnet section made up of one focusing and one defocusing magnet. It should be pointed out that the beam path is not a simple arc. It is made up of a series of curves connected by straight lines. The curves are the result of the effective bending length of a magnet. The magnetic fields actually extend beyond the physical limits of the magnet, therefore the magnetic length is longer than the length of the magnet iron. These bends are connected with straight lines where no magnetic fields affect the beam's path. The straight sections, therefore, are tangent to both the preceding and following bending arcs. This pattern of bend and drift sections is repeated 20 times to form what is known as an achromat.

An achromat is a section in the arc where the outgoing beam has the same characteristics as the incoming one. The distortions caused by a single magnet are cancelled by the time a particle

bunch has traversed a complete achromat. Therefore, achromats are stacked one after the other down the beam line until the electrons and positrons reach the Final Focus. Initially each of the 20 bending magnets lie in a common plane (see section 7.0 ROLLFIX IN THE ARCS) and seem to trace out an arc on this surface. When this achromat plane is rolled the effect is to steer the beam up and over a slope as well as along an arc. Twenty-three achromats per arc are strung together to guide the beam up and down the grades while maintaining a coherent particle bunch.





: •

Each one of these achromat planes is rolled and pitched differently to achieve this. Therefore, the roll and pitch of the magnets with respect to the absolute coordinate system change continuously as one proceeds down the beam. These angles vary regularly within an achromat as well as between them. This can be seen by looking at the sequential rotations needed to move the absolute system to the beam-following system. The only common section of beam line between differentially rolled achromats is the linear drift section between the end magnet of the preceeding achromat and the beginning magnet of the current achromat.

This is an appropriate place to point out that TRANSPORT provides layout coordinates and rotation angles at the beginning and end of the drift sections. These points are also the beginning and end of the magnetic arcs which have a known bending radius. However, the magnetic arcs do not have a common radius point due to the drift sections between them. This makes it somewhat difficult to make computations between magnets. Therefore, additional coordinates are

: •

given at the midpoints of bending arcs and drift sections. In this paper the center of the drift section in the arcs will be referred to as the vertex point.

# 4. PREPOSITIONING OF SUPPORT SYSTEMS FOR THE ARCS (STEP 1 AND STEP 2)

The alignment of the magnets in the arc tunnel is performed in four steps. In the first step, the bolt locations to mount the support pedestals on the floor were surveyed and drilled. To compute the position of the vertex points projected onto the floor, TRANSPORT coordinates and rotations for the beam-following system at the vertex were used (Figure 5). The pedestals were set so that in the beam direction they were perpendicular to the pitched floor, but plumbed in the transverse direction, i.e. their pitch is equal to that of the beam line at that point while roll was adjusted to zero. Since the pedestal is pitched the location of the vertex point cannot be directly plumbed to the floor. A vector which represents the pedestal is intersected with the floor to find the exact location of the center of the base.



Figure 5. Definition of vertex point for support system positioning

To obtain an exact set of coordinates for the projected vertex point one would have to measure the actual 3-dimensional location of the tunnel floor. This, however, is impractical so calculations were based on ideal floor locations. This seemed to be a reasonable assumption because the tolerance for bolt placement is  $\pm$  1.0 cm while floor uncertainties will amount to approximately 0.5 cm errors in the Z, X location of the points.

The computations were made by taking each pedestal as a rigid body with its own coordinate system. This coordinate system is equivalent to the beam-following system at the vertex point except that it is not rolled. By representing the pedestal with the  $y_i$ -axis it was possible to give the ideal floor point the coordinates of  $z_i = 0$ ,  $x_i = 0$  and  $y_i =$  negative beam height above the floor at the vertex point. Then Equation (2-2) could be applied with just yaw and pitch values inserted into the rotation matrix. When this was done, projected coordinates of the vertex were obtained in the absolute coordinate system. These coordinates could then be laid out from control points.

After the pedestals were placed over their bolts, step 1 of the alignment procedure could begin. In this step the pedestal position was refined to the 3 mm level and then it was grouted in place. For step 1, the vertex point was represented by intersecting laser beams projected through KERN E2 theodolite telescopes. These instruments occupied control points with coordinates known in the absolute system. Since the vertex point had known coordinates by measuring instrument heights, and by backsighting other control points, both horizontal and vertical angles to the vertex point could be calculated. The accuracy of step 1 procedure was  $\pm 3$  mm.

In step 2 the magnet adjustment system was then positioned so that the magnets could be mounted to within .5 mm of their ideal position. Again as in step 1, the vertex point was used as the control point for positioning.

Step 2 involved the same calculations as step 1, except that now the procedure was changed slightly. Here the actual position of the vertex was measured through leveling and intersection. Its true coordinates were then compared with the ideal position and offsets calculated. The adjustment system on top of the pedestal was then used to move the vertex target to its ideal location. These motions were controlled with dial gauges connected into a computer feedback loop. This prevented mistakes when making adjustments. The new position of the vertex was then measured and the procedure was repeated if necessary to achieve the desired .5 mm level. This method could only be used as long as the vertex was visible. As soon as the magnets were mounted the vertex point and beam line were obscured.

# 5. ABSOLUTE POSITIONING OF THE MAGNETS (STEP 3)

Step 3 of the alignment process involved the absolute positioning of the magnets. Program STEP3 was used for the arcs and SPCLSECT for everywhere else. At this point the magnets had

been mounted on the support pedestal. The major goal here is to position the magnets to their ideal positions within the final tolerances as follows:

- 1.) Two magnets within an achromat (defined beam line section) must point at each other with an angular accuracy of 0.04 milliradians.
- 2.) Transverse to the beam line (horizontal and in elevation) two magnets must be adjusted with an accuracy of 0.1 mm.
- 3.) The distance between two magnets must be adjusted with an accuracy of 0.5 mm.
- 4.) Roll must be set to within 2.0 milliradians of its ideal value.

The alignment process is much more difficult in this case than in the previous two steps, because coordinates for magnet fiducials are not provided by TRANSPORT. They must be calculated by the surveyor according to the locations of the magnet fiducial points in relation to the beam line. The three rotational elements yaw, pitch and roll must also be controlled. The yaw and pitch are set by moving fiducial points at each end of the magnet to their proper 3-dimensional positions. The roll cannot be set using the midplane of symmetry for the arc magnet. Therefore, it is necessary to calculate a roll about the beam line for one fiducial point on the magnet, and setting it by using an inclinometer. Finally, corrections for the actual magnet lengths must be taken into account for the arc magnets. Magnet fiducial points are usually represented through tooling balls on the steel surface. However, on the arc magnets no such fiducial points exist and a specially designed fixture (C-clamp) has to be used.

## 5.1. ARC MAGNETS

# 5.1.1. C-CLAMP FIXTURES

C-clamp fixtures are used for defining the position of the arc magnets. They define fiducial points with respect to the magnet's center line by clamping into the grooves of the arc magnets. The position of the fiducial points on the clamps with respect to the registration points are measured. This calibration is performed for each clamp on a CMM (Coordinate Measuring Machine) to an accuracy of better than  $10 \,\mu$ m.







•

After a C-clamp is clamped a few centimeters from the end of an arc magnet, the distance from the magnet end plate to a tooling ball on the fixture is measured with a micrometer (z-off). At the same time roll ( $\psi$ ') is measured with a Schaevitz inclinometer.



Figure 7. C-clamp position on arc-magnet.

The chord distance from A (the magnetic edge of the magnet), to B (the CERN socket or reference point on the fixture) can be calculated by adding up:

1.) The measured offset (zoff) + half a tooling ball width.

2.) The distance from the tooling ball to the CERN socket, which is known from the C-clamp calibration.

3.) The distance from the magnet steel edge to the virtual point A (magnetic edge), which is known for each magnet and stored in a pedigree file. (See section 5.1.2 PEDIGREES).

With the chord distance and the measured roll ( $\psi$ ') the ideal coordinates of the CERN socket reference point can be calculated. (See section 5.1.3 CALCULATION PROCESS).

The actual coordinates of the CERN sockets are determined using standard engineering surveying techniques. Each CERN socket is included in a horizontal direction observation set as well as a level network. Following the observations, two least squares adjustments are executed, independently for the z,x position and the y height position.

This gives the actual positions of the CERN sockets. The differences between the actual and the ideal coordinate sets are then translated into dial gauge movements. (See section 5.1.3.3 DIAL GAUGE MOTION CALCULATIONS). After applying these corrections the magnets are considered to be positioned in their absolute positions. For sign conventions for dial gauge movements see Appendix A.

# 5.1.2. PEDIGREES

•••

The SLC arc magnets have fabrication and magnetic centerline errors that may often exceed in magnitude the design alignment tolerances for the beam transport system. For this reason, measured mechanical and magnetic offsets have been combined to produce a single correction factor called a "pedigree". This quantity is used in the calculation of ideal coordinates to offset the magnet from its nominal placement in order to have the actual magnetic centerline coincide with the theoretical position. This in effect results in an actual zig-zag placement of the magnets.

Figure 8 shows an example table of pedigrees for magnet XN1206. The table starts out with a summary line which shows the X and Y pedigrees at the A and B ends of the magnet. The stamped serial number, AGF750D, defines the A end of the magnet. This is also the end where the scanning of the physical dimensions of the magnet was started. From the main table, XA and XB are the first and last entries in the coordinate table. ZA and ZB represent the distance along the beam line from the magnetic edge to the physical edge of the magnet, while YA and YB are chosen so that an aligned magnet centerline will be equally split by the beam in the y-direction. This is the dimension needed to properly place the magnet in the slot provided by TRANSPORT simulations. RAB is a measure of the twist in the magnet and is not used in any alignment calculation.

PEDIGREE

95.5995

97.1110

105 106

107

108

0.0040

0.0075

0.0062

| MAGNET  | ZA           | XA             | YA                  | ZB              | ХВ                                 | YB      | RAB     |
|---------|--------------|----------------|---------------------|-----------------|------------------------------------|---------|---------|
| ACF750D | 0.4627       | 0.00320        | -0.0008             | ~0.4627         | 0.00620                            | -0.0008 | -0.7828 |
|         |              | COODDINN       | ምድ ጥእቤ              | T.P             |                                    |         |         |
|         |              | COOKDINA       |                     |                 |                                    |         |         |
| N       | <b>Z (</b> 1 | in)            | X(in)               | Y(in)           | ROLL(mrad)                         |         |         |
|         |              | *****          | 22022342755<br>0000 | 쓰로쓰로 보통을 의 또할 후 | : _ # # <b># 바람 # # # #</b> # # ## | -       |         |
| 1       | 0.00         |                | .0032               | -0.0039         | 0.4171                             |         |         |
| 2       | 0.84         | 105 V<br>570 0 | 0002                | -0.0025         | 0.0873                             |         |         |
|         | 1./:         | 750 0          | 0013                | -0.0020         | 0.0485                             |         |         |
| 1       | 1.50         | 750 0<br>326 N | 0006                | -0.0018         | 0.0776                             |         |         |
| 5       | 4' 51        | 105 -0         | 0001                | -0.0012         | -0.3395                            |         |         |
| 7       | 5 41         | 100 -0         | 0007                | 0.0000          | -0.4074                            |         |         |
| ,       | 6 34         | 170 -0         | .0012               | 0.0010          | -0.6015                            |         |         |
| 9       | 7 7          | 560 -D         | .0016               | 0.0026          | -0.6015                            |         |         |
| 10      | 8.11         | 170 -0         | .0022               | 0.0028          | -0.7664                            |         |         |
| 10      |              |                |                     |                 |                                    |         |         |
|         |              |                |                     |                 | •                                  |         |         |
| -       |              |                |                     |                 |                                    |         |         |
|         |              |                | •                   |                 |                                    |         |         |
|         |              |                | 0001                | -0.0000         | -0.2200                            |         |         |
| 39      | 90.00        |                | .0001               | -0.0039         | -0.2328                            |         |         |
| 100     | 90.90        | 550 U          | .0007               | -0.0040         | -0.1/40                            |         |         |
| 101     | 91.90        | 105 U          | 0011                |                 | -0.0504                            |         |         |
| 102     | 92.84        | (D) V          | .0012               | -0.0039         | -0.0582                            |         |         |
| 103     | 93.7         | 520 U          | .0010               | -0.0030         | 0.1/46                             |         |         |
| 104     | 94.0         | />> 0          | .004/               | -0.0038         | 0.0970                             |         |         |

-0.0056

-0.0057

0.0485

-0.1843

XN1206

AGF750D

Figure 8.

•

^

Sample pedigree file.

The coordinate table lists the pedigree values at approximately 1 inch intervals along the magnet. This interval corresponds to the SAMMI (SLAC Automatic Magnet Measurement Instrument) measurement routine. SAMMI was a device built specifically to measure certain dimensions of every magnet. These data were combined with magnetic measurement data from a sample (30%) of magnets to calculate the pedigree offsets.

"N" is the point number while Z designates the distance from the serial number (A) end of the magnet to the point. The X and Y values are the pedigree offsets for these points. The roll is included but not used for calculation. Approximately 110 points are available for each magnet but this number varies from magnet to magnet.

The data also point out some interesting alignment characteristics of the magnets. First, the magnet ends tend to have the largest manufacturing errors which are reflected in the size of the **\*** •

pedigrees when compared to values closer to the center of the magnet. Second, the pedigree can vary greatly in size from point to point. This implies that the local variation in pedigree must be taken into account when fixtures spanning a number of sample points are mounted on the grooves.

The agreed upon coordinate system for the pedigrees has its z' axis pointing from the A to the B end of the magnet. The x' axis points outward of the bending radius and the y' axis follows the right hand rule (see Figure 9). This arrangement was violated when the y' pedigrees were passed on with the incorrect sign. The problem is corrected in the pedigree subroutines by multiplying the y' coordinate by -1 and not changing the tables. All sign conventions and calculations assume that the agreed upon coordinate system is used.

When calculating ideal coordinates for the C-clamps, the pedigrees can be thought of as a correction to the origin of the C-clamp coordinate system. The calculation procedure involves putting both C-clamp coordinates and pedigrees into the beam following coordinate system and then adding them together to obtain the local coordinates of the CERN socket to be transformed as explained below.

Sign conversions are dictated by the magnet's orientation in the beam line. To place magnets so that their curvatures match the arcs, they had to be rotated end-for-end so that either the A or B end of the magnet sees the beam first. This reverses the pedigree coordinate system relative to the beam following system and a table of sign conversions results. Appendix A details these for each section of the arcs.

In case of the C-clamps used for Steps 3 and 4 positioning, an average pedigree offset is found for the individual setup of that clamp. This is done by interpolating the value for the three registration points, two on the top and one on the bottom grooves. These offsets are then averaged to obtain the final value.

For clamps used in the magnet-to-magnet alignment (see section 7), a more elaborate treatment of the "local" pedigrees is required. These fixtures carry long arms to translate the position of one magnet to its neighbor. These long lever arms magnify the effect of the different pedigree values for the mounting points of the clamp. To contend with the problem an average offset is calculated as explained above, and the individual pedigrees for the mounting points are used in determining the "local" pedigree induced yaw and pitch orientation angles of the clamp. This •

modification allows the designed magnet-to-magnet alignment geometry to reflect the influence of local pedigree offsets.

During commissioning of the SLC it was discovered that the focus and defocus magnets were systematically too far apart in the x-axis. This was fixed by physically moving the magnets closer together thereby changing the effective pedigrees for each magnet. This fix was applied as follows:

- all the south arc magnets were moved 0.200mm closer to the beam line,

- achromat 21 in the north arc had all magnets moved closer to the beam line by 0.200mm,
- achromats 20, 22, and 23 in the north arc had all magnets moved closer to the beam line by 0.150mm.

A program was written to add these constants into the pedigree tables so the offsets would be reflected in all the alignment steps. A column to keep track of the old pedigree data was added for historical purposes.

# 5.1.3. CALCULATION PROCESS

#### 5.1.3.1. IDEAL COORDINATES

To start these calculations, one should first look at a simple case. Assume that a magnetic fiducial point is located directly above point A (a point in space) in Figure 9. To position a fiducial point above A is of course impossible because the magnet iron ends at point B. However this is a convenient place to start because TRANSPORT coordinates are provided for the point on the beam line below the fiducial mark A. The orientation angles for the local coordinate system are also given. This makes the computation of the needed coordinates simple. One must only know the coordinates of the fiducial point in the beam-following system. This can be done by building fixtures (C-clamps) which locate the mark in a known position with respect to the magnet's center line. Then Equation (2-2) (see section 2.2 BEAM FOLLOWING COORDINATE SYSTEM) can be applied to obtain TRANSPORT coordinates of the desired point. This point only exists in space because it is located at the end of the magnetic bend arc but not on the magnet iron. To find coordinates on the actual magnet iron, the local coordinate system must be translated along the beam line to a point beneath the fiducial mark.



#### Figure 9. Top view, idealized C-clamp position.

•

By referring to Figure 9 one can see how this would be done. First the local system  $z_i', x_i', y_i'$  at point B is rotated through a yaw angle to orient it to the  $z_i x_i y_i$  system. The rotated system is then shifted by  $dz_i$  and  $dx_i$  so that its origin coincides with the origin of the beam-following system at point A. In doing this the  $z_i', x_i', y_i'$  coordinates of the fiducial mark which are set through fixturing are transformed into beam-following coordinates. The controlling equation is as follows:

$$\begin{pmatrix} z_i \\ x_i \\ y_i \end{pmatrix} = \begin{pmatrix} \cos\alpha & \sin\alpha & 0 \\ -\sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} z_i' \\ x_i' \\ y_i' \end{pmatrix} + \begin{pmatrix} r & \sin\alpha \\ -r & (1 - \cos\alpha) \\ 0 \end{pmatrix}$$
(Eqn. 5-1)

The angle  $\alpha$  can be calculated by using the radius of the curve provided by T RANSPORT and either the measured length of the arc or the chord. After the  $z_i, x_i, y_i$  coordinates are computed, Equation (2-2) is again applied to find TRANSPORT coordinates of the fiducial mark above point B. This calculation can be done for any point along the bending arc of one magnet if a chord or arc length is measured from a point with known TRANSPORT coordinates.

These will not be the final coordinates of the fiducial marks since the magnet may be manufactured with a twist around its magnetic axis. If this is true the  $z_i', x_i', y_i'$  system must undergo an additional rotation to compensate for the twist. This is necessary because the

•

^

coordinates of the fiducial mark are known only in a system which is twisted with respect to the  $z_i$ ,  $x_i$ ,  $y_i$  system. To do this, Equation (5-1) must be modified to include a twist ( $\gamma$ ) about the tangent to the beam line. This would result in the following equation:

$$\begin{pmatrix} z_{i} \\ x_{i} \\ y_{i} \end{pmatrix} = \begin{pmatrix} \cos\alpha & \sin\alpha & 0 \\ -\sin\alpha \cos\gamma & \cos\alpha \cos\gamma & \sin\gamma \\ \sin\alpha & \sin\gamma & -\cos\alpha & \sin\gamma & \cos\gamma \end{pmatrix} \begin{pmatrix} z_{i} \\ x_{i} \\ y_{i} \end{pmatrix} + \begin{pmatrix} r & \sin\alpha \\ -r & (1 - \cos\alpha) \\ 0 \end{pmatrix}$$
$$\chi_{i} = \underline{B}^{*} \chi_{i}^{'} + c \quad ; \quad \underline{B} = R_{\gamma} * R_{\alpha}$$
(Eqn. 5-2)

Equation (2-2) is then applied to these results to find the needed coordinates. It should be pointed out that a total of five rotations are needed to translate the position of the fiducial point in a magnet coordinate system to the absolute system of TRANSPORT.

# 5.1.3.2. IDEAL ROLL CALCULATION

: •

Now that these coordinates are found, a roll value ( $\psi'$ ) with respect to the gravity vector must be calculated. However, this is not a simple matter because of the five sequential rotations needed to transform the above coordinate systems. For this reason it is easiest to go back to point A where reference coordinates and rotations are provided by TRANSPORT. One may think that the problem is trivial at this point because a roll value is provided. This is not the case, though, because the roll given is a sequential roll. It is not measured on a plane which is parallel to gravity, but about a twice rotated Z-axis. Therefore, this number cannot be used to set a precise roll with an inclinometer which uses gravity as a reference (Figure 10).



Figure 10. Roll with and without respect to gravity.

One must understand how the inclinometer works to solve this problem. In the case of the SLC, a type of inclinometer (Schaevitz 1978) is used whose electronic axes are according to specifications not affected by tilt transverse to the direction of measurement. This means that it can be used on a magnet which is both pitched and rolled, to measure a roll angle with respect to gravity. To do this accurately and quickly it must be easy to orient the inclinometer in a convenient direction which is repeatable for every setup. In this case, it is easiest to orient in the direction of the  $x_i$ -axis of the beam-following coordinate system; i.e. perpendicular to the beam line. It has to be noted, though, that the roll and the pitch proved to be highly correlated in the present measurement setup of the Schaevitz inclinometers. For highly pitched areas this effect is

•

distinct and easily observed. <sup>6</sup> Unfortunately we still don't have a solution and it requires some further investigations.

As was said above, the TRANSPORT roll angle is an angle measured about a twice rotated axis and is <u>NOT</u> the roll to be set with respect to gravity. The measured roll is a projection of the TRANSPORT roll on to the plane formed by the gravity vector and the  $x_i$ -axis. The formula to calculate the correct roll at point A can be found by using the fact that the rotation matrix for a given orientation of the beam-following coordinate system is unique, but the combination of sequential rotations is not. In other words, the values of the nine elements of the rotation matrix are fixed but these nine numbers can be calculated from several different sequential rotations. This makes it possible to equate corresponding elements of different sequential rotation matrices which define a given orientation. In this case the roll must be calculated in a system which has been yawed but not pitched. To do this, the sequence of rotations is changed to yaw, roll and then pitch. This gives the following rotation matrix <u>M</u>:

| $\cos \phi' \cos 	heta - \sin \phi' \sin \psi' \sin 	heta$   | $\cos \phi' \sin 	heta + \sin \phi' \sin \psi' \cos 	heta$ | -sin φ' cosψ' ) |
|--------------------------------------------------------------|------------------------------------------------------------|-----------------|
| -cosψ' sinθ                                                  | cosψ' cosθ                                                 | sin ψ'          |
| $\sin \phi' \cos \theta + \cos \phi' \sin \psi' \sin \theta$ | $\sin\phi'\sin	heta-\cos\phi'\sin\psi'\cos	heta$           | cosφ' cosψ' ∫   |
|                                                              |                                                            | (Eqn. 5-3)      |

It should be noted that  $\phi'$  is not equal to the TRANSPORT pitch for the same reason that  $\psi'$  is not equal to  $\psi$ . Now the m<sub>23</sub> element can be equated to the r<sub>23</sub> element of the TRANSPORT rotation matrix R. This gives the following formula for  $\psi'$ :

 $\Psi' = \sin^{-1} (\sin \Psi * \cos \phi)$  (Eqn. 5-4)

In the worst case, the difference between the TRANSPORT roll  $\psi$  and measured roll  $\psi'$  is 0.9 milliradians. This is a significant amount and must be taken into account. Theoretically a correction for the earth's curvature needs to be applied to  $\psi'$ , but it was found to be insignificant. This procedure applies to any point along the beam line that has given TRANSPORT coordinates. If TRANSPORT coordinates have to be calculated (see section 5.1.3.1 IDEAL COORDINATES), the same procedure as above can be applied to the t<sub>23</sub> element of the total

<sup>&</sup>lt;sup>6</sup> Bernard Bell

rotation matrix  $\underline{T}$  for the twisted magnet at point B. The  $\underline{T}$  matrix is formed by multiplying  $\underline{B}$  of Equation (5-2) by  $\underline{R}$ :

$$\underline{\mathbf{T}} = \underline{\mathbf{B}} * \underline{\mathbf{R}}$$
 (Eqn. 5-5)

The resulting formula for  $\psi'$  is:

•

 $\psi' = \sin^{-1} (\sin\phi \sin\alpha \cos\gamma + \sin\psi \cos\phi \cos\alpha \cos\gamma + \cos\psi \cos\phi \sin\gamma)$  (Eqn. 5-6)

Equation (5-6) is used in two separate ways:

a) For layout roll the twist ( $\gamma$ ) will be set to zero and no pedigree twist is applied.

The equation is solved for ( $\psi$ ).

b) If the unknown twist of the magnet is to be calculated the roll ( $\psi^{i}$ ) is measured

and Equation (5-6) is solved for the unknown twist (  $\gamma$  ) by means of an iterative approach.

Equation (5-6) can be seen as follows:

 $F = Parameter_1 * cos(x) + Parameter_2 * sin(x) - Parameter_3$ 

x is solved for.

The resulting twist is then used as input for Equation (5-2).

#### 5.1.3.3. DIAL GAUGE MOTION CALCULATIONS

In Steps 2, 3 and 4(smoothing) the misalignments of magnets must be translated into dial gauge motions to be applied to the adjustment systems. For Steps 2 and 3 the residual misalignments are found in the overall TRANSPORT design coordinate system and must be rotated to the individual pedestal based system corresponding to the alignment adjusters. This transformation uses equation (2-1) without the application of shifts or the roll angle. The Step 4 smoothing adjustments are transformed in a similiar manner, but the yaw angle, the roll and the shifts are

not applied. This is possible because the residual misalignments are already in a system parallel to the azimuth of the beam line. See section 6.0 SMOOTHING OF THE MAGNETS for more details.

# 5.2. SPECIAL SECTION MAGNETS

•

Special section magnets usually have tooling balls whose positions are measured relative to the mechanical center of the magnet. If there are no tooling balls available, which is the case for the damping ring quadrupoles, grooves and flanges are known relative to the mechanical center of each magnet. With the coordinates of either the grooves or tooling balls in the local beam following coordinate system known, it is just a matter of applying Equation (2-2) (see section 2.2 BEAM FOLLOWING COORDINATE SYSTEM) to determine ideal coordinates for the elements. Most magnets are placed like boxes on the beam line with their center lines and orientation angles identical to the beam following coordinate system. Some cases violate this convention. One such case is bend magnet alignment. Since bending magnets are often built like boxes but the beam traces a curved trajectory through them, a decision of how to place them in yaw must be made. The agreed upon convention is to make the yaw of the magnet the same as the beam at the center of the bend. A shift equal to one-half the sagitta of the curve is added, thus off-setting the center line of the box towards the center of the curve (Figure 11). This system best uses the magnet's field. In most cases, S is subtracted from the magnet's fiducial point's x-coordinate.

The shift S is calculated as follows:

S = sagitta/2 =  $r(1 - cos(\alpha / 2))/2$  (Eqn. 5-7)

r = radius of bend magnet $\alpha = total bending angle.$ 



Figure 11. Magnet sagitta.

•

Another exception is any component which has rings around its outside as alignment references. They might include Protection Collimators (PC), Beam Position Monitors (BPM) or vacuum flanges. Since it makes no sense to calculate a roll into the coordinates for the ring references, these components assume a roll of zero.

# 6. SMOOTHING OF THE MAGNETS (STEP 4)

Smoothing is the term used to describe the process of positioning beamline components around a trend curve rather than in absolute space. It is especially useful when approaching final magnet to magnet alignment tolerances since it eliminates systematic measurement errors and mathematical artifacts. Influences such as atmospheric refraction and mechanical centering of theodolites and targets can introduce systematic errors as large as the final alignment tolerances. Repetition of a given set of measurements generally results in a different configuration of these error sources and, therefore, a different result. As the size of component position adjustments approaches the size of the systematic effects, the adjustments cease to converge to zero and begin to oscillate.

Smoothing in the special sections for all the beam guiding elements is a two phase process. In the first phase a smooth curve is modelled for all beam guiding elements (Step 4 procedure). Then, after the beam guiding elements are positioned, components like BPMs, and PC's have to be aligned with respect to the new positions of their neighboring magnets. This is generally done

by optical alignment technics. The roughly square profile of the magnets, the even distribution of fiducials, and the use of individual supports under each magnet allows smoothing of the beam guiding elements in a single step.

In the arcs, also, a two-phase smoothing procedure consisting of Step 4 and MTM (Magnet To Magnet) was developed. Since the upstream end and downstream end of two adjacent magnets are supported by the same pedestal, a Step 4 process is used to first align the upstream ends. In a second phase MTM is used to align each RF end (downstream) to its adjacent FF end (upstream).

Several different curve fitting techniques were considered for the smoothing (Step 4) procedure, including spline and polynomial fits. However, these approaches are not easily adapted to the three dimensional space curve formed by a string of SLC magnets. Also these methods are not robust, in that measurement errors and outliers bias the resulting curve significantly. An algorithm which is well suited for this situation is the technique of "principal curves." The technique is described in Trevor Hastie's "Principal Curves and Surfaces" (Hastie 1984) <sup>7</sup>. This approach produces smooth curves which pass through the "center" of a three-dimensional data set. Its goal is to minimize the sum of squared distances between the ideal points of the curve and the data set. Figures 13 through 16 demonstrate the differences between principal curves and other fitting techniqes.

The principal curve algorithm is an iterative process which will closely approach almost all points in a data set if allowed to iterate many times. Therefore, a criterium must be established to stop the process before the curve can no longer be considered smooth. Machine physicists usually provide tolerance requirements; in many cases an offset of 0.1mm between adjacent magnets is acceptable. After each iteration the offsets between adjacent magnets are calculated and compared to this threshold (Figure 12). As soon as one offset exceeds the threshold, the process is stopped. The results of the previous iteration will be used for the calculation of the x and y adjustments for each magnet (Figure 17). Adjustments greater than 0.06 mm will be flagged with a star.

<sup>&</sup>lt;sup>7</sup> Hastie 1984, (SLAC-276, STAN-LCS-11)



Figure 12. Smoothness criteria in the arcs. da <= 0.1 milliradians = dh <= 0.1 mm





Figure 13.

: •

^

The linear regression line minimizes the sum of the squared errors in the response variable.



Figure 15.

The smooth regression curve minimizes the sum of squared errors in the response variable, subject to smoothness constraints.

Figure 14.

The principal component line minimizes the sum of the squared errors in all the variables.



#### Figure 16.

The principal curve minimizes the sum of squared errors in all the variables, <u>subject to smoothness constraints</u>.

#### SLAC ALIGNMENT TEAM - SLC MAGNET POSITIONING





Figure 17. PCURVE output plots.

:

# 6.1. ARC MAGNETS

# 6.1.1. FRONT FIDUCIALS

Step by step calculation procedure:

#### 1.) Ideal coordinate determination.

Ideal coordinates for the C-clamp positions at the upstream end (Front Fiducial,FF) of each magnet are calculated (see section 5.1.1 C-CLAMP FIXTURES). It requires the roll measurement using a Schaevitz inclinometer and the z-offset be measured from the magnet steel edge to the C-clamp. The actual calculation of the ideal coordinates also requires knowledge about the C-clamp calibration and the pedigree data of each magnet.

#### 2.) Actual coordinate determination.

C-clamps are placed on the FF ends of the arc magnets. Every fifth clamp is then occupied by a theodolite. Horizontal direction sets are measured to all other C-clamp sockets and invar wire distances are pulled between the C-clamp sockets. Actual coordinates are calculated by reducing the surveyed data, and processing the horizontal and vertical network separately in a least-squares adjustment. The first and the last C-clamp positions are held fixed to their ideal positions

in this adjustment process. The elevation is determined by running level loops over a maximum five C-clamps before closing a loop. All loops have to be interconnected.

#### 3.) Differences between ideal and actual coordinate sets.

The ideal and the actual coordinates are transformed into a beam following coordinate system. The C-clamp positions are standardized in the Z coordinate to the magnetic edges of the magnets (FM points). In this system the differences between ideal and actual coordinates are calculated.

#### 4.) Elimination of $\Delta z$ .

•

From the difference between the ideal and actual coordinate sets a  $\Delta$  z value is obtained which will be mathematically eliminated. The z-dimension is not very critical and elimination of  $\Delta$  z reduces a 3-dimensional problem to a 2-dimensional problem. The ideal coordinates are then recalculated by yawing the original ideal coordinates to the actual z-locations and eliminating the  $\Delta$  z offset (yaw angle  $\alpha = \Delta z$  / magnet radius). This  $\Delta$  z reduction can be seen as replacing the mechanical adjustment of an arc magnet in z by mathematical means.

#### 5.) Differences between new ideal and actual coordinate sets.

The newly found ideal coordinates are now subtracted again from the actual coordinates to give the results in the TRANSPORT coordinate system.

#### 6.) Transform differences from TRANSPORT into BFS.

At this point the results have to be adjusted for yaw to map radial deviations along a single axis. (see 4. above) This puts the coordinates parallel to the azimuth of the magnet (BFS). These deviations are the input values for PCURVE.

#### 7.) PCURVE.

PCURVE is run.

#### 8.) Dial gauge movements.

PCURVE's output is transformed into dial gauge movements for the arcs. The output is transformed into the coordinate system of the individual adjustment system. Sign conventions for dial gauge movements are in Appendix A.

# 6.1.2. REAR FIDUCIALS

•

The FF alignment of the magnets is completed at this point and the FF ends are considered aligned to their final positions. For aligning the downstream end (Rear Fiducial,RF) of each magnet, two MTM (Magnet To Magnet) alignment techniques are used. In both procedures the RF end is to be aligned in reference to the FF end of the adjacent magnet. The roll and pitch on special clamps is measured as well as the z-offset between the 2 magnet edges. Transformation parameter sets are calculated to reference the RF clamp fiducials in the FF clamp coordinate system.

1.) Within each achromat where there are no roll transitions special clamps are used (Figure 18). The MMAFI (Magnet to Magnet Alignment by Fixture) procedure is used.

2.) From achromat to achromat and in rollfixed areas where there are roll transitions the MMAS (Magnet to Magnet Alignment System) procedure is applied.

#### 6.1.2.1. MTM WITHIN ACHROMAT

In the MMAFI procedure, the RF clamp coordinates are transformed into the FF clamp coordinate system. This transformation works only at magnet junctions with no roll transitions. On each clamp (RF and FF end) the roll, pitch and z-offset between the magnet edges is measured. The FF clamp and the RF clamp registration points are determined in the FF clamp coordinate system and distances between the corresponding FF and RF registration points are calculated.



. .

I

^



Right side Inter magnet clamp

Left side Inter magnet clamp

Figure 18. Magnet to magnet fixtures. Clamps 71,72,73,74



Figure 19. Magnet ends naming convention.

The forward rotation sequence to a MTM clamp, yawed and pitched by pedigrees, is defined as follows:

$$(\theta) \rightarrow (\phi) \rightarrow (\psi) \rightarrow (\alpha') \rightarrow (\epsilon) \rightarrow (\lambda)$$

 $\theta$  = TRANSPORT yaw

 $\phi$  = TRANSPORT pitch

#### $\psi$ = TRANSPORT roll

 $\alpha'$  = yaw within a magnet plus pedigree induced yaw

 $\epsilon$  = pedigree induced pitch, measured with an inclinometer (sequential pitch)

 $\lambda = \text{twist}$ 

:

^

$$R_{4} = R_{\lambda} R_{\varepsilon} R_{\alpha'} R_{\psi} R_{\phi} R_{\theta}$$
$$R = R_{\psi} R_{\phi} R_{\theta}$$
$$R_{2} = R_{\varepsilon} R_{\alpha'}$$
$$R_{4} = R_{\lambda} R_{3}$$

with

|                  | cose     | 0   | -sine ) |    |  |  |
|------------------|----------|-----|---------|----|--|--|
| $R_{\epsilon} =$ | 0        | 1   | 0       |    |  |  |
|                  | sine     | 0   | cose    |    |  |  |
|                  |          |     |         |    |  |  |
|                  | ( co     | sα  | ' sinα' | 0) |  |  |
| $R_{\alpha'}$    | =   -sir | ıα' | cosα'   | 0  |  |  |
|                  | li       | 0   | 0       | 1) |  |  |
|                  |          |     |         |    |  |  |
|                  |          |     | 1       |    |  |  |

 $\mathsf{R}_{2} = \mathsf{R}_{\epsilon} \, \mathsf{R}_{\alpha'} = \left( \begin{array}{ccc} \cos \epsilon & \cos \alpha' & \cos \epsilon & \sin \alpha' & -\sin \epsilon \\ -\sin \alpha' & \cos \alpha' & 0 \\ \sin \epsilon & \cos \alpha' & \sin \epsilon & \sin \alpha' & \cos \epsilon \end{array} \right)$ 

 $R_3 = R_2 R$ 

- $$\begin{split} r_{11} &= \cos \epsilon \ \cos \alpha' \ \cos \varphi \ \cos \theta \ + \ \cos \epsilon \ \sin \alpha' \ \sin \psi \ \sin \varphi \ \cos \theta \ \ \cos \epsilon \ \sin \alpha' \ \cos \psi \ \sin \theta \ \ \sin \epsilon \ \cos \psi \ \sin \theta \ \ \sin \epsilon \ \sin \psi \ \sin \theta \end{split}$$
- $r_{12} = \cos\varepsilon \ \cos\alpha' \ \cos\varphi \ \sin\theta + \cos\varepsilon \ \sin\alpha' \sin\psi \sin\varphi \ \sin\theta + \cos\varepsilon \ \sin\alpha' \cos\psi \cos\theta \sin\varepsilon \\ \cos\psi \ \sin\varphi \ \sin\theta + \sin\varepsilon \ \sin\psi \cos\theta$

 $r_{13} = -\cos\varepsilon \cos\alpha' \sin\phi + \cos\varepsilon \sin\alpha' \sin\psi \cos\phi - \sin\varepsilon \cos\psi \cos\phi$ 

 $r_{21} = -\sin\alpha'\cos\phi \cos\theta + \cos\alpha'\sin\psi \sin\phi \cos\theta - \cos\alpha'\cos\psi \sin\theta$ 

(Eqn. 6-1)
$r_{22} = -\sin\alpha' \cos\phi \sin\theta + \cos\alpha' \sin\psi \sin\phi \sin\theta + \cos\alpha' \cos\psi \cos\theta$ 

 $r_{23} = \sin\alpha' \sin\phi + \cos\alpha' \sin\psi \cos\phi$ 

•

**:** ·

 $r_{31} = \sin\varepsilon \cos\alpha' \cos\phi \cos\theta + \sin\varepsilon \sin\alpha' \sin\psi \sin\phi \cos\theta - \sin\varepsilon \sin\alpha' \cos\psi \sin\theta + \cos\varepsilon \cos\psi \sin\phi \cos\theta + \cos\varepsilon \sin\psi \sin\theta$ 

 $r_{32} = \sin\epsilon \cos\alpha' \cos\phi \sin\theta + \sin\epsilon \sin\alpha' \sin\psi \sin\phi \sin\theta + \sin\epsilon \sin\alpha' \cos\psi \cos\theta + \cos\epsilon \cos\psi \sin\phi \sin\theta - \cos\epsilon \sin\psi \cos\theta$ 

 $r_{33} = -\sin\epsilon \cos\alpha' \sin\phi + \sin\epsilon \sin\alpha' \sin\psi \cos\phi + \cos\epsilon \cos\psi \cos\phi$ 

 $R_{4} = R_{\lambda}R_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\lambda & \sin\lambda \\ 0 & -\sin\lambda & \cos\lambda \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$ 

Rotation to same point by 3 rotations:

(θ<sup>"</sup>) -> (φ<sup>"</sup>) -> (ψ<sup>"</sup>) Yaw Pitch Roll

 $R_5 = R_{\Psi'} R_{\Phi''} R_{\theta''}$ 

(Eqn. 6-2)

 $\mathsf{R}_{5} = \left(\begin{array}{ccc} \cos\varphi^{"}\cos\theta^{"} & \cos\varphi^{"}\sin\theta^{"} & -\sin\varphi^{"} \\ \sin\psi^{"}\sin\varphi^{"}\cos\theta^{"} - \cos\psi^{"}\sin\theta^{"} & \sin\psi^{"}\sin\varphi^{"}\sin\theta^{"} + \cos\psi^{"}\cos\theta^{"} \\ \cos\psi^{"}\sin\varphi^{"}\cos\theta^{"} + \sin\psi^{"}\sin\theta^{"} & \cos\psi^{"}\sin\theta^{"} - \sin\psi^{"}\cos\theta^{"} \\ \cos\psi^{"}\cos\theta^{"} + \sin\psi^{"}\sin\theta^{"} & \cos\psi^{"}\sin\theta^{"} - \sin\psi^{"}\cos\theta^{"} \\ \end{array}\right)$ 

To get sequential pitch from a measured pitch:

 $R_{5} (1,3) = R_{3} (1,3)$ - sin $\phi^{"} = -\cos\varepsilon \cos\alpha' \sin\phi + \cos\varepsilon \sin\alpha' \sin\psi \cos\phi - \sin\varepsilon \cos\psi \cos\phi$  (Eqn. 6-3) ----> solve for sequential pitch  $\varepsilon$  iteratively. To get sequential twist from a measured roll:

$$R_4(2,3) = r_{(2,3)}(5)$$

: .

$$\begin{split} & \sin\psi^{"}\cos\phi^{"} = \cos\lambda\sin\alpha'\sin\phi + \cos\lambda\cos\alpha'\sin\psi\cos\phi - \sin\lambda\sin\epsilon\,\cos\alpha'\,\sin\phi + \sin\lambda\sin\epsilon\\ & \sin\alpha'\sin\psi\cos\phi + \sin\lambda\csc\cos\psi\,\cos\phi & (Eqn.\,6-4)\\ & & ----> \ \text{solve for sequential twist }\lambda \ \ \text{iteratively.} \end{split}$$

Step by step calculation procedures:

1.) Calculation of local yaw and pitch of both clamps induced by pedigrees. (The local pitch is calculated but is not carried forward as its influence proved to be unpredictable).

2.) Calculation of the local yaw angle ( $\alpha$ ') from a point of known TRANSPORT coordinates to the fiducial point on the arc of the magnet. ( $\alpha$ ')=(chord-length/magnet radius) + pedigree induced yaw.

4.) Calculate sequential twist (  $\lambda$  ) from measured roll at FF and RF end.

3.) Calculate sequential pitch ( $\epsilon$ ) from measured pitch at FF and RF end.

5.) Apply sequential twist ( $\lambda$ ), sequential pitch ( $\epsilon$ ) and local yaw ( $\alpha$ ') of RF clamp to RF registration point coordinates to transform from RF clamp BFS (beam following coordinate system) into RM (Rear Magnetic) point BFS coordinate system where the TRANSPORT parameters are known.

6.) Apply TRANSPORT orientation parameters of RM to get RF clamp registration points in TRANSPORT coordinates.

7.) Apply TRANSPORT orientation parameters of FM to above coordinates.

8.) Apply sequential twist ( $\lambda$ ), sequential pitch ( $\epsilon$ ) and local yaw ( $\alpha$ ') of FF clamp to above. As a result you have the RF registration points in the local FF clamp BFS.

9.) Calculate distances between the corresponding FF and RF registration points and translate them into dial gauge movements.

### 6.1.2.2. MTM FROM ACHROMAT TO ACHROMAT (WITH ROLL TRANSITION)

In MMAS the coordinates of the RF clamp are also transformed into the FF clamp coordinate system. Specially designed clamps without registration arms are preferred to the clamps used in MMAFI. Instead of determining the ideal coordinates of the arm registration points the ideal coordinates for the RF clamp tooling balls in the FF clamp coordinate system are determined. The pitch and the roll is measured on each clamp. Using an Industrial Measurement System (e.g. ECDS, SIMS) the actual coordinates of all tooling balls are determined in the FF clamp coordinate system. The differences between the actual and the ideal coordinate sets are averaged for all tooling balls and translated into dial gauge movements. The calculation algorithms for the ideal coordinates are identical to the equations 6-1 through 6-4.

Ideal calculations:

•

1.) Calculation of local yaw and pitch of both clamps induced by pedigrees. (The local pitch is calculated but is not carried forward as its influence proved to be insignificant).

2.) Calculation of the local yaw angle ( $\alpha$ ') from a point of known TRANSPORT coordinates to fiducial point on the arc.

 $(\alpha') = (chord-length / magnet radius) + pedigree induced yaw.$ 

3.) Calculate sequential pitch ( $\epsilon$ ) from measured pitch at FF and RF end.

4.) Calculate sequential twist (  $\lambda$  ) from measured roll at FF and RF end.

5.) Apply sequential twist ( $\lambda$ ), sequential pitch ( $\epsilon$ ) and local yaw ( $\alpha$ ') of RF clamp to RF tooling ball coordinates to transform from RF clamp BFS (beam following coordinate system) into RM (Rear Magnetic) point BFS coordinate system where the TRANSPORT parameters are known.

6.) Apply TRANSPORT orientation parameters of RM to get RF clamp tooling balls in TRANSPORT coordinates.

: •

7.) Apply TRANSPORT orientation parameters of FM to above coordinates.

8.) Apply sequential twist (  $\lambda$  ), sequential pitch (  $\epsilon$  ) and local yaw (  $\alpha$ ' ) of FF clamp to above. As a result you have the RF tooling ball points in the local FF clamp BFS.

The ideal coordinate set and the actual coordinate set from ECDS are subtracted from each other, averaged for all tooling balls for error checking and translated into dial gauge movements. For sign conventions of dial gauge movements see Appendix A.

#### 6.2. SPECIAL SECTION MAGNETS

Step by step calculation procedure:

1.) Ideal coordinate determination.

Calculate ideal coordinates for the tooling ball positions of each magnet. (see section 5.2 SPECIAL SECTION MAGNETS).

#### 2.) Actual coordinate determination.

Horizontal direction sets are measured to all tooling balls. The heights are independently determined by means of a separate level network. Actual coordinates are calculated by reducing the surveyed data and processing the horizontal and the vertical network separately in a least-squares adjustment program. The first and the last magnet tooling ball positions are held fixed to their ideal coordinate positions in this adjustment process. No constraint is usually put on the monument stations. Reduction of the geodetic y-coordinates to rectangular coordinates is also made.

3.) Differences between ideal tooling ball coordinates and actual tooling ball coordinates. Differences between ideal and actual coordinates are calculated.

#### 4.) Elimination of $\Delta z$ .

•

From the difference between the ideal and actual coordinate sets a  $\Delta z$  value is obtained which will be mathematically eliminated. The z-dimension is not very critical and elimination of  $\Delta z$  reduces a 3-dimensional problem to a 2-dimensional problem. The ideal coordinates are then recalculated by yawing the original ideal coordinates to the actual z-locations and eliminating the  $\Delta z$  offset (yaw angle  $\alpha = \Delta z$  / magnet radius). This  $\Delta z$  reduction can be seen as replacing the mechanical adjustment of a magnet in z by mathematical means.

#### 5.) Differences between new ideal and actual coordinate sets.

The newly found ideal coordinates are now subtracted again from the actual coordinates and the results are obtained in the TRANSPORT coordinate system.

#### 6.) Transform differences from TRANSPORT into BFS.

At this point the results have to be just yawed in order to get them parallel to the azimuth of the magnet (BFS). The average of the differences of the tooling balls for each element are the input values for PCURVE.

7.) PCURVE.

PCURVE is run.

#### 8.) Dial gauge movements.

PCURVE's best fit curve output in the form of coordinate differences is then subtracted from all individual tooling ball differences (result from 6.). The remainder is transformed into dial gauge movements. For sign conventions for dial gauge movements see Appendix A.

#### 7. ROLLFIX IN THE ARCS

Rollfix is a program designed to "feather" the roll transitions between achromats through several magnet junctions rather than the original single boundary junction. The objective is to make the arcs less prone to the cross coupling of dispersed beams caused by abrupt roll changes. It is performed on achromat sections where the roll transitions were significantly large. This one time project feathered the following achromat boundaries <sup>8</sup>:

<sup>&</sup>lt;sup>8</sup> The magnet motions as required by the rollfix program moved the respective magnets away from their nominal TRANSPORT locations. It needs to be pointed out that TRANSPORT has not been modified up to date, to reflect these changes.

•

| Page 42 |
|---------|
|---------|

|         | North | South |
|---------|-------|-------|
| Ritfix  | 0/1   | 0/1   |
|         | 2/3   | 2/IS  |
|         |       |       |
| Ritharm | 11/12 | 10/11 |
|         | 12/13 | 14/15 |
|         | 13/14 | 15/16 |
|         | 20/21 | 17/18 |
|         | 21/22 | 18/19 |
|         | 23/FF | 20/21 |
|         |       | 21/22 |
|         |       | 23/FF |

The fix consisted of a series of moves for each of 5 magnets. These moves were made up of roll rotations about the magnets' chords and shifts perpendicular to the plane of the magnet. If one achromat boundary was rollfixed it had to be countered by a similiar but opposite fix further down the beam line. If one looks carefully in the table of movements, it can be seen that each set of movements comes in pairs reflecting this requirement.

A five magnet move at an achromat boundary is known as a Ritharm junction while a single magnet move is known as a Ritfix. Two sets of junctions in the BSY region were Ritfixed to avoid the complicated alignment required in that conjected area.

#### 7.1. ROLLFIX CALCULATIONS

For each magnetic end of the magnet TRANSPORT supplies yaw, pitch and roll. The yaw from the beam line to the chord can be calculated and the roll around the chord is supplied by physicists. The objective is to calculate new layout rolls in respect to gravity and new sequential TRANSPORT rotations for each magnet end after the magnet was rolled about its chord. The rotation matrix which defines the rotation of the magnet about its chord was derived in two separate methods and compared in order to assure the accuracy of the calculations.

#### 7.1.1. SEQUENTIAL ROTATIONS

The forward rotation sequence is defined as follows:

( $\theta$ ) -> ( $\phi$ ) -> ( $\psi$ ) -> ( $\theta_1$ ) -> ( $\psi_1$ ) -> ( $\theta_2$ )

 $\theta$  = TRANSPORT yaw

I

ίá.

 $\phi$  = TRANSPORT pitch

 $\psi$  = TRANSPORT roll

 $\theta_1$  = yaw BL (beam line) to chord

 $\psi_1$  = roll about chord

 $\theta_2$  = yaw chord to BL

$$R_{TOT} = R \theta_2 R \psi_1 R \theta_1 R$$

(Eqn. 7-1)

|     | $\cos\phi\cos\theta$                              | cosφ sinθ                                         | —sinφ     |
|-----|---------------------------------------------------|---------------------------------------------------|-----------|
| R = | $\sin\psi\sin\phi\cos	heta-\cos\psi\sin	heta$     | $\sin\psi\sin\phi\sin\theta+\cos\psi\cos\theta$   | sinψ cosφ |
|     | $\cos\psi\sin\phi\cos\theta + \sin\psi\sin\theta$ | $\cos\psi\sin\phi\sin\theta - \sin\psi\cos\theta$ | cosψ cosφ |

from Eqn. 2-1

|                  | $\cos \phi' \cos \theta - \sin \phi' \sin \psi' \sin \theta$ | $\cos \phi' \sin \theta + \sin \phi' \sin \psi' \cos \theta$ | -sin φ' cosψ' ີ |
|------------------|--------------------------------------------------------------|--------------------------------------------------------------|-----------------|
| R <sub>5</sub> = | -cosψ' sinθ                                                  | cosψ' cosθ                                                   | sin ψ'          |
|                  | $\sin \phi' \cos \theta + \cos \phi' \sin \psi' \sin \theta$ | sin φ' sin θ – cos φ' sinψ' cosθ                             | cosφ' cosψ'     |

from Eqn. 5-3

$$\mathsf{R}_{6} = \mathsf{R} \,\theta_{2} \,\mathsf{R} \psi_{1} = \begin{pmatrix} \cos\theta_{2} & \sin\theta_{2} & 0\\ -\sin\theta_{2} & \cos\theta_{2} & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\psi_{1} & \sin\psi_{1}\\ 0 & -\sin\psi_{1} & \cos\psi_{1} \end{pmatrix}$$

SLAC ALIGNMENT TEAM - SLC MAGNET POSITIONING

$$= \begin{pmatrix} \cos\theta_2 & \sin\theta_2 \cos\psi_1 & \sin\theta_2 \sin\psi_1 \\ -\sin\theta_2 & \cos\theta_2 \cos\psi_1 & \cos\theta_2 \sin\psi_1 \\ 0 & -\sin\psi_1 & \cos\psi_1 \end{pmatrix}$$

 $\mathsf{R}_7 = \mathsf{R}_6 \,\mathsf{R}\,\theta_1 = \begin{pmatrix} \cos\theta_2 & \sin\theta_2 \cos\psi_1 & \sin\theta_2 \sin\psi_1 \\ -\sin\theta_2 & \cos\theta_2 \cos\psi_1 & \cos\theta_2 \sin\psi_1 \\ 0 & -\sin\psi_1 & \cos\psi_1 \end{pmatrix} \begin{pmatrix} \cos\theta_1 & \sin\theta_1 & 0 \\ -\sin\theta_1 & \cos\theta_1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 

$$= \begin{pmatrix} \cos\theta_2\cos\theta_1 - \sin\theta_2\cos\psi_1\sin\theta_1 & \cos\theta_2\sin\theta_1 + \sin\theta_2\cos\psi_1\cos\theta_1 & \sin\theta_2\sin\psi_1 \\ -\sin\theta_2\cos\theta_1 - \cos\theta_2\cos\psi_1\sin\theta_1 & -\sin\theta_2\sin\theta_1 + \cos\theta_2\cos\psi_1\cos\theta_1 & \cos\theta_2\sin\psi_1 \\ & \sin\psi_1\sin\theta_1 & -\sin\psi_1\cos\theta_1 & \cos\psi_1 \\ \end{pmatrix}$$

 $R_{TOT} = R_7 R$ 

$$\begin{split} \mathsf{R}_{\mathsf{TOT}}(1,1) &= \cos\varphi \, \cos\theta(\cos\theta_2\cos\theta_1 - \sin\theta_2\cos\psi_1\sin\theta_1) + (\sin\psi\sin\varphi\cos\theta - \cos\psi\sin\theta) \\ &\quad (\cos\theta_2\sin\theta_1 + \sin\theta_2\cos\psi_1\cos\theta_1) + (\cos\psi\sin\varphi\cos\theta + \sin\psi\sin\theta)(\sin\theta_2\sin\psi_1) \\ \mathsf{R}_{\mathsf{TOT}}(1,2) &= \cos\varphi \, \sin\theta(\cos\theta_2\cos\theta_1 - \sin\theta_2\cos\psi_1\sin\theta_1) + (\sin\psi\sin\varphi\sin\theta + \cos\psi\cos\theta) \\ &\quad (\cos\theta_2\sin\theta_1 + \sin\theta_2\cos\psi_1\cos\theta_1) + (\cos\psi\sin\varphi\sin\theta - \sin\psi\cos\theta)(\sin\theta_2\sin\psi_1) \\ \mathsf{R}_{\mathsf{TOT}}(1,3) &= -\sin\varphi \, (\cos\theta_2\cos\theta_1 - \sin\theta_2\cos\psi_1\sin\theta_1) + \sin\psi\cos\varphi \, (\cos\theta_2\sin\theta_1 + \sin\theta_2\cos\psi_1 + \cos\theta_2\cos\psi_1) \\ &\quad \cos\theta_1) + \cos\psi\cos\varphi \, \sin\theta_2\sin\psi_1 \\ \mathsf{R}_{\mathsf{TOT}}(2,2) &= \sin\varphi \, (\sin\theta_2\cos\theta_1 + \cos\theta_2\cos\psi_1\sin\theta_1) + \sin\psi\cos\varphi \, (\sin\theta_2\sin\theta_1 + \sin\theta_2\cos\psi_1) \\ &\quad \cos\theta_1) + \cos\psi\cos\varphi \, \sin\theta_2\sin\psi_1 \\ \mathsf{R}_{\mathsf{TOT}}(2,2) &= \sin\varphi \, (\sin\theta_2\cos\theta_1 + \cos\theta_2\cos\psi_1\sin\theta_1) + \sin\psi\cos\varphi \, (\cos\theta_2\sin\theta_1 + \sin\theta_2\cos\psi_1) \\ &\quad \cos\theta_1) + \cos\psi\cos\varphi \, \sin\theta_2\sin\psi_1 \\ \mathsf{R}_{\mathsf{TOT}}(2,2) &= \sin\varphi \, (\sin\theta_2\cos\theta_1 + \cos\theta_2\cos\psi_1\sin\theta_1) + \sin\psi\cos\varphi \, (\cos\theta_2\sin\theta_1 + \sin\theta_2\cos\psi_1) \\ &\quad \cos\theta_1) + \cos\psi\cos\varphi \, \sin\theta_2\sin\psi_1 \\ \mathsf{R}_{\mathsf{TOT}}(2,2) &= \sin\varphi \, (\sin\theta_2\cos\theta_1 + \cos\theta_2\cos\psi_1) \\ &\quad \cos\theta_2\sin\varphi_1 + \cos\theta_2\cos\psi_1 + \sin\psi\cos\varphi \, (\cos\theta_2\sin\theta_1 + \sin\theta_2\cos\psi_1) \\ &\quad \cos\theta_1) + \cos\psi\cos\varphi \, \sin\theta_2\sin\psi_1 \\ \end{aligned}$$

$$\begin{split} \mathsf{R}_{\mathsf{TOT}}(2,3) &= \sin\phi \; (\sin\theta_2 \cos\theta_1 + \cos\theta_2 \cos\psi_1 \sin\theta_1) \; + \; \sin\psi \cos\phi \; (-\; \sin\theta_2 \sin\theta_1 + \cos\theta_2 \cos\psi_1 \\ &\quad \cos\theta_1) \; + \; \cos\psi \cos\phi \; \cos\theta_2 \sin\psi_1 \end{split}$$

Layout roll :  $R_5 (2,3) = R_{TOT} (2,3)$  $\psi' = \sin^{-1} (R_{TOT} (2,3))$  (Eqn. 7-2)

Sequential pitch:  $R(1,3) = R_{TOT}(1,3)$   $\phi$  (sequential) = - sin <sup>-1</sup>  $R_{TOT}(1,3)$  (Eqn. 7-3) Sequential roll:  $R(2,3) = R_{TOT}(2,3)$ 

 $\psi$  (sequential) = sin<sup>-1</sup> (1/(cos  $\phi$  (sequential)) \* sin  $\psi$ ') (Eqn. 7-4)

Sequential yaw with sinus:  $R(1,2) = R_{TOT}(1,2)$  $\theta$  (sequential) = sin <sup>-1</sup> (1/(cos  $\phi$  (sequential)) \*  $R_{TOT}(1,2)$ ) (Eqn. 7-5)

Sequential yaw with cosinus:  

$$R(1,1) = R_{TOT}(1,1)$$
  
 $\theta$  (sequential) = cos<sup>-1</sup> (1/(cos  $\phi$  (sequential)) \*  $R_{TOT}(1,1)$ ) (Eqn. 7-6)

To determine quadrant of yaw see Figure 20.

| sin φ (sequential) | cos φ (sequential) | φ (sequential)              |
|--------------------|--------------------|-----------------------------|
| >0                 | >0                 | arcsin¢ (sequential)        |
| >0                 | <0                 | pi - arcsinϕ (sequential)   |
| <0                 | >0                 | arcsino (sequential)        |
| <0                 | <0                 | - pi - arcsino (sequential) |

Figure 20. Quadrant of yaw.

•

^

#### 7.1.2. ROTATION ABOUT DIRECTED LINE

A check to the previous method can be made by performing a rotation of the original beam following coordinate system about a vector representing the chord of the magnet. This vector is the directed line to be rotated about.

 $M \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} \lambda^{2}(1-\cos\alpha) + \cos\alpha & \lambda\mu(1-\cos\alpha) - \nu\sin\alpha & \lambda\nu(1-\cos\alpha) + \mu\sin\alpha \\ \lambda\mu(1-\cos\alpha) + \nu\sin\alpha & \mu^{2}(1-\cos\alpha) + \cos\alpha & \mu\nu(1-\cos\alpha) - \lambda\sin\alpha \\ \lambda\nu(1-\cos\alpha) - \mu\sin\alpha & \mu\nu(1-\cos\alpha) + \lambda\sin\alpha & \nu^{2}(1-\cos\alpha) + \cos\alpha \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ 

(Eqn. 7-7)

 $\alpha$  = angle of rotation about the directed line

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \text{ rollfixed coordinate system}$$
$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \text{ Original beam following coordinate system (BFS)}$$
$$\begin{pmatrix} \lambda \\ \mu \end{pmatrix} = \text{ Direction cosines of directed line in original coordinate system}$$

Direction cosines of a line along chord:

**:** ·

lv)

^

$$A^{->}_{R} = \begin{pmatrix} Z \\ X \\ Y \end{pmatrix}_{R}$$
 = Coordinates of RM end of magnet in the BFS at the FM end (before magnet

is rollfixed)

$$\lambda = Z / |A^{->}_{\mathbf{R}}| \quad ; \ \mu = X / |A^{->}_{\mathbf{R}}| \quad ; \ v = Y / |A^{->}_{\mathbf{R}}|$$



Figure 21. Magnet geometry for direction vectors

$$\label{eq:R} \begin{split} R &= 279.378 \; [m] \\ \Delta \! / 2 &= 0.2566617 \; [\text{DEG}] \end{split}$$

: •

^

chord = 2 R \* sin 
$$\Delta/2$$
 = 2.502990385 [m]  
Z = cos ( 0.2566617 [DEG] ) \* 2.502990385 [m] = 2.502965271 [m]  
X = sin ( 0.2566617 [DEG] ) \* 2.502990385 [m] = 0.011212338 [m]  
Y = 0  
| A<sup>-></sup><sub>R</sub> | =  $\sqrt{Z^2 + X^2 + Y^2}$  = 2.502990385 [m]  
 $\lambda$  = cos  $\Delta/2$   
 $\mu$  = cos (90 [DEG] + $\Delta/2$ ) = - sin  $\Delta/2$   
v = cos 90 [DEG] = 0  
m11 = (cos $\Delta/2$ )<sup>2</sup> (1- cos $\alpha$ ) + cos $\alpha$  = (cos $\Delta/2$ )<sup>2</sup> + (-(cos $\Delta/2$ )<sup>2</sup> + 1) cos $\alpha$  =  
(cos $\Delta/2$ )<sup>2</sup> + (sin $\Delta/2$ )<sup>2</sup> cos $\alpha$   
m12 = (cos $\Delta/2$ ) (- sin $\Delta/2$ )(1- cos $\alpha$ ) - cos 90 [DEG] sin $\alpha$  = -sin $\Delta/2$  cos $\Delta/2$  + cos $\Delta/2$  sin $\Delta/2$  cos $\alpha$   
m13 = (cos $\Delta/2$ ) (0)(1- cos $\alpha$ ) - sin $\Delta/2$  sin $\alpha$  => (RHR) = sin $\Delta/2$  sin $\alpha$   
m 21 = - (cos $\Delta/2$ )( sin $\Delta/2$ )(1- cos $\alpha$ ) + 0 sin $\alpha$  = - cos $\Delta/2$  sin $\Delta/2$  + cos $\Delta/2$  sin $\Delta/2$  cos $\alpha$   
m 22 = (sin $\Delta/2$ )<sup>2</sup> (1- cos $\alpha$ ) + cos $\alpha$  = (sin $\Delta/2$ )<sup>2</sup> + (-(sin $\Delta/2$ )<sup>2</sup> + 1) cos $\alpha$  =  
(sin $\Delta/2$ )<sup>2</sup> + (cos $\Delta/2$ )<sup>2</sup> cos $\alpha$   
m 23 = - (sin $\Delta/2$ ) (0)(1- cos $\alpha$ ) - cos $\Delta/2$  sin $\alpha$  = - cos $\Delta/2$  sin $\alpha$  => (RHR) = - cos $\Delta/2$  sin $\alpha$   
m 31 = (cos $\Delta/2$ ) (0)(1- cos $\alpha$ ) - cos $\Delta/2$  sin $\alpha$  = sin $\Delta/2$  sin $\alpha$  => (RHR) = - sin $\Delta/2$  sin $\alpha$   
m 32 = - (sin $\Delta/2$ ) (0)(1- cos $\alpha$ ) + cos $\Delta/2$  sin $\alpha$  = cos $\Delta/2$  sin $\alpha$  => (RHR) = - cos $\Delta/2$  sin $\alpha$   
m 33 = (0)<sup>2</sup>(1- cos $\alpha$ ) + cos $\alpha$  = cos $\alpha$ 

The sign conventions do not follow the right hand rule as they do in sequential rotations.

У.

For rotation about directed line. Directed line into paper.

For sequential rotations

#### 7.1.3. COMPARISON OF ROTATIONS

R7 is derived by sequential rotationsM is derived by rotations about a directed line

The values of ( $\theta_1$ ) and ( $\theta_2$ ) are numerically equivalent, as the yaw is always seen in the magnet plane. But since all rotations for M are right handed you have to watch for the sign of  $\Delta/2$ .  $\Delta/2$  brings chord to Beamline. Therefore ( $\theta_1$ ) = ( $\Delta/2$ ) and ( $\theta_2$ ) = ( $\Delta/2$ ). Also ( $\psi_1$ ) = ( $\alpha$ )

Elements of R7:

•

^

 $r11 = (\cos \Delta/2)^2 + (\sin \Delta/2)^2 \cos \alpha = m11$   $r12 = -\sin \Delta/2 \cos \Delta/2 + \cos \Delta/2 \sin \Delta/2 \cos \alpha = m12$   $r13 = \sin \Delta/2 \sin \alpha = m13$   $r 21 = -\cos \Delta/2 \sin \Delta/2 + \cos \Delta/2 \sin \Delta/2 \cos \alpha = m21$   $r 22 = (\sin \Delta/2)^2 + (\cos \Delta/2)^2 \cos \alpha = m22$   $r 23 = \cos \Delta/2 \sin \alpha = m23$   $r 31 = -\sin \Delta/2 \sin \alpha = m31$   $r 32 = -\cos \Delta/2 \sin \alpha = m32$  $r 33 = \cos \alpha = m33$ 

#### <u>GLOSSARY</u>

- Achromat: A section in the arc where the outgoing beam has the same characteristics as the incoming one.
- Actual coordinates: Magnet positions as installed, determined using standard engineering surveying techniques.

Arcs: The north and south sections of the SLC after the two mile linear section.

C-clamp: A C-shaped fixture designed for the alignment of the arcs.

Datum: A coordinate system origin.

•

Downstream: In the direction in which the particle beam is assumed to go.

Fiducial: Reference point on a beam element in form of a Tooling Ball (TB).

Ideal Coordinate System: Design coordinate system derived from a beam simulation program (TRANSPORT).

Inclinometer: An instrument to measure the inclination of a surface in respect to gravity.

LINAC: Two mile linear accelerator section before north and south arcs.

PCURVE: A program used for SMOOTHING (STEP 4).

Pedigree: A magnet correction factor.

Pitch: Rotation around x-axis.

Roll: Rotation around z-axis.

- ROLLFIX: Program designed to feather the roll transitions between achromats through several magnet junctions.
- SAMMI: A magnet measurment device measuring the gap, roll, sagitta and height of a magnet in two minutes.

SPCLSECT: Program designed to calculate ideal coordinate positions.

TRANSPORT: A program used to simulate a particle beam path.

Theodolite: A precision angle measurement tool used for surveying.

Twist: Some magnet are manufactured with a twist around their magnetic axis.

Upstream: Opposite the direction in which the particle beam is assumed to go.

Vertex point: Center of drift section between two arc magnets.

Yaw: Rotation around y-axis.

#### <u>ACRONYMS</u>

BFS: Beam Following coordinate System

**BPM:** Beam Position Monitor

**BSY: Beam Switch Yard** 

: •

CEBAF: Continuous Electron Beam Accelerator Facility

CERN: French acronym for European Center for Nuclear Research

CID: Collider Injector Development

CMM: Coordinate Measuring Machine

ECDS: Electronic Coordinate Determination System

ETA: East Turn Around

FM: Front Magnetic

FF: Front Fiducial (Upstream end)

LINAC: LINear ACcelerator

MMAFI: Magnet to Magnet Alignment by Fixture

MMAS: Magnet to Magnet Alignment System

MTM: Magnet To Magnet

PC: Profile Collimator

RF: Rear Fiducial (Downstream end)

**RM: Rear Magnetic** 

SAMMI: SLAC Automatic Magnet Measurement Instrument

SIMS: SLAC Industrial Measurement System

SLAC: Stanford Linear Accelerator Center

SLC: Stanford Linear Collider

SLD: SLC Large Detector

WTA: West Turn Around

#### **REFERENCES**

•

- Gründig L., Bahndorf, J., 1984, "Optimale Planung und Analyse von 2 und 3- Dimensionalen Geodätischen Netzen in Ingenieurbereich - Programmsystem OPTUN", - in: Ingenieurvermessung 84 - Beiträge zum IX. Internationalen Kurs für Ingenieurvermessung, GRAZ, pp.B2/1-12.
- Donahue, T., 1986, "The Building of a Total Survey System", in: Seminar for Surveyors and Civil Engineers FORESIGHT Newsletter & P.O.B. Publishing Co., Burlingame Appendix 3-A & B.
- Burstedde, I., 1987, "Das Programmsystem GEONET zur Ausgleichung geodätischer Netze", in: Allgemeine Vermessungs-Nachrichten, 3,87, pp.118-130
- 4. Burstedde, I., Cremer, K., 1986, "Zur Ausgleichung geodätischer Netze nach der 1-Norm", in: Allgemeiner Vermessungs-Nachrichten 6/86, pp. 228-235
- Pushor, R. 1987, "Geonet Data Management System User's Guide Version 3.00" Unpublished documentation, Stanford Linear Accelerator Center, Stanford University, CA.
- Brunner F.K., 1984, "Modeling of Atmospheric Effects on Terrestrial Geodetic Measurements", in: Geodetic Refraction, Springer Verlag, New York, pp. 143-162.
- 7. Pelzer, H., 1983 "Sysstematic Instrumental Errors in Precise Leveling," in: Precise Leveling, Dümmler Verlag, Bonn, pp. 3-17.
- 8. Oren, W., Ruland, R. 1985, "Survey Computation Problems Associated with Multi-Planar Electron-Positron Colliders", in: Proceedings of 45th ASP-ACSM Convention, Washington, D.C., pp. 338-347, SLAC-PUB-3542.
- Curtis, C., Oren, W., Ruland, R., 1986, "The Use of Intersecting Lasers in the Alignment of the New Electron-Positron Collider at the Stanford Linear Accelerator Center" in: Proceedings of the 46th ASP-ACSM Convention, Washington, D.C., pp.61-69, SLAC-PUB-3837.
- Ruland, R., Friedsam, H., 1986, "A Realization of an Automated Data Flow for Data Collecting, Processing, Storing, and Retrieving — GEONET —", invited paper, presented at the XVIII FIG Congress, Toronto, June 1-11, 1986, SLAC-PUB-4142.
- Pietryka, M., Friedsam, H., Oren, W., Pitthan, R., Ruland, R., 1985 "The Alignment of Stanford's New Electron-Positron Collider", in: Proceedings of the 45th ASP-ACSM Convention, Washington, D.C., pp.321-329 SLAC-PUB-3543.

12. Erickson, R. (Editor), 1984, "SLC Design Handbook", Stanford Linear Accelerator Center, Stanford University, CA.

•

- 13. Thierbach, II, 1979, "Hydrostatische Mess-Systeme", Sammlung Wichmann Neue Folge Bd. 12, Wichmann Verlag, Karlsruhe, pp. 72-75.
- 14. S. Kheifets, T. Fieguth, et al.: "Beam Optical Design and Studies of the SLC Arcs", SLAC-PUB-4013, 13th International Conference on High Energy Accelerators, Novosibirsk, 1986.
- H. Friedsam, W. Oren, M. Pietryka, R. Pitthan, and R. Ruland: "SLC Alignment", in: Stanford Linear Collider Design Handbook, SLAC 1984, pp.8-3, — 8-85,
- 16. R. Pitthan and R. Ruland: "A proposal for the Alignment of SSC", SSC-N-134, SLAC PUB-3930, 1986.
- 17. W. Oren, R. Pushor, and R. Ruland: "Incorporation of the KERN ECDS-PC Software into a Projet Oriented Software Environment", SLAC-PUB-4141, to be presented at the 47th ASP-ACSM Convention, Wash.D.C. 1987.
- T. Hastie: "Principal Curves and Surfaces", Stanford U. Ph.D. SLAC-276, STAN-LCS, 1984.
- 19. G.E.Fischer et al.,: "Some Experience from the Commissioning Program of the SLC Arcs", this Conference, 1987.
- 20. R. Ruland and A. Leick: "Application of GPS in a High Precision Engineering Survey Network", SLC-PUB-3620, 1st Int. Symp. on Prec. Pos. with GPS, Rockville, MD, 1985, pp.483-494.
- J. R. Rees. "The Stanford Linear Collider," Scientific American, 261:4, October 1989, pp.58-65
- 22. R. Pitthan et al., "Alignment of the Stanford Linear Collider Arcs," SLAC-PUB-4208 (1987).
- K.L.Brown, D.C.Carey, C.Iselin, and F. Rothacker, TRANSPORT, A Computer Program for Designing Charged Particle Beam Transport Systems, SLAC-91 (1973).
- R. Ruland and A. Leick, "Application of GPS in a High Precision Engineering Survey Network," in Proc. First Int. Sym. on Precise Positioning with GPS, Rockville, MD, 1985, pp.483-494, SLC-PUB-3620, 1985.
- 25. W. Oren, R. Pitthan, R. Pushor, R. Ruland "Alignment Labeling Scheme for SLC AG Magnets, Horizontal Central Points, and Tunnel Benchmarks" SLAC-CN 293., 1985

 H. Friedsam, D. Goldsmith, W. Oren, M. Pietryka, R. Pitthan, R. Pushor, and R. Ruland, "The SLC Vertical Survey Network," SLAC-CN 316. 1985.

•

- 27. H.Friedsam, W.Oren, R. Pitthan, R. Pushor, and R. Ruland, "Alignment Labeling Scheme for the Reverse Bends, Instrument Sections, and The Final Focus Beam Line Elements and Their Support," ALC-CN 317. 1986.
- 28. Bernard Bell, Horst Friedsam, Will Oren, and Robert Ruland, "Datum Definition Problems in Accelerator Alignment", SLAC-PUB-5226. 1990.
- 29. Will Oren, "SLC Arc Survey Results for September, October 1988 Shutdown," SLAC-SAN 1. 1988.
- 30. Will Oren, "SLC Final Focus Survey Results, September, October 1988 Shutdown," SLAC-SAN2. 1988.
- 31. F. Linker, B. Dozhier, "Survey and Alignment of the RTL, LTR, and Damping Ring," SLAC-SAN 3. 1988.
- 32. Bernard Bell, "Error Theory and Least Squares," Prepared for the Coordinate Measurement Systems Committee, 1990.
- 33. J. M. Gaunt, "Bundle Adjustments and Tridimensional Coordinate Determination," SLAC-PUB-4714, 1988.
- 34. F. Moffitt, E. Mikhail, "Photogrammetry," Harper & Row publishers, New York, 1980.
- 35. E. Mikhail, "Observations & Least Squares," Harper & Row publishers, New . York, 1976.

#### APPENDIX A

#### SIGN CONVENTIONS

#### Special Section Smoothing Movement Signs



NOTE: x-axis always opposite the radial center.

÷.

Beam following system flips at the center of reverse bends.



PCURVE output

Motions done in vertical with level Motions done in horizontal with transit parallel to beamline Misalignment = Residual + [(Actual - Ideal) - Average  $\Delta$ ]

#### **Y**-coordinates

--

.

10.000

ł

| AREA   | MISALIGNMENT | ADJUSTMENT | MISALIGNMENT | ADJUSTMENT |
|--------|--------------|------------|--------------|------------|
|        | -+-          | -down      | _            | +up        |
| SBSY   | too high     | move down  | too low      | move up    |
| NBSY   | too hign     | move down  | too low      | move up    |
| SIS    | too high     | move down  | too low      | move up    |
| SRB    | too high     | move down  | too low      | move up    |
| NRB    | too high     | move down  | too low      | move up    |
| SFF    | too high     | move down  | too low      | move up    |
| NFF    | too high     | move down  | too low      | move up    |
| SSPECT | too high     | move down  | too low      | move up    |
| NSPECT | too hign     | move down  | too low      | move up    |

#### X-coordinates

| AREA   | MISALIGNMENT       | ADJUSTMENT          | MISALIGNMENT       | ADJUSTMENT         |
|--------|--------------------|---------------------|--------------------|--------------------|
|        | +                  |                     | -                  | +                  |
| SBSY   | too far north      | away C-beam (–)     | too far south      | toward C-beam (+)  |
| NBSY   | too far north      | toward C-beam $(-)$ | too far south      | away C-beam(+)     |
| SIS    | too close to aisle | toward wall (-)     | too close to wall  | toward aisle $(+)$ |
| SRB    | too close to aisle | toward wall $(-)$   | too close to wall  | toward aisle (+)   |
| NRB    | too close to wall  | toward aisle $(-)$  | too close to aisle | toward wall (+)    |
| SFF    | too close to aisle | toward wall $(-)$   | too close to wall  | toward aisle $(+)$ |
| NFF    | too close to wall  | toward aisle $(-)$  | too close to aisle | toward wall $(+)$  |
| SSPECT | too close to wall  | toward aisle $(+)$  | too close to aisle | toward wall $(-)$  |
| NSPECT | too close to aisle | toward wall (+)     | too close to wall  | toward aisle $(-)$ |

#### EFFECTIVE PEDIGREE MOVEMENTS FOR THE NORTH ARC



If X pedigree is **positive** the magnet moves toward the **wall** If X pedigree is **negative** the magnet moves toward the **aisle** 

•

ģ

ĩ

^



If X pedigree is **positive** the magnet moves towards the **aisle** If X pedigree is **negative** the magnet moves toward the **wall** 

#### Magnet-to-Magnet Alignment with MAS Signs for Dial Gage Motions Using the Jaws Fixture to Apply the Motions (Electronic Gages Used)

1) Extend plunger = negative 1

**^** .

٠.

- 2) Depressing plunger = positive
- 3) MMAF gages mounted on FF end on South side
- 4) MMAF gages mounted on RF end on North side
- 5) Differences taken in the FF clamp coord. system
- 6) Subtraction is Actual Ideal

#### Y MOTION

| South (Gages on FF end)                     |   |          |           |  |
|---------------------------------------------|---|----------|-----------|--|
| RF end Sign of Difference Movement Gage Sig |   |          |           |  |
| Too high                                    | + | - (down) | Extend –  |  |
| Too low                                     | - | + (up)   | Depress + |  |

| North (Gages on RF end) |                    |          |           |  |
|-------------------------|--------------------|----------|-----------|--|
| RF end                  | Sign of difference | Movement | Gage Sign |  |
| Too hig <b>h</b>        | +                  | – (down) | Depress + |  |
| Too low                 | _                  | + (up)   | Extend –  |  |

#### X MOTION

| South (Gages on FF end)                     |   |              |           |  |
|---------------------------------------------|---|--------------|-----------|--|
| RF End Sign of Difference Movement Gage Sig |   |              |           |  |
| Too close to aisle                          | + | – (to wall)  | Extend –  |  |
| Too far from aisle                          | — | + (to aisle) | Depress + |  |

| North (Gages on RF end)                    |   |              |           |
|--------------------------------------------|---|--------------|-----------|
| RF end Sign of Difference Movement Gage Si |   |              |           |
| Too close to aisle                         | + | - (to wall)  | Depress + |
| Too far from aisle                         | + | + (to aisle) | Extend -  |

|         | South                 |                      | South North           |          |
|---------|-----------------------|----------------------|-----------------------|----------|
|         | $BSY \rightarrow RB1$ | $RB \rightarrow FF2$ | $BSY \rightarrow RB3$ | RB - FF4 |
| Focus   | -1                    | +1                   | +1                    | -1       |
| Defocus | +1                    | -1                   | -1                    | +1       |

#### Table to Put Pitch Signs for BPM Measurements into the Right Hand Rule for the Standard BPM System

:

1407

Table to put BPM Actual Coordinates into the Standard BPM System. Z along BeamYalways up and X to the left (Signs 4)

|   | Sou                  | th                  | North                |                                       |
|---|----------------------|---------------------|----------------------|---------------------------------------|
|   | $BSY \rightarrow RB$ | $RB \rightarrow FF$ | $BSY \rightarrow RB$ | $\mathrm{RB} \rightarrow \mathrm{FF}$ |
| Z | 1                    | 1                   | 1                    | 1                                     |
| x | 1 -1                 |                     | -1                   | 1                                     |
| Y | 1 -1                 |                     | -1                   | 1                                     |

#### Table to Show Side of BPM Probed as Facing Down Stream

|         | South                 |                      | North                 |                              |
|---------|-----------------------|----------------------|-----------------------|------------------------------|
|         | $BSY \rightarrow RB1$ | $RB \rightarrow FF2$ | $BSY \rightarrow RB3$ | $\mathrm{RB}\to\mathrm{FF4}$ |
| Focus   | Left                  | R                    | R                     | L                            |
| Defocus | Right                 | L                    | L                     | R                            |

#### Table to Put Reduced Measured Pitch into the B-F-S

| Sou                  | th                  | Nor                  | th                  |
|----------------------|---------------------|----------------------|---------------------|
| $BSY \rightarrow RB$ | $RB \rightarrow FF$ | $BSY \rightarrow RB$ | $RB \rightarrow FF$ |
| +1                   | -1                  | -1                   | +1                  |

### Table of Signs to Put Magnet-to-MagnetClamp (45, 46)into Beam Following System

[Assuming they are always mounted from the aisle (used for Magnet-to-Magnet calculations) or to do the inverse conversion]

|   | $\mathbf{South}$      |                                | North                 |                      |
|---|-----------------------|--------------------------------|-----------------------|----------------------|
|   | $BSY \rightarrow RB1$ | $\mathrm{RB} \to \mathrm{FF2}$ | $BSY \rightarrow RB3$ | $RB \rightarrow FF4$ |
| Z | +1                    | +1                             | -1                    | -1                   |
| x | +1 -1                 |                                | +1                    | -1                   |
| Y | +1                    | 1                              | -1                    | +1                   |

Table of Signs to Put Magnet-to-Magnet Roll Measurementinto the Right-Hand Rulefor the Beam Following System(Assuming clamps are always put on from the aisle side)

|      | South | North |
|------|-------|-------|
| Roll | 1     | -1    |

Table of Signs to Put Magnet-to-Magnet Pitch Measurement into the Right-Hand Rule for the Beam Following System

|                  | Sou                   | th                   | North                 |                      |
|------------------|-----------------------|----------------------|-----------------------|----------------------|
|                  | $BSY \rightarrow RB1$ | $RB \rightarrow FF2$ | $BSY \rightarrow RB3$ | $RB \rightarrow FF4$ |
| $\mathbf{Pitch}$ | -1                    | -1                   | +1                    | +1                   |

|   | South Arc                     |  | North Arc                |                        |
|---|-------------------------------|--|--------------------------|------------------------|
|   | $BSY \to RB(1) RB \to FF (2)$ |  | $BSY \rightarrow RB$ (3) | $RB \rightarrow FF(4)$ |
| F | +1 -1                         |  | -1                       | +1                     |
| D | +1 -1                         |  | -1                       | +1                     |

#### Table of Signs to Put Inclinometer Sensitive Axis Angular Misalignment into Beam - Following System

:

Table of Z locations of C-Clamps on Magnet A or B-End

|     | South Arc               |                        | North                   | Arc                    |
|-----|-------------------------|------------------------|-------------------------|------------------------|
| End | $BSY \rightarrow RB(1)$ | $RB \rightarrow FF(2)$ | $BSY \rightarrow RB(3)$ | $RB \rightarrow FF(4)$ |
| FF  | В                       | Α                      | Α                       | В                      |
| RF  | А                       | В                      | В                       | A                      |

|    | South Arc | North Arc |
|----|-----------|-----------|
| FF | 2         | 1         |
| RF | 1         | 2         |

#### Magnet-to-Magnet "Mic'd" T/B (clamps 45, 46) Always Mounted from Aisle

• . .

•

#### Table of Signs to Convert C-Clamps Fixture Coordinates and Roll Signs to the Beam Following System

|      | South |                         | Arc                              | North Arc               |                        |
|------|-------|-------------------------|----------------------------------|-------------------------|------------------------|
|      |       | $BSY \rightarrow RB(1)$ | $\mathrm{RB} \to \mathrm{FF}(2)$ | $BSY \rightarrow RB(3)$ | $RB \rightarrow FF(4)$ |
| z    | F     | 1                       | -1                               | -1                      | 1                      |
| z    | D     | 1                       | 1                                | 1                       | 1                      |
| x    | F     | 1                       | 1                                | 1                       | 1                      |
| x    | D     | -1                      | -1                               | -1                      | -1                     |
| у    | F     | 1                       | -1                               | -1                      | 1                      |
| у    | D     | 1                       | -1                               | -1                      | 1                      |
| Roll | F     | 1                       | -1                               | -1                      | 1 *                    |
| Roll | D     | -1                      | 1                                | 1                       | -1 *                   |

Multiply by Factor to Get Beam Following System

\* used in subroutine "ROLLSI"

#### Table of Signs to Convert Pedigree Offsets to the Beam Following Coordinate System

•

|      | South Arc            |                     | North Arc            |                     |
|------|----------------------|---------------------|----------------------|---------------------|
|      | $BSY \rightarrow RB$ | $RB \rightarrow FF$ | $BSY \rightarrow RB$ | $RB \rightarrow FF$ |
| z    | 0                    | 0                   | 0                    | 0                   |
| x    | 1                    | -1                  | -1                   | 1                   |
| у    | -1                   | -1                  | -1                   | -1                  |
| Roll | -1                   | 1                   | 1                    | -1                  |

(Multiply by factor to get beam following system)

#### Table to Determine the Tooling Ball Micrometered for the "Z" Placement of the C-Clamp

|   |    | South Arc            |                     | North Arc            |                                       |
|---|----|----------------------|---------------------|----------------------|---------------------------------------|
|   |    | $BSY \rightarrow RB$ | $RB \rightarrow FF$ | $BSY \rightarrow RB$ | $\mathrm{RB} \rightarrow \mathrm{FF}$ |
| F | FF | Right                | Left                | Left                 | Right                                 |
|   | RF | Left                 | Right               | Right                | Left                                  |
| D | FF | ${ m Left}$          | Right               | Right                | Left                                  |
|   | RF | Right                | Left                | Left                 | Right                                 |

| South Arc                              |                            |   |      | North Arc                 |     |    |   |  |
|----------------------------------------|----------------------------|---|------|---------------------------|-----|----|---|--|
| $1 \rightarrow RB   RB \rightarrow FF$ |                            |   | BSY  | $\rightarrow$ Beginning 9 | 9 → | FF |   |  |
| F                                      | D                          | F | D    | F D                       |     | F  | D |  |
| Even                                   | Even Odd Odd Even Odd Even |   | Even | Even                      | Odd |    |   |  |

#### Table to Determine Arc Magnet Type and Location from Name (XLOCAT Subroutine)

#### Exceptions:

Achromat 00 - First magnet is F and odd. Achromat IS - Third magnet is F and odd.

#### Achromat 8 order

| South | 8B then 8A |
|-------|------------|
| North | 8A then 8B |

#### Table of Signs to Put STEP 4 Alignment Differences into a Standard Coordinate System

#### Standard System

2

| +Z | down beam                |
|----|--------------------------|
| +X | to left facing down beam |
| +Y | up facing down beam      |

Multiply differences in beam following system to get standard system

|   | South                                      | Arc | North Arc             |                      |  |
|---|--------------------------------------------|-----|-----------------------|----------------------|--|
|   | $ BSY \rightarrow RB  RB \rightarrow FF2 $ |     | $BSY \rightarrow RB3$ | $RB \rightarrow FF4$ |  |
| x | 1                                          | -1  | -1                    | 1                    |  |
| Y | 1 -1                                       |     | -1                    | 1                    |  |

\* Positive difference after application of above factors means actual position is too high or too far left.

#### Subroutine SIGNS

: •

•

This subroutine assigns the correct signs to the fixture offsets for STEP3. The sign convention for the fixture are as follows:



The z coordinate of the fixture should always be entered into the XP array as a positive since this coordinate will be used to determine ARC length. (If the z fixture coordinate is non-zero).



#### Local Beam Line Systems

#### APPENDIX B

DATE: November 24, 1980

: SLC Distribution

KCM : W.A. Davies-White

اندار در در میکند. از در آمارید با درمان در تابع افزار به است. است میکند از میکند از از این میکند کرد آرای میک است از از این میکند با در این میکند در درمان در تابع از میکند از این است میکند. این میکند این این میکند از این

Э

#### when: SLC Damping Ring Coordinate System

I hope the following memo will clarify rather than confuse participants in the SLC project.

It is well to note that at the centre of the drift section 1-9, between girders 1-8 and 2-1, the accelerator has a slope from west to east of 17.91 minutes of arc or .00521 Radians.

It is intended that the transport line to the damping ring, the damping ring and the compressor arc all be in a horizontal plane as defined by the gravity vector at the centre of 1-9 drift section.

With the above in mind, I propose to define the origin Z = 0, Y = 0, X = 0 for the damping ring as follows.

Z orthogonal to the gravity vector: Z = 0 at a point  $-59.660^{\circ}$  inches from the end of Sector 1 (the centre of drift section 1-9).

 $Z_{y}$  along the gravity vector, passing through Z = 0, as defined above with Y = 0 at the beam centerline.

Z normal to the accelerator at Z = 0 as defined above with X = 0 at the beam centerline.

By inspection of the attached drawing, one readily sees that the septum is placed at (0,0,0).

At the present time, I understand the accelerator is aligned by using two fixed points, one located at Sector 30 and the other at Sector 10 (the positron source). I would like to point out that with the addition of the damping ring and given our very close alignment tolerances, it would appear unwise to move the accelerator at Sector 1 to align to the axis as defined by the points (30-10).

If this is not feasible, then I suggest we give some serious thought, in the future, as to how we monitor motions and/or movements of the centre of Drift Section 1-9 so that we can steer the outgoing and incoming beams appropriately.

الصيوي برجع الداري المتوسية المحجد وحجار مارج

65



### APPENDIX C

| 108 NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   | رجا و مرمب                              | · · ·                                   |                                       |                                        | BY L.G.  | DATE             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------|----------------------------------------|----------|------------------|
| :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>JOB</u>                                                                                                                                                                                                                        | - <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                                                          | Finich                                  | <u></u><br>∓:-,                         |                                       | at é                                   | снк.р    | DATE             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $-\frac{\text{SUBJECT}}{\sqrt{2}}$                                                                                                                                                                                                | $-\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   | a mass                                  | ) for                                   | Compu                                 | tation                                 | -detail  | Is               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                   |                                         | band by                                 | the                                   | forme                                  | Ja       |                  |
| - <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _level                                                                                                                                                                                                                            | _ <u>e</u> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S NORS                                                            |                                         | H                                       |                                       |                                        | *****    |                  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   | 1 03                                    | ~6(y)                                   | +25                                   | 0.09 x                                 | 10-10 (5 | < <sup>2</sup> ) |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>- (-) -</u>                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C                                                                 | 4.0541                                  | <u> </u>                                | · · · · · · · · · · · · · · · · · ·   |                                        |          |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |                                         |                                         |                                       | ······································ |          |                  |
| <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   | Sta Ot                                  | <br>00 1.05                             | tu Ste                                | 100 +                                  | -00      |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   | (line)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | avien d                                                           | 2-1-1-1                                 | 05+80                                   | $\overline{)}$                        |                                        |          |                  |
| 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                                                                                                                                                          | <u>Cine</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   | C bh a ca                               |                                         | in Yuro                               | and                                    | Geoid    | height           |
| In The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   | Sphero                                  | Leoder                                  | Divisio                               | coa Coa                                | st and   | Geodet           |
| are come                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12010-                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ANSCR                                                             | <u> </u>                                |                                         |                                       |                                        |          |                  |
| Survey 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 126163                                                                                                                                                                                                                            | -10-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | renerc                                                            |                                         |                                         |                                       |                                        |          |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1 11                                                                                                                                                                                                                             | 4 •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   | <u></u>                                 | <br>                                    | 200.11                                | an are                                 | ade: E:  |                  |
| Ine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Straight                                                                                                                                                                                                                          | Eline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eleva.                                                            | FIONS                                   | , E                                     |                                       | ······································ |          |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   | 00-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   | 10                                      | 2 = 2                                   | 999 2                                 | 400                                    | <u></u>  |                  |
| <u>-ta. O</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -00                                                                                                                                                                                                                               | 4-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                   | -1.7                                    | ~ ~ ~ ~                                 | A G C                                 | 2003                                   | 3        | ·                |
| <u>Sta_loc</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ;+00                                                                                                                                                                                                                              | <u>-24</u> /,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200 1                                                             |                                         | 2 = 2                                   |                                       |                                        | 10050    | 1-105            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | le latter                                                                                                                                                                                                                         | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | water .                                                           | Traim_O                                 | +00-75.                                 |                                       | <u> </u>                               |          |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   |                                         |                                         |                                       |                                        |          |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r                                                                 |                                         | -, <i>o/</i>                            | ·                                     |                                        |          |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   |                                         |                                         |                                       |                                        |          |                  |
| Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>                                                                                                                                                                                                                          | lever                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on in T                                                           | · ·                                     | alope /                                 |                                       |                                        |          |                  |
| <u>Station</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E                                                                                                                                                                                                                                 | 127977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                   |                                         | slope /                                 |                                       |                                        |          |                  |
| Station<br>0+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )2                                                                                                                                                                                                                                | S.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                   |                                         | slope /                                 | · · · · · · · · · · · · · · · · · · · |                                        |          |                  |
| Station<br>0 to 1<br>to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                        | 99.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = + 0<br>977                                                      |                                         | 10/02 /0<br>1.524                       | •                                     |                                        |          |                  |
| Station<br>0 + 0 1<br>+ 5<br>1 + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2       0     2       0     2       0     2                                                                                                                                                                                       | 99.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | z + 0<br>9 7 7<br>7 ( 5                                           |                                         | 10,02 /<br>524                          | •                                     |                                        |          |                  |
| Station<br>0+01<br>+5<br>1+0<br>+5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2       0     2       0     2       0     2       0     2       0     2       0     2                                                                                                                                             | 99.<br>98.<br>98.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 + 0<br>9 7 7<br>7 ( 5<br>7 5                                    |                                         | 10,02 /<br>524<br>524                   | •                                     |                                        |          |                  |
| Station<br>0+01<br>+5<br>1+0<br>+5<br>2+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2       0     2       0     2       0     2       0     2       0     2       0     2       0     2                                                                                                                               | (19)<br>(19)<br>(19)<br>(19)<br>(19)<br>(19)<br>(19)<br>(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 7 7<br>7 7 5<br>7 7 5<br>7 5<br>7 5<br>7 5<br>7 5<br>7 5<br>7 5 |                                         | 5 2 4                                   |                                       |                                        |          |                  |
| Station<br>0+01<br>+5<br>1+0<br>+5<br>2+0<br>+5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2       0     2       0     2       0     2       0     2       0     2       0     2       0     2       0     2       0     2       0     2       0     2       0     2                                                         | (19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(19.2)<br>(1 | 29774193                                                          |                                         | 524                                     |                                       |                                        |          |                  |
| Station<br>0:01<br>:5<br>1+0<br>+5<br>·2+0<br>+5<br>·2+0<br>+5<br>·2+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   | 9.019.02.<br>9.019.02.<br>9.019.02.<br>9.019.02.<br>9.019.7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 297754<br>7754<br>7036                                            |                                         | 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                                       |                                        |          |                  |
| Station<br>0+01<br>+5<br>1+0<br>+5<br>2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   | 50,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 297741960<br>775450360<br>7                                       |                                         | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |                                       |                                        |          |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2       0     2       0     2       0     2       0     2       0     2       0     2       0     2       0     2       0     2       0     2       0     2       0     2       0     2       0     2       0     2       0     2 | 50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,02<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,0000<br>50,0000<br>50,00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2974196041<br>47(54)20076                                         | 000000000000000000000000000000000000000 | 55555555                                |                                       |                                        |          |                  |
| Station<br>0+01<br>+5<br>1+0<br>+5<br>2+0<br>+5<br>2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>-2+0<br>+5<br>-2+0<br>+5<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0<br>-2+0 |                                                                                                                                                                                                                                   | (10) 9) 9) 9) 9) 9) 9) 9) 9) 9) 9) 9) 9) 9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2974196418<br>47(5976048                                          | 0990250643                              | 5555555555                              |                                       |                                        |          |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   | 50100000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                   | 09902506432                             |                                         |                                       |                                        |          |                  |
| Station<br>0+01 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 0 + 5 + 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                   | (10) 5) 5) 5) 5) 5) 5) 5) 5) 5) 5) 5) 5) 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -7(-5,9,7,6,0,4,0,8,0,2,0)<br>-77(-5,9,7,6,0,4,0,0,2,0)           |                                         |                                         |                                       |                                        |          |                  |
| Station<br>0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                   | (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                   | 09902506432                             | 555555555555555555555555555555555555555 |                                       |                                        |          |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   | 50100000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                   |                                         |                                         |                                       |                                        |          |                  |

ETRON-BLUME-ATKINSON

•

.

ARCHITECT - ENGINEER - MANAGER

PALO ALI

| OB NO.                                        | <u></u>              | BY                                    | DATE                                  |
|-----------------------------------------------|----------------------|---------------------------------------|---------------------------------------|
|                                               | SUBJECT              | снк.р                                 | DATE                                  |
| • 1.                                          |                      | -•                                    |                                       |
| 6+0                                           | 0 296.1026 6.521     |                                       |                                       |
| + 5                                           | 0 295,8419 521       |                                       |                                       |
| 7+0                                           | 0 2955814 521        |                                       |                                       |
| ÷ S                                           | 0 2353210 521        |                                       |                                       |
| 8 + 0                                         | 0 295.0602 520       |                                       |                                       |
| + 5                                           | 0 2948006 520        |                                       |                                       |
| $C \pm 0$                                     | 0 0945406 520        |                                       |                                       |
| L C                                           | 0 2947807 520        |                                       |                                       |
| $10 \pm 0$                                    | 0 2040209 520        |                                       | · · ·                                 |
|                                               |                      |                                       |                                       |
|                                               |                      |                                       |                                       |
|                                               |                      |                                       |                                       |
|                                               | 0 - 37 3.24 24 - 317 | •··· ··· •                            |                                       |
|                                               |                      | · ····                                |                                       |
|                                               |                      |                                       | · · · · · · · · · · · · · · · · · · · |
| <u>    1   5                             </u> |                      | <br>· .                               |                                       |
|                                               |                      | · · · · · · · · · · · · · · · · · · · |                                       |
| 14 0                                          |                      | · · · · · · · · · · · ·               | · · · · · · · · · · · · · · · · · · · |
|                                               | 0 201.0866 .517      | •<br>•                                |                                       |
| 15-7-0                                        | 5 291.4200 .517      |                                       |                                       |
|                                               | 0 291. 1716 ,517     |                                       | ···                                   |
| 16 + 6                                        | 290,9133 ,51761      |                                       |                                       |
| +5                                            | 50 293.6552 ,=16     |                                       |                                       |
| $17 \sim 0$                                   | 290.39715162         |                                       |                                       |
| + 5                                           | 50 200,1392 ,516     |                                       |                                       |
| 18+0                                          | 0 289.8814 516       |                                       |                                       |
| 25                                            | 0 289.6238 515.      |                                       |                                       |
| 19+0                                          | 0 289.3662 5152      |                                       |                                       |
| + 5                                           | 289.1088.515         |                                       |                                       |
| 20 +0                                         | 0 288,8515 .51547    | •                                     | •                                     |
|                                               | -0 288.5543 .514     | •                                     |                                       |
| 21+0                                          | 0 288.3373 5142      | -                                     |                                       |
| ÷ 5                                           | 10 282.0803 .514     |                                       |                                       |
|                                               |                      | •                                     |                                       |
|                                               |                      | 1<br>1                                | ••••••                                |
|                                               | 68 68                | ·                                     | SHIT                                  |
|                                               |                      |                                       | .20                                   |
| ·                                             |                      | •                                     | • '                                   |
|                                               | · ·                  | <b></b> · ·                           |                                       |

ļ

----:

## AETRON-BLUME-ATKINSON · ARCHITECT - ENGINEER - MANAGER ·

:

### PALO AL

| 103 NO.                               | EOL               |                                       | ,<br>                                   | •                   | BY                                     | DATE                                  |
|---------------------------------------|-------------------|---------------------------------------|-----------------------------------------|---------------------|----------------------------------------|---------------------------------------|
|                                       | SUBJECT           | · · · · · · · · · · · · · · · · · · · |                                         |                     | <u>כאג.ס</u>                           |                                       |
| · · ·                                 |                   |                                       | •                                       |                     |                                        |                                       |
| 22                                    | -00 2             | 878235                                | 0,514                                   |                     |                                        |                                       |
|                                       | -50 2             | 27.5669                               |                                         | i• 1                |                                        | · · · · · · · · · · · · · · · · · · · |
| 02                                    | 1 0 0 2           | 272103                                | 512                                     |                     |                                        | ·····                                 |
|                                       |                   |                                       |                                         |                     |                                        |                                       |
|                                       | $T \leq 0 \leq 2$ | 8 1,05 54                             | , 5   3                                 |                     |                                        |                                       |
| - 24                                  | +00_2             | 86,15,15                              | .51.5                                   |                     | •<br>•···· • • • • • • • •             |                                       |
|                                       | $+50_2$           | 86,54 4                               | 512                                     | ·                   |                                        | · - ·····                             |
| 25                                    | +00 2             | 262553                                | ,512                                    |                     |                                        | ·                                     |
| •                                     | + 50 2            | 86,0233                               | .512                                    |                     | •                                      |                                       |
| 26                                    | 700 2             | 85,7735                               | .512                                    |                     |                                        |                                       |
| · · · · · · · · · · · · · · · · · · · | 150 2             | 855178                                | 511                                     |                     |                                        |                                       |
| . 0 7                                 | - 0.0 0           | 252692                                | 511                                     | · · ·               |                                        | <b>L</b>                              |
|                                       |                   | 250062                                |                                         |                     |                                        | •                                     |
|                                       |                   | 21 75 15                              |                                         |                     |                                        |                                       |
| <u> </u>                              |                   | 07.1217.                              |                                         |                     |                                        |                                       |
|                                       | + > 0 _ 2         | 24.4.00                               |                                         |                     |                                        | · · · · · · · · · · · · · · · · · · · |
|                                       | $\pm 0.0_{2}$     | 84.2412                               |                                         |                     |                                        |                                       |
| ·                                     | +50 2             | 83.78.62                              | ,510                                    |                     | <u>.</u>                               |                                       |
| <u></u>                               | +00 2             | 83.73 4                               | , 5.10                                  |                     |                                        |                                       |
|                                       | $+50_2$           | 83.47.66                              | .510                                    |                     |                                        |                                       |
| 31                                    | +00 2             | 83,2221                               | .509_                                   |                     |                                        |                                       |
|                                       | +50 2             | 82,9676                               | ,509                                    |                     |                                        | ·                                     |
| 37                                    | +00 2             | 827132                                | 509                                     |                     | •                                      | •                                     |
|                                       | 150 2             | 224590                                | 502                                     |                     | ·                                      | •··· •·····                           |
| 27                                    |                   | 229049                                | 508                                     |                     |                                        |                                       |
| <u> </u>                              |                   | 819509                                | .502                                    |                     |                                        | <u>.</u>                              |
|                                       | TSJ 2             |                                       | , , , , , , , , , , , , , , , , , , , , |                     |                                        |                                       |
| 54                                    | -00               | 81.69/0                               |                                         | · · · · · · · · ·   |                                        | · · · · · · · · · · · · · · · · · · · |
|                                       | + 50 2            | 81.44 55                              | .50/                                    | • • • • • • • • • • | · · ·                                  | :<br>                                 |
| 35                                    | +00 2             | 81.1897                               |                                         |                     |                                        |                                       |
| . i                                   | + 50 2            | 20.9362                               | .507                                    |                     |                                        |                                       |
| 36                                    | $\pm 0.0$ ?       | 806828                                | 507                                     |                     | :                                      |                                       |
|                                       | + 50 2            | 80.47.95                              | ,507                                    |                     | ······································ |                                       |
| 27                                    | <u></u> 2         | 801764                                | .50 k                                   | · -•                |                                        |                                       |
|                                       |                   | 799721                                | 506                                     |                     | -                                      |                                       |
| <u></u><br>!                          |                   |                                       |                                         |                     |                                        |                                       |
|                                       |                   |                                       |                                         | · · · · · ·         | · · ·                                  | . · -                                 |
|                                       |                   |                                       |                                         |                     |                                        | •                                     |
| • •                                   |                   | 09                                    |                                         |                     |                                        | SHEET                                 |
|                                       |                   |                                       |                                         |                     |                                        | _ ځ د                                 |

AETRON-BLUME-ATKINSON

•

•

, 1

### ARCHITECT - ENGINEER - MANAGER

PALO ALTO

| - <u>Јов</u> і | <u>ر</u>          | 08           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                     | DATE       |                                         |                                       |                                       |
|----------------|-------------------|--------------|---------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------|---------------------------------------|---------------------------------------|
| ·~             | 5                 | UBJECT       |                                                                                                                           | ····       |                                         | СНК.D                                 | DATE                                  |
| )<br>• • • • • | معدد بر در بر م   |              |                                                                                                                           |            |                                         | · · · · · · · · · · · · · · · · · · · | · · ·                                 |
|                | 38+00             | 5 270        | 3.6705                                                                                                                    | 0,50       | 6                                       |                                       |                                       |
| ۱ <u>۱</u>     | + 50              | 27           | 3.4177                                                                                                                    | .50        | 6                                       |                                       |                                       |
|                | 39 + 00           | $27^{\circ}$ | 3.1651                                                                                                                    | ,50        | 5                                       |                                       | ·····                                 |
|                | + 5_              | 0 272        | 2.9125                                                                                                                    | ,50        | 5                                       | · · · · · · · · · · · · · · · · · · · | ·                                     |
|                | AOtoc             | 279          | 8.6601                                                                                                                    | ,50        | 5                                       |                                       | · · _ · _ · - · · · · · · · · · · ·   |
|                | + 5               | 0 27         | 8.4079                                                                                                                    | , 50       | 4                                       |                                       |                                       |
|                | 41 + 0            | 0 279        | 8.1557                                                                                                                    | .50        | 4                                       |                                       | · · · · · · · · · · · · · · · · · · · |
|                | + 50              | 2 27         | 7.9037                                                                                                                    | ,50        | 4                                       |                                       | · · · · · · · · · · · · · · · · · · · |
|                | A2+01             | 0 27         | 7.6517                                                                                                                    | .50        | 4                                       |                                       |                                       |
| •              | + 5               | 0 27         | 7.4000                                                                                                                    | ,50        | 3                                       |                                       |                                       |
|                | AZLO              | 0 27         | 7.1483                                                                                                                    | .5-0       | 3                                       |                                       | ٠ . ۲                                 |
|                |                   | 0 27         | 6.8967                                                                                                                    | ້.<br>ເງິດ | 3 -                                     |                                       |                                       |
|                | 44 200            | 0 77         | 6.6453                                                                                                                    | 50         | 3                                       |                                       | · .                                   |
|                |                   | 0 27         | 6.3940                                                                                                                    | .50        | 3                                       |                                       |                                       |
|                | 45+0              | 0 27         | 6.1428                                                                                                                    | 50         | 2                                       |                                       |                                       |
|                |                   | 0 27         | 58917                                                                                                                     | 50         | 2                                       | •                                     |                                       |
|                | $\Lambda 6 \pm 0$ | 0: 27        | 56408                                                                                                                     | .50        | 2                                       |                                       |                                       |
|                | -0-0              |              | c $z$ $g$ $g$ $g$                                                                                                         | 50         | 2                                       |                                       |                                       |
|                | 1710              | 0 0 7        | 5 1 7 9 7                                                                                                                 | 50         | 1                                       | . <u>.</u>                            |                                       |
|                |                   | 0 07         | 2 8 8 2 6                                                                                                                 | 50         | · · · · · · · · · · · · · · · · · · ·   |                                       |                                       |
|                | 1010              | 2            | 46290                                                                                                                     |            | • • • • • • • • • • • • • • • • • • • • | · <u> </u>                            |                                       |
|                |                   |              |                                                                                                                           |            | 1                                       |                                       |                                       |
|                |                   | J / /        | $\neg \cdot \circ \cdot \cdot \circ \cdot \circ $ |            | ·                                       | <b></b>                               | · · · · · · · · · · · · · · · · · · · |
| ;              | 4                 |              | 7.1 2 / 6                                                                                                                 |            | ~                                       |                                       | · · · · · · · · · · · · · · · · · · · |
| :<br>          | <u> </u>          | 0 (          | 0. 8 6 / I                                                                                                                |            |                                         | •                                     |                                       |
| ;<br>;         | $50 \div 0$       | 021          | 2.6 2 /2                                                                                                                  |            | 0                                       |                                       |                                       |
|                | +5                | 027          | 3.5.6/0                                                                                                                   |            | 0                                       | ·                                     |                                       |
|                | 51+0              | 0_27         | 3.15/                                                                                                                     | 40         | · · · · · · · · · · · · · · · · · · ·   | · · · · · · · · · · · · · · · · · · · |                                       |
|                | +5                | 0 27         | 2.888                                                                                                                     | 5.49       | Σ                                       | _ · · · · ·                           |                                       |
|                | 52+0              | 0 27         | 2.6388                                                                                                                    | 40         | · · · · · · · · · · · · · · · · · · ·   |                                       |                                       |
| 1              | +5                | 0_27         | 2.589.                                                                                                                    | 4 . 4 9    | ) 9                                     | ···············                       |                                       |
|                | 53+0              | 0 27         | 2:140                                                                                                                     | . 4 9      | 9                                       |                                       |                                       |
|                | 5                 | -0_27        | 1.891                                                                                                                     | 4 ?        | ) 8                                     |                                       |                                       |
|                |                   |              |                                                                                                                           |            |                                         | •• •                                  |                                       |
| )              |                   |              |                                                                                                                           |            |                                         |                                       | •                                     |
|                |                   |              |                                                                                                                           | /0         |                                         | · • • • • • • • •                     | SHEET NO                              |
| ! -            | ·                 |              |                                                                                                                           |            |                                         |                                       | A .+ .                                |

AETRON-BLUME-ATKINSON

-

٠

•

### ARCHITECT - ENGINEER - MANAGER

PALO ALTO

۰

| JOB NO.    | B                       | BY                                     | DATE                                  |
|------------|-------------------------|----------------------------------------|---------------------------------------|
|            | SUBJECT                 | снк.р                                  | DATE                                  |
| -          |                         |                                        | ·····                                 |
| 54+        | 00 271.6420 0.498       |                                        |                                       |
|            | 50 271.3931 .498        |                                        |                                       |
| 55+        | 00 271.1443 .498        |                                        |                                       |
|            | 50 270.8956 .497        |                                        |                                       |
| 56 ÷       | 00 270,6471 ,491        |                                        |                                       |
| <u> </u>   | 50 270.5986 .491        |                                        |                                       |
| 57+        | 00 270,1503 49/         |                                        |                                       |
|            | 50 269.9022 ,496        |                                        |                                       |
| 58+        | 00 269 65 41            | <u>!</u>                               |                                       |
| Ť          | 50 265,4063             | ·<br>                                  | · · ·                                 |
| 59 t       | 00 269,15 65 ,496       |                                        |                                       |
|            | 50 408.0106 495         |                                        | ·                                     |
| 00 +       | 00 26 8.60 50 ,20,5 200 | <u> </u>                               | ······                                |
|            | 50 - 768 + 682 + 705    |                                        |                                       |
|            | 50 267 9210 494         |                                        | · · · · · · · · · · · · · · · · · · · |
| $(2 \div$  | 00 267 67 39 494        |                                        |                                       |
|            | 50 267 12 68 494        |                                        |                                       |
| 63 -       | 00 267 1801 .494        | = =<br>:                               |                                       |
| <u> </u>   | 50 266.9333 .494        | ······································ |                                       |
| 64+        | 00 266.6867 .493        |                                        | 1                                     |
|            | 50 266 4402 .493        |                                        |                                       |
| 65+        | 00 766 1938 493         | : :                                    | i<br>1                                |
|            | 50 265.9475 493         |                                        |                                       |
| 66 +       | 00 265.7014 ,492        |                                        |                                       |
| 1          | 50 265.4553 ,492        |                                        |                                       |
| 67 +       | 00 265.2094 ,492        |                                        |                                       |
| - <u>-</u> | 50 2649636 492          | · _ · _ ·                              |                                       |
| 68+        | 00 264.7180 .491        |                                        |                                       |
| +          | 50 264,4724 ,491        |                                        | · · · · · · · · · · · · · · · · · · · |
| 69+        | 00 264.2270 ,491        | - '                                    | •                                     |
|            | 50 263,9816 .491        |                                        |                                       |
|            |                         |                                        | : : : :<br>                           |
|            |                         |                                        | •<br>• • •                            |
|            |                         |                                        | SHEET NC                              |
| 1          |                         |                                        | · · · · ·                             |

: .

• . .

# AETRON-BLUME-ATKINSON • ARCHITECT - ENGINEER - MANAGER

PALO A

•

| IOB NO.                                  | BOC      |          |                    |                                       |            |                                       | BY                                      | DATE                                       |
|------------------------------------------|----------|----------|--------------------|---------------------------------------|------------|---------------------------------------|-----------------------------------------|--------------------------------------------|
|                                          | SUBJEC   |          |                    |                                       |            |                                       | <u>снк.</u> р                           | DATE                                       |
|                                          |          |          | - <b>-</b> -       |                                       |            | -,                                    |                                         | ·                                          |
| 70-                                      | 100      | 263      | 7364               | 0,40                                  |            | · · ·                                 | ······                                  |                                            |
| -                                        | + 50     | 263.     | 49.14              | 40                                    | 30         |                                       | و الم معامل ال                          |                                            |
| -71                                      | - 00     | 763      | 2464               | 40                                    | 30         |                                       |                                         |                                            |
| ·····                                    |          | DC2      | 0016               | 40                                    | 30         |                                       |                                         |                                            |
|                                          | - 50     |          | 7568               | $\Delta$                              | 20         |                                       |                                         |                                            |
|                                          | <u> </u> | _ 262,   | 1200               |                                       | 20<br>20   |                                       | · · · · · · · · · · · · · · · · · · ·   |                                            |
|                                          | <u> </u> | -262.    | 5122               | · · · · · · · · · · · · · · · · · · · |            |                                       |                                         |                                            |
| 73                                       | +00      | _262.    | 2611               | 4                                     | × ۶        |                                       |                                         |                                            |
|                                          | +50      | 262.     | 0234               | - 4                                   | 89         |                                       |                                         |                                            |
| 74.                                      | 400      | 261.     | 7791               | .4                                    | 89         |                                       |                                         |                                            |
| ана а <b>ран на Ка</b> ла<br>1911 г. – С | 450      | 261.     | 5350               | . 4                                   | 88         |                                       |                                         |                                            |
|                                          |          | 061      | 2010               | 4                                     | 88         |                                       |                                         | 7                                          |
|                                          | T-0.0    | 201.     | 0171               | 1                                     | 22         |                                       | , 3 , _                                 |                                            |
|                                          | 7 2 0    | 000      | 2022               |                                       | 00         |                                       |                                         |                                            |
| 10                                       | 700      |          | 0000               | , <u> </u>                            | 0.7        |                                       |                                         | ······································     |
|                                          | +50      | <u> </u> | 555                | , -4<br>X                             | 0          |                                       |                                         |                                            |
| 77                                       | +00      | _260.    | 5161               | . 4                                   | 81         |                                       | •                                       |                                            |
|                                          | +50      | 260.     | 0727               | ,                                     | × /        |                                       |                                         |                                            |
| 78                                       | +00      | 259.     | 8294               | , 4                                   | 8/         | حمديد دراج                            |                                         | · · - · <b>· · · · · · · · ·</b> · · · · · |
|                                          | +50      | 259      | . 58 6 2           | ,4                                    | 86         |                                       |                                         |                                            |
| 79                                       | + 00     | 2.59     | .3431              | 4                                     | 86_        | · • • •                               |                                         |                                            |
| <i>I I</i>                               | 1-50     | 259      | 1001               | .4                                    | 8 G        |                                       |                                         |                                            |
| 00                                       |          | 058      | 8573               | 4                                     | 86         |                                       | •                                       |                                            |
| <u> </u>                                 | <u></u>  | - 2 3 0  | $C \downarrow A G$ | · / `<br>/                            | 0 5        |                                       |                                         | 1                                          |
|                                          | + 2 0    |          | . 6140             | $= \frac{1}{1}$                       | 0 r        |                                       |                                         |                                            |
| 1.8                                      | +00      | -2.58    | . 5/ 40            |                                       | 0 -        |                                       |                                         |                                            |
|                                          | +50      | _ 258    | .1695              |                                       | 85         |                                       |                                         |                                            |
| 82                                       | +00      | 257      | . 8872             | ,4                                    | 85         | · · · · · · · · · · · · · · · · · · · |                                         |                                            |
|                                          | +50      | 257      | . 6449             | .4                                    | 85         | •                                     | :                                       |                                            |
| 82                                       | 100      | 057      | 4028               | 4                                     | 84         | · · · · · · · · · · · · · · · · · · · | ;<br>                                   |                                            |
| <u> </u>                                 | 1 100    |          | 1602               | A                                     | 84         |                                       |                                         |                                            |
| 100                                      | TSO      |          | GIOG               | Λ                                     | 84         |                                       |                                         | :                                          |
| <u> </u>                                 | 700      | - 630    |                    | · · · /                               | о <u> </u> | · · · · · · · · ·                     | · • • • • • • • • • • • • • • • • • • • |                                            |
|                                          | 1+50     | -256     | .6///              |                                       | 07         | · · · · · · · · · · · · · · · · · · · |                                         |                                            |
| 85                                       | +00      | 256      | .43 54             | ,4                                    | 83<br>07   | -                                     | -                                       |                                            |
| i                                        | +50      | 256      | . 1939             | ,4                                    | 83         | -                                     |                                         |                                            |
|                                          |          |          |                    |                                       |            |                                       | ·                                       |                                            |
|                                          |          |          | 70                 | 1<br>1                                |            |                                       |                                         |                                            |
|                                          |          |          | /2                 |                                       |            | · · · · ·                             |                                         |                                            |
|                                          |          |          |                    |                                       |            |                                       |                                         | 6                                          |
## AETRON-BLUME-ATKINSON · ARCHITECT - ENGINEER - MANAGER · PALO ALTO

| JOB NO.                               | JOB          |           | BY                                      | DATE                  |
|---------------------------------------|--------------|-----------|-----------------------------------------|-----------------------|
| -                                     | SUBJECT      | ·         | снк.р                                   | DATE                  |
| }                                     |              |           | • • • • • • • • • • • • • • • • • • •   | ····                  |
| 86+                                   | 00 255.9525  | 0.483     |                                         | ·····                 |
| +                                     | 50 255.7112  | ,483      |                                         |                       |
| 87+                                   | 00 255.4700  | .4 2 2    |                                         |                       |
| +                                     | 50 255.2289  | ,482      | i                                       | ·                     |
| 88 t-                                 | 00 254,98.79 | ,422      |                                         |                       |
| +                                     | 50 254.7471  | ,482      |                                         |                       |
| 89+                                   | 00 254.5064  | ,48!      |                                         |                       |
| +                                     | 50 254.2658  | , 4 8 1   |                                         |                       |
| : 90+                                 | 00 254.0253  | ,481      |                                         |                       |
| +                                     | 50 2537249   | ,4.81     |                                         |                       |
| 91+                                   | 00 253.5447  | .480      | · · · · · · · · · · · · · · · · · · ·   | <b>\</b>              |
|                                       | 50 253 3045  | ,420      | · · · · · · · · · · · · · · · · · · ·   |                       |
| 92+                                   | 00 253.0645  | 420       | <u> </u>                                |                       |
|                                       | 50 252.8246  | .420      | · · · · · · · · · · · · · · · · · · ·   | ı ,                   |
| 93+                                   | 00 252.5248  | .420      |                                         |                       |
|                                       | 50 252,3451  | A79       | · · · · · · · · · · · · · · · · · · ·   |                       |
| 94+                                   | 00 252,1056  | 473       | · · · · · · · · · · · · · · · · · · ·   |                       |
| +                                     | 50 251,8661  | .479      | :<br>                                   |                       |
| 95+                                   | 00 251.6238  | 479       |                                         |                       |
| +                                     | -50 251.3276 | ,478      |                                         | •                     |
| 26+                                   | 00 251.14 25 | ,478      | · · ·                                   |                       |
| +                                     | 50 250,9096  | .47.8     |                                         | <del>میر</del> میرد ا |
| 97 t                                  | 00 250.6707  | ,478      | · · · · · · · · · · · · · · · · · · ·   |                       |
| +                                     | 50 250,4320  | .477      |                                         | •                     |
| 98 +                                  | 00 250.1933  | . <u></u> |                                         |                       |
| +                                     | 50 249.9548  | .477      |                                         |                       |
| 99 ÷                                  | 00 249,7164  | .477      |                                         |                       |
|                                       | 50 249.4782  | ,476      |                                         |                       |
| 100+                                  | -00 249,2400 | 476       |                                         |                       |
|                                       | 50 249,0020  | .476      |                                         |                       |
| 101+                                  | 00 248,7640  | ,476      | ·                                       | n<br>1 H<br>1 H       |
|                                       | 50 248.5262  | 476       |                                         |                       |
| · · · · · · · · · · · · · · · · · · · |              | <u> </u>  | <u></u>                                 |                       |
| )                                     |              |           |                                         | · · ·                 |
|                                       | 73           |           | · · · · · · ·                           | SHEET NO              |
|                                       |              |           | · _ · · · · · · · · · · · · · · · · · · | 7 54.5                |

AETRON-BLUME-ATKINSON

•

•

- -

ARCHITECT - ENGINEER - MANAGER • PALO ALTO

| 108 NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                          | <u> </u>                      |                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------|------------------------------------------------|
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SUBJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                    | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | снк.р                         | DATE                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | • • • • •                          | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                               |                                                |
| 102 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 248                   | 28                                 | 8 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   | •                             |                                                |
| · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 748                   | 05                                 | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                               |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 247                   | 81                                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                               |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 017                   | 57                                 | C 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ••••••<br>•                       |                               | · · · · · · · · · · · · · · · · · · ·          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24 1.                 | 27                                 | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | л-1<br>л-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | • • • • • • • •               | ·                                              |
| 041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 241.                  | 5 2                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | л-<br>л-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • • • •                           |                               |                                                |
| +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24 1.                 |                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                               |                                                |
| 05+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 246                   | 6 6                                | 48.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                               |                                                |
| <u>+</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 246                   | 62                                 | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                               |                                                |
| t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 246                   | 48                                 | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | بشرو                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                               | ·<br>·                                         |
| ••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>:</u>              |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                 | ·                             | <u>.</u>                                       |
| .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · ·                 | •                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                               | · · · · · · · · · · · · · · · · · · ·          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · ·                 |                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ••                                |                               | · · ·                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in h+ 1;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ne Fl                 | from                               | , 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | + 80 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , 112+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50                                |                               |                                                |
| (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ciainal h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | aniz d                | raia'.+.                           | line L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lat de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | filled fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m 100+                            | 00 to 10                      | 8400)                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | const l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eval al               | evotio                             | ins d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | efized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | by th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e forn                            | iula                          |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | 2 4 01 1 × 4                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · ) ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · ·                               | - · ·                         |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | -                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                               |                                                |
| <u>1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1850                  |                                    | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -G(Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{1}{2}$ $+ 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2312                              | ~ 10                          | $(x^2)^{-}$                                    |
| H_X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .485                  | ) - <del>  ?</del><br>  -  5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | o <sup>–</sup> (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) + 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2312                              | × 10                          | (X <sup>2</sup> )                              |
| H X-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .485                  | - 12                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | o <sup>−</sup> ⊊(X<br>⊨86 <sup>−</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ) + 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2312<br>mik                       | × 10                          | $(\chi^2)$                                     |
| H X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 24G<br>X =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 at                  | >- 12<br>15<br>Sta                 | 105-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o <sup>-</sup> ¢(X<br>+²o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) + 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 02312<br>mile                     | × 10                          | (X <sup>2</sup> )<br>and 0.0230                |
| H X-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 240<br>X =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 at                  | Sta                                | 105-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o <sup>-ç</sup> (X<br>F8o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) + 0.0<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2312<br>mill<br>elen              | × 10<br>15.43                 | (X <sup>2</sup> )<br>and 0.0230<br>at the some |
| H<br>X<br>0 5 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 240<br>X =<br>8 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 at                  | - <del>12</del><br>13<br>5ta<br>48 | 105<br>59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | o <sup>−</sup> ¢(X<br>+2o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) + 0.0<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2312<br>miki<br>elen              | × 10<br>15.43                 | (X 2)<br>and 0.0230<br>at the some             |
| $H_{X}^{1}$ $H_{X$                                                                                                                                                                                                                                                                           | = 24C<br>X =<br>8 0<br>0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .485°<br>0 at<br>24 G | - <del>12</del><br>13<br>Sta<br>48 | 105<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | o <sup>-G</sup> (X<br>+20<br>-0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ) + 0.0<br>%<br>0 1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2312<br>mill<br>elen              | × 10<br>15,43.                | (X <sup>2</sup> )<br>and 0.0230<br>at the some |
| $H_{X}$ $H_{X}$ $105+$ $106+$ $+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 24C<br>X =<br>8 0<br>0 0<br>5 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 at<br>24 G          | sta<br>48                          | 105<br>556<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o <sup>-</sup> ¢(X<br>+2o <sup>-</sup><br>- 0, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) + 0.0<br>%<br>0   5<br>  4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2312<br>mill<br>e <sup>r</sup> en | × 10<br>15.43                 | (X <sup>2</sup> )<br>and 0.0230<br>at the som  |
| $\begin{array}{c} 1 \\ H \\ X \\ 1 \\ 0 \\ 5 \\ 1 \\ 0 \\ 6 \\ + \\ 1 \\ 0 \\ 7 \\ + \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 24C<br>X =<br>8 0<br>0 0<br>5 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 at<br>24 G          | - <del>12</del><br>13<br>5ta<br>48 | 105<br>5569<br>44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | o <sup>-</sup> ¢(X<br>+2o<br>- o. o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ) + 0.0<br>%<br>0 1 5<br>1 4<br>1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2312<br>mife<br>elec              | × 10<br>15.43.<br>Nations a   | (X <sup>2</sup> )<br>and 0.0230<br>At the pom  |
| $   \begin{array}{c}     1 \\     H \\     X \\     \hline     105 \\     105 \\     106 \\     + \\     107 \\     + \\     107 \\     + \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 24C<br>X =<br>8 0<br>0 0<br>5 0<br>5 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 at                  | - 12<br>13<br>5ta<br>48            | 105<br>5544<br>47<br>105<br>5544<br>42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o <sup>-</sup> ¢(X<br>+20<br>- 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) + 0.0<br>%<br>0 1 5<br>1 4<br>1 0<br>1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2312<br>mill<br>eren              | × 10<br>15,43.<br>pations a   | (X <sup>2</sup> )<br>and 0.0230<br>At the some |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 24C<br>X =<br>8 0<br>0 0<br>5 0<br>0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 at<br>24 G          | - 12<br>13<br>5ta<br>48            | 105<br>5544<br>43<br>105<br>5544<br>256<br>44<br>256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 0. 0<br>- 0. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) + 0.0<br>%<br>0 1 5<br>1 4<br>1 0<br>1 0<br>0 0 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2312<br>mill<br>e <sup>r</sup> en | × 10<br>15.43.<br>L'attions a | (X <sup>2</sup> )<br>and 0.0230<br>A the som   |
| $   \begin{array}{c}     1 \\     H \\     X \\     1 \\     1 \\     0 \\     5 \\     4 \\     1 \\     0 \\     6 \\     4 \\     1 \\     0 \\     8 \\     4 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 24C<br>x =<br>& 0<br>0 0<br>5 0<br>0 0<br>5 0<br>0 0<br>5 0<br>0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .485°<br>0 at<br>246  | - 12<br>13<br>5ta<br>48            | 10<br>5<br>5<br>4<br>3<br>6<br>9<br>6<br>9<br>6<br>9<br>6<br>9<br>6<br>9<br>6<br>9<br>6<br>9<br>6<br>9<br>6<br>9<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | o <sup>-</sup> ¢(X<br>+20<br>- 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) + 0.0<br>%<br>0 1 5<br>1 4<br>1 0<br>1 0<br>0 0 6<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2312<br>mile<br>elen              | × 10<br>15,43.                | (X <sup>2</sup> )<br>and 0.0230<br>At the pom  |
| $   \begin{array}{c}     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     $ | = 24C<br>X =<br>8 0<br>0 0<br>5 0<br>5 0<br>5 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 at                  | - 12<br>13<br>5ta<br>48            | 10<br>5<br>5<br>4<br>7<br>6<br>4<br>7<br>6<br>4<br>7<br>6<br>4<br>7<br>6<br>4<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 0, 0<br>- 0, 0<br>- 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) + 0.0<br>0 + 0.0<br>0 + 0.0<br>0 + 0.0<br>1 + 0.0                                                                                                                                                                                                                                                                               | 2312<br>mill<br>elen              | × 10<br>15,43.<br>Pations a   | (X <sup>2</sup> )<br>and 0.0230<br>at the pom  |
| $     \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 24C<br>X =<br>8 0<br>0 0<br>5 0<br>5 0<br>5 0<br>5 0<br>5 0<br>5 0<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 at<br>24 G          | - 12<br>13<br>5ta<br>48            | (3) x1<br>10<br>5<br>5<br>5<br>4<br>4<br>5<br>6<br>4<br>3<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | o <sup>-6</sup> (X<br>+ 20<br>- 0.0<br>- 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) + 0.0<br>0 + 0.0<br>0 + 0.0<br>1 + 0.0<br>0 + 0.0                                                                                                                                                                                                                                                                               | 2312<br>mill<br>e <sup>r</sup> en | × 10<br>15,43.<br>Lations a   | (X <sup>2</sup> )<br>and 0.0230<br>A the som   |
| $   \begin{array}{c}     1 \\     + \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     $ | = 24C $X =$ $8 0$ $0 0$ $5 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 at                  | - 12<br>13<br>5ta<br>48            | (2) x1<br>(2) x1<br>(2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) + 0.0<br>0 + 0.0<br>0 + 0.0<br>0 + 0.0<br>1 + 0.0<br>2 + 0.0<br>1 + 0.0<br>2 + 0.0<br>1 + 0.0<br>2 + 0.0                                                                                                                                                                                                                                                                               | 2312<br>mill<br>eren              | × 10 <sup>°</sup>             | (X <sup>2</sup> )<br>and 0.0230<br>A the pom   |
| $ \begin{array}{c} 1 \\ + \\ + \\ 1 \\ 0 \\ 5 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ 0 \\ + \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 24C<br>X =<br>8 0<br>0 0<br>5 0<br>5 0<br>5 0<br>5 0<br>5 0<br>5 0<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 at<br>24 G          | - 12<br>13<br>5ta<br>4 8           | (23)<br>(24)<br>10 9694064335<br>(24)<br>335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C (X<br>+ 20<br>- 0.0<br>0<br>0<br>1<br>+ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ) + 0.0<br>0 + 0.0<br>0 + 0.0<br>0 + 0.0<br>1 + 0.0<br>2 + 0.0                                                                                                                                                                                                                                                                               | 2312<br>mill<br>elen              | × 10<br>15.43<br>pations a    | (X <sup>2</sup> )<br>and 0.0230<br>at the som  |
| $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 0 \\ 5 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 24C $x =$ $8 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $0 0$ $5 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0$ | .485°                 | - 12<br>13<br>5ta<br>48            | (3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C (X<br>+ 20<br>C (X<br>C (X)<br>C (X)<br>- | ) + 0.0<br>0 + 0.0<br>0 + 0.0<br>0 + 0.0<br>1 + 0.0<br>2 + 0.0                                                                                                                                                                                                                                                                               | 2312<br>mile<br>elen              | × 10<br>15,43.                | (X <sup>2</sup> )<br>and 0.0230<br>A the pom   |
| $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 5 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 1 \\ 1 \\ + \\ 1 \\ 1 \\ + \\ 1 \\ 1 \\ + \\ 1 \\ 1 \\ + \\ 1 \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ + \\ 1 \\ + \\ + \\ 1 \\ + \\ + \\ 1 \\ + \\ + \\ + \\ 1 \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 24C $X =$ $8 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0$ | 0 at                  | - 12<br>13<br>5ta<br>48            | (14) 0 0 6 0 4 0 6 4 3 3 5 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) + 0.0<br>0 + 0.0<br>0 + 0.0<br>0 + 0.0<br>1 + 0.0<br>2 + 0.0                                                                                                                                                                                                                                                                               | 2312<br>mill<br>elen              | × 10<br>15,43<br>pations a    | (X <sup>2</sup> )<br>aud 0.0230<br>A the pom   |
| $ \begin{array}{c} 1 \\ + \\ 1 \\ - \\ 1 \\ 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 24C $x =$ $8 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 at                  | - 12<br>13<br>5ta<br>48            | (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $o^{-c} (X$<br>+ 20<br>- 0.0<br>0<br>- +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) + 0.0<br>0 + 0.0<br>1 + 0.0<br>0 + 0.0<br>1 + 0.0<br>1 + 0.0<br>0 + 0.0                                                                                                                                                                                                                                                                               | 2312<br>mill<br>elen              | × 10<br>15,43.                | (X <sup>2</sup> )<br>and 0.0230<br>A the som   |
| $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 0 \\ 5 \\ + \\ 1 \\ 0 \\ 6 \\ + \\ 1 \\ 0 \\ 0 \\ + \\ 1 \\ 0 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 24C $X =$ $8 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0 0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                 | 0 at                  | - 12<br>13<br>5ta<br>48            | (3) 10 9 6 9 4 9 6 4 3 3 5 7 - 6 2<br>9 6 9 4 9 6 4 3 3 5 7 - 6 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $o^{-c}(X)$<br>+ 20<br>- 0.0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c} + 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 \\ - 0.0 $ | 2312<br>mill<br>elen              | × 10<br>15,43.<br>pations a   | (X <sup>2</sup> )<br>and 0.0230<br>A the pom   |
| $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 5 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 0 \\ + \\ 1 \\ 1 \\ 1 \\ 1 \\ + \\ 1 \\ 1 \\ + \\ 1 \\ 1 \\ + \\ 1 \\ 1 \\ + \\ 1 \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ 1 \\ + \\ + \\ 1 \\ + \\ + \\ 1 \\ + \\ + \\ 1 \\ + \\ + \\ 1 \\ + \\ + \\ + \\ 1 \\ + \\ + \\ + \\ 1 \\ + \\ + \\ + \\ + \\ 1 \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 24C $X =$ $8 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $0 0$ $5 0$ $5 0$ $0 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$ $5 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 at<br>246           | - 12<br>13<br>5ta<br>48            | 10 96940643357-629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $o^{-c} (X$<br>+ 20<br>- 0.0<br>0<br>- + + + + + + + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c} + & 0.0 \\ 0 & 1 & 5 \\ 1 & 4 \\ 1 & 0 \\ 1 & 0 \\ 0 & 0 & 6 \\ 1 & 0 \\ 2 \\ 0 & 0 \\ 4 \\ 2 \\ 0 & 0 \\ 4 \\ 8 \\ 1 & 0 \\ 1 & 2 \\ 0 & 1 & 4 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2312<br>mill<br>elen              | x 10<br>15.43.<br>pations a   | (X 2)<br>and 0.0230<br>A tox som               |

AETRON-BLUME-ATKINSON • ARCHITECT - ENGINEER - MANAGER

PALO ALTO

