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1. Introduction 

In this lecture some implications of string theory for Coleman’s theory of the 

cosmological constant [l] will be discussed. String theory will not be considered in 

its role as a possible theory of everything but rather as a model of quantum gravity 

with the two-dimensional worldsheet playing the part of spacetime. Much of the 

material covered here has appeared previously in reference [2]. The starting point 

is the observation of Polchinski [3] that two-dimensional quantum gravity coupled 

to D > 25 scalar matter fields has all the ingredients to make Coleman’s argument. 

The main requirements are: 

l a sum over geometries which includes non-trivial topologies 

l an action for the conformal mode which is unbounded from below 

l a Euclidean saddle point consisting of a sphere with radius N -&- where X ID’ 
is the two-dimensional cosmological constant. 

The leading order semi-classical approximation to the Euclidean action for such 

a spherical geometry is given by SE = $ log X for large D ‘. The power law behavior 

in four dimensions is replaced by a logarithm in the two-dimensional theory. As a 

result the Baum-Hawking amplitude [4,5] becomes X-D/6, and after performing the 

sum over wormholes Coleman’s ‘exponential of exponential’ [l] reduces to a single 

exponential exp X -D/6. Nevertheless, if, as suggested by Coleman, this expression 

can be regarded as a probability distribution for the cosmological constant, then 

it implies the vanishing of X in two dimensions. 

Coleman’s argument consists of two parts. The first says that the sum over 

wormhole topologies converts the constants of nature into probabilistic quantum 

variables governed by a wave-function on superspace. The second part assumes 

that the wave-function is proportional to the Euclidean path integral and that this 

t Gravitational fluctuations are suppressed as D ---i cm. The existence of this semi-classical 
limit will be crucial for some of our arguments later on. 
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ill defined path integral can be evaluated by formally summing over saddle point 

configurations. 

This is to be compared with the conclusions that string theory leads to. First 

of all, it appears to be correct that topology change makes the couplings of the two- 

dimensional worldsheet theory into quantum variables in target space. However, 

the second part of Coleman’s argument is not supported by string theory. The 

wave-function for coupling constants appears to be controlled by phenomena which 

know nothing of the large scale structure of space-time and have no reason to prefer 

x = 0. 

The remainder of the paper is organized as follows. In section 2 we briefly 

review the formulation of two-dimensional quantum gravity in conformal gauge 

and establish the connection with string theory in background fields. In section 3 

we study “cosmological” solutions and derive the Wheeler-Dewitt equation which 

governs the propagation of a one-dimensional universe in a background condensate 

of baby universes. In section 4 we examine the relation between the target space 

equations of motion and the renormalization group, and consider the evolution of 

couplings with scale. Section 5 deals with the question of the two-dimensional 

cosmological constant in this framework. We present an explicit calculation of the 

required string theory beta-function, using an appropriate renormalization proce- 

dure. Finally we conclude with a discussion of our results. 

2. Two-dimensional Quantum Gravity and String Theory 

Let us begin with a theory of quantum gravity, defined on a two-dimensional 

spacetime (go, or), involving a metric 3;lb and D scalar matter fields Xi(@). Most 

treatments have focused on the case D 5 1 but for the purpose of modelling 

quantum cosmology it is appropriate to consider D > 25. The action is taken to 

be local and coordinate invariant, but can otherwise be quite general. It is also 

assumed that some covariant non-perturbative method of regularizing the theory 

exists. Unfortunately no such method is known at present for carrying out the 
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continuum theory path integral in a manifestly covariant manner. Instead we shall 

have to rely on a prescription which is the analogue of old-fashioned methods 

of regularization and renormalization in gauge theories. Before the invention of 

gauge-invariant regulators, a procedure which worked was to regularize the theory 

in a non-covariant way and then compensate for the resulting non-invariance by 

allowing the Lagrangian to contain non-gauge-invariant terms, such as a photon 

mass. At the end of the day, the gauge symmetry is re-imposed through Ward 

identities, which place constraints on the values of the added terms. A particular 

version of this method for two-dimensional gravity follows: 

l Gauge fixing: The first step is to remove the over-counting of metrics due to 

general coordinate invariance. For each worldsheet topology introduce some 

fixed fiducial, metric Tab. Then choose coordinates such that the physical 

metric is conformal to the fiducial metric, 

(24 

The original path integral is replaced by an integral over the matter fields 

Xi(a) and the one remaining degree of freedom of the metric $(a), which is 

called the Liouville field. 

l Regularization: In order to define the gauge-fixed path integral the ultra- 

violet divergences of the theory need to be regularized. For example, a non- 

perturbative regulator can be introduced by discretizing the worldsheet. This 

discretization is to remain fixed and not be summed over as in matrix models. 

The regulator involves a shortest fiducial length defined by, 

(2.2) 

where E’ is the line element connecting the nearest lattice points and S tends 

to zero as the cut-off is removed. A more covariant definition would refer 

the cut-off scale to the physical metric Yab, but then the regularization would 
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depend on the Liouville field which is being integrated over. Thus we are 

obliged to use a non-covariant regularization procedure in order to have a 

concrete definition of the continuum theory path integral. 

l Renormalization: Performing the path integral over short distance fluctua- 

tions of both the matter and gravitational fields generates various interaction 

terms, involving 4 and Xi, in the effective Lagrangian. These terms will in 

general depend on the arbitrarily chosen fiducial metric ?& and therefore 

the effective theory will not be manifestly covariant. On the other hand, the 

original theory is assumed to be invariant under general coordinate transfor- 

mations so no such dependence on ?& should occur. Thus we must impose 

upon the renormalized theory that the value of the path integral is not af- 

fected by the choice of fiducial metric. This can be achieved by, first of all, 

arranging the terms in the effective action to be covariant with respect to 

Tab. This does not restrict the possible couplings but merely labels them ac- 

cording to their transformation properties under fiducial reparametrizations. 

The condition that the path integral does not depend on the determinant 

of -i, requires that the beta-functions of all couplings in the theory vanish. 

This means that the gauge fixed theory must be an exact fixed point of the 

renormalization group in order to maintain the original general covariance. 

To summarize: We start with a generally covariant theory of gravity coupled to 

scalar fields, X’. In order to define the path integral we fix a gauge and regularize in 

a non-covariant manner. The resulting theory involves a scalar field, 4, in addition 

to the matter fields, and is in general quite complicated. The original covariance 

appears as a set of restrictions on the couplings, which include the requirement that 

all the beta-functions vanish. Notice that in this way of stating things 4 and Xi are 

placed on equal footing. The Liouville field has been promoted to an additional 

target space dimension. This approach to the quantization of two-dimensional 

gravity has been advocated by a number of authors [3,6,7,&g]. 

We are thus led to consider reparametrization invariant scalar field theory in 
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two dimensions. The action can in general include terms with arbitrary functional 

dependence on $ and Xi, and with any number of derivatives acting on the fields. 

For convenience, let us define X0 = $5 where q2 = y. This resealing leads to 

standard normalization for the Liouville kinetic term. The two-dimensional action 

can then be written, 

s = & /- d2a fi {T(X) + ~“b&xp&xYG,,(x) + 2ii Q(X) + -. -} , (2.3) 

with p = O,l,. . . , D. We have written down the terms of scaling dimensions zero 

and two: but there is an infinite sequence of possible couplings involving more 

derivatives on the Xfi and higher powers of the two-dimensional curvature k. 

This class of theories has been extensively investigated in string theory, where 

the action (2.3) d escribes strings in background fields in D+l spacetime dimen- 

sions. The beta-function equations, implementing the conformal invariance of the 

two-dimensional theory, have the form of field equations in target-space for T(X), 

@(X) and G,,(X) (tachy on, dilaton and graviton fields respectively), along with 

additional fields representing higher order couplings. These field equations describe 

the propagation and creation and ‘annihilation of the particle-like eigenmodes of 

strings in spacetime, or more to the point of this paper, one-dimensional universes 

containing matter fields! Because of the identification X0 = 84, the role of time 

in target space is played by the two-dimensional scale. The tachyon field, T(X), is 

of primary interest because it controls the two-dimensional cosmological constant. 

A cosmological term in the original classical action corresponds to a tachyon back- 

ground which grows exponentially with increasing two-dimensional scale, 

J d2a JrX = J d2a &LZ%~~ . (2.4 

As we shall see, this remains qualitatively true in the quantum theory, as long 

as the tachyon background remains weak, but the rate of the exponential growth 

* For simplicity, we have not included the anti-symmetric tensor field. Its presence would not 
qualitatively alter our conclusions. 

t We will use the string theory names for the target-space fields, but the reader should keep 
in mind their cosmological interpretation. 
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is modified by quantum fluctuations. The exponentially growing background will 

eventually become strong and then non-linear effects in the target space theory 

can no longer be ignored. The two-dimensional cosmological constant will still be 

governed by the behavior of the tachyon background in the non-linear regime, but 

the connection between the two is more subtle. 

The string theory equations of motion, obtained by setting beta-functions to 

zero, are derivable from a target-space action. For simplicity, we will work within 

a truncated theory, containing only the lowest order couplings, T(X), Q(X) and 

G&X). T 1 d’ g d o ea m or er in derivatives, the target-space action for these fields is 

I = -’ 
2so2 J 

dD+1X&e-2@ 7+13+4(vQ)~-(oT)~-2V(T)+...}, (2.5) 

where V(T) = -T2 + . . . is the tachyon effective potential. Since renormalization 

group beta-functions are not universal, the detailed form of V(T) will depend 

on the regularization and renormalization prescription used. This is believed to 

correspond to field redefinition ambiguities in the target space equations. In fact all 

higher order terms in the tachyon beta-function can be arranged to involve target 

space derivatives, and therefore be removed from the potential leaving only -T2 

[11,12]. It should b e s t ressed that using such a prescription in no way alters the 

fact that the target space equations are non-linear and are in general not exactly 

satisfied by a simple exponential tachyon background. The important question to 

ask is whether there exists a renormalization scheme in which the target space fields 

can be identified with Wheeler-Dewitt amplitudes of a one-dimensional universe. 

We will return to this point in section 5, where we propose an appropriate scheme 

and present a calculation of V(T) to all orders in T. 



3. Quantum Cosmology in Two Dimensions 

The equations of motion which follow from the target space action (2.5) are 

v2T-2vfbvT= V'(T), 

0%-2(vq2=- 7 + V(T), 

RpV - ~G,,R=-~~~v~~+G,,~~~+v,Tv,T- ;G,,(~T)~. 

These equations have a simple solution, the so called linear dilaton background 

[13], which for D > 25 is given by 

T=O, 

G,u = v/w, (3.2) 
a= -Qxo 

2 - 

The target space is Lorentzian and it is the conformal mode, X0, which is time- 

like. This means that the kinetic term of X0 in (2.3) has the “wrong” sign and the 

Euclidean action of the two-dimensional theory is unbounded from below. This 

is analogous to the instability of the Euclidean path integral in four-dimensional 

gravity, which lies at the heart of Coleman’s argument for the vanishing of the cos- 

mological constant. On the other hand, it means that Euclidean two-dimensional 

gravity coupled to D > 25 matter is ill-defined and the renormalization group 

computation, which led to the target space equations (3.1), can only be viewed 

as a formal argument. Ideally the theory should be reformulated on a worldsheet 

of Lorentzian signature but it is unclear at present how to perform the steps in- 

volved in the quantization of such a theory (regularization, renormalization, etc.). 

In four-dimensional gravity people have sought to circumvent this problem by for- 

mally rotating the contour of path integration over the conformal factor into the 

complex plane to obtain a well defined integral [14]. While this formal procedure 

can also be applied in the two-dimensional theory, its validity has been called into 

question [15]. 
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I 

We will use the target space picture to define the two-dimensional theory for 

D > 25. The equations of motion (3.1), which were arrived at via a formal deriva- 

tion based on a Euclidean worldsheet, lend themselves to an interpretation as a 

Lorentzian field theory of strings. Our assumption, which may be unwarranted, is 

that a consistent Lorentzian worldsheet formulation would lead to the same target 

space field theory. Since the equations are non-linear, singular geometries which 

describe splitting and joining strings will have to be included in the Lorentzian 

two-dimensional path integral. In addition, the path integral will receive contri- 

butions from universes being absorbed or emitted from the background, which 

also involves two-dimensional singularities. By contrast, in Euclidean space the 

metric can be chosen with no singularities. We only use Euclidean methods to 

compute renormalization group beta-functions, but our subsequent discussion of 

the two-dimensional cosmology takes place with Lorentzian signature. 

- An important difference between the worldsheet theory and four-dimensional 

gravity is that the gravitational coupling in two dimensions is dimensionless, so 

there is no proper Planck scale. However, as is well known, the strength of the 

string coupling depends on the dilaton field in target space. A key feature of the 

linear dilaton background (3.2) is that the string loop coupling constant is related 

to the two-dimensional scale, 

g = go e@ 
QXO =goe2 . (3.3) 

We can only expect the effective field theory to be simple where this coupling is 

weak. For D > 25 the theory is strongly coupled for sufficiently small strings and 

target space quantum mechanics (string loops) are important in the ultraviolet on 

the worldsheet *. One can say that a Planck scale is spontaneously induced, and 

define it by the point at which gee @ = 1. The factor of go can be absorbed by 

a constant shift of the dilaton. The effective Planck-scale is then set by q-l. It 

* In contrast with the D 5 1 case, where the strength of quantum corrections tends to zero 
in the limit of metrically small strings. 
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depends on the number of scalar fields in the theory, and in particular, D + 00 

is a semi-classical limit for gravitational fluctuations+. Another way to see that 

T-7 -’ defines the Planck scale in this theory is to consider the relation between the 

classical conformal mode and the quantum variable, ZC$ = X0. 

A particularly interesting cosmological system is given by an expanding uni- 

verse which starts out at small scale. The question of initial conditions is compli- 

cated, just as it is in four-dimensional quantum cosmology, because the theory is 

strongly coupled early on. We will assume that the short distance physics can be 

summarized by some unknown initial state at the Planck-time, which then evolves 

in the weakly coupled theory. In a classical theory this means initial conditions on 

the target-space fields and in a quantum theory it corresponds to a wave-function 

in target-space. 

A background tachyon field can be added to the linear dilaton solution (3.2). 

Iis beta-function equation depends on the shape of the effective potential, V(T), 

and is non-linear. For the moment we will assume that the background field is 

weak. The tachyon equation can then be linearized as follows, 

-i#T+i$T-qdoT+2T=0, (34 

and if we further assume that the tachyon background only depends on X0, we 

find solutions 

T(X”) = Xe (-fQ$+a)x” . (3.5) 

Such a homogeneous background configuration is the D > 25 analog of the D < 1 

two-dimensional field theories discussed by David [16] and by Distler and Kawai 

PV 
One of the solutions decays in the weak coupling regime X0 j 00 but the 

other one grows exponentially with scale. The system is unstable and is likely to 

t For D 5 1 a corresponding semi-classical limit is reached as the number of scalar fields is 
formally taken to D --+ -co. 
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form a condensate of background tachyons. In the D --t oo semi-classical limit 

we recover the classical cosmological term (2.4) f rom the exponentially growing 

solution. At this point the quantum behavior is qualitatively the same as in the 

classical theory, but the classical scale factor, ef = eq Ix’, has b een renormalized 

to efXo ,witha=-:+ J- f +2. 

In order to make contact with a more conventional Wheeler-Dewitt description 

of cosmology, let us consider fluctuations of some target space field in the expo- 

nentially growing tachyon background, TB(X’) = X e (-f+GJxoe Take, for ex- 

ample, a tachyon with some non-zero space-like momentum k. This corresponds to 

a one-dimensional universe with some matter excitation. The target-space action 

(2.5) is not time-translation invariant. In order to describe physical fluctuations it 

is convenient to absorb the em2’ pre-factor by a field redefinition, which has the 

form 

U(X) = e --‘Yx) T(X) P-6) 

for tachyons. A fluctuation Ur;(X) = Uk(Xo) eikiXi satisfies a linear equation, 

a,“& + (k2 + V”(TB) - ;,Uk = 0. (3.7) 

Near the top of the potential the tachyon background is well approximated by the 

exponential form (3.5) and we can drop the contribution of all but the leading 

terms of the potential V(T) in the fluctuation equation, whereupon (3.7) becomes 

a,“Uk + (k2-2-$)Uk + ie (-f+&ixoUk = 0, (3.8) 

where i = XV”‘(O). If we change variables from X0 to the scale factor a = e2 “X0 

this takes a more conventional form, 

a2 a 
{ $u-&~ + (k2-2-c) + ia2}Uk = 0. (3.9) 

Up to factor-ordering ambiguities, this is the Wheeler-Dewitt equation derived 
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from the mini-superspace Lagrangian of two-dimensional gravity, 

L = -( ;)2 - -$ [k” - (2+$ + j;,‘] . 

The three terms in square brackets are the matter, curvature and cosmological 

constant energy densities. 

It seems that we have recovered a more or less conventional Wheeler-Dewitt 

description of large scale cosmology. In particular, the problem of the cosmological 

constant is the usual one. In order to obtain vanishing cosmological constant, the 

exponentially increasing solution for T(X”) must be fine-tuned to zero. In other 

words, the tachyon must be delicately balanced at the top of the potential. We 

are ignorant about the short distance physics, which is supposed to determine the 

initial state, so we have no way of gauging how likely it is to find the system 

balanced at the top of this potential. At any rate, such a fine-tuned initial state is 

not allowed in a quantum theory, because of the uncertainty principle. 

However, this is not the whole story. Even if the tachyon background starts out 

near the top of the potential it will’eventually roll into the region where the higher- 

order non-linear terms in the tachyon beta-function cannot be ignored. As we have 

already mentioned, different renormalization prescriptions in the two-dimensional 

theory will lead to different evolutions for the tachyon background. Since the -T2 

term in V(T) is universal the different schemes will all agree near T = 0, but away 

from the origin they can present very different pictures. For example, the question 

of whether V(T) h as a minimum is scheme-dependent. The key issue here is to 

identify the definition of the tachyon field most closely corresponding to Wheeler- 

Dewitt amplitudes in the two-dimensional cosmology. In section 5 we propose a 

candidate scheme for calculations and obtain the tachyon potential to all orders in 

T within that framework. 

It should be emphasized that the non-linear effects that we are talking about 

do not disappear in the semi-classical limit D + co. In particular, the splitting 

and joining events described by the non-linear terms of the target-space equations 
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are unsuppressed even at large scales. This may seem surprising because the string 

coupling is becoming weak, with e @ = e-;Xo. Indeed, the canonical tachyon field 

U(X') defined in (3.6) satisfies 

[V2 + (2 + c)]u = ~eetXou2. (3.11) 

As we move toward the semi-classical limit q + co, though, the tachyon mass 

squared increases as L 4 , so that the unstable exponential growth of U compensates 

the decreasing coupling strength. The existence of string interactions, along with 

the tachyon instability, shows that the usual Liouville model described by an ex- 

ponentially growing tachyon background is not the complete theory in the D > 25 

case. 

4. The Running of Coupling Constants 

Before delving further into the two-dimensional cosmology, we would like to 

clarify the connection between the target space equations of motion and the renor- 

malization group flow of couplings ‘in the two-dimensional field theory. 

The equations of motion for the target-space fields are that the beta-functions 

of all two-dimensional couplings vanish. From this one might conclude that the 

couplings seen by a two-dimensional observer would not run. This, however, is not 

the correct interpretation. We can think of the equations for the target-space fields 

as renormalization group equations with $X0 identified with the logarithm of the 

renormalization scale. The X0 dependence of the coupling functions T, @, G,, . . . 

hence determines their evolution with scale. This connection may appear unfa- 

miliar because the equations of motion (3.1) are second-order in X0 derivatives, 

whereas the usual renormalization flows are controlled by first-order equations.* 

The higher-order nature of the flows is a special feature of theories containing 

gravity, where the scale itself is a dynamical variable. 

* The equations of motion (3.1) are of course only the leading order approximation to the 
exact beta-function equations, which include terms with an arbitrary number of derivatives. 
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The situation is similar to the issue of time evolution in the Wheeler-Dewitt 

formulation of quantum gravity. We begin with an equation H,, ]@I> = 0 which 

seems to imply that no time evolution occurs. Reinterpreted, though, the equation 

tells us how the wave function of matter evolves with the expansion of the uni- 

verse. The Wheeler-Dewitt equation, like the equations of motion for T, a, GpV, 

is second-order. The first-order Schrodinger equation is only recovered in a semi- 

classical limit in which gravitational fluctuations become unimportant [18]. In our 

two-dimensional theory, the semi-classical limit corresponds to taking D + 00 

or equivalently q t oo. In this limit we will see how the target-space field equa- 

tions reduce to the familiar renormalization group equations, and how gravitational 

corrections to the ordinary renormalization group beta-functions can be obtained 

systematically in a “large q” expansion. 

We consider, as a simple example, the case of fluctuations about the linear 

dilaton background at the top of the tachyon potential with a flat target-space 

metric. A field A, at the nth mass level in string theory will contribute to the 

effective action a term 

& 1 &ew2’ { (vA,)~ - 2(1-n)Ai + . . .} . 

Its equation of motion in a linear dilaton background is 

+ k2 - 2(1-n)] A, = 0. P-2) 

As we saw previously, this equation has unstable solutions for n = 0, which describe 

the tachyon rolling off the top of its potential. Note, however, that the solutions 

for n > 1 are stable for all values of q. In other words, the dilaton, graviton and 

higher couplings do not become “tachyonic” for large D. 

Now, recalling that the scale factor is a = eFxo, we can rewrite (4.2) as 

a2 
[T (us)’ + yu L $ k2 - 2(1-n)] A, = 0. (4.3) 
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Thus when q + 00 we find a first-order equation, 

a $ A, = (-k2 + 2(n-1)) A,, (4.4 

where we have used that Q + 3 + O($) for large q. This is the usual lowest order 

Callan-Symanzik equation for a coupling of bare dimension 2n. In particular the 

field h,, has anomalous dimension -k2 as expected. 

The exact target space equations of motion will include complicated higher- 

derivative terms, which are difficult to compute explicitly, but in the semi-classical 

limit they will all be suppressed by powers of qw2 in the same way as the second- 

order term in (4.3). T o see that, note first of all that the only effect of the linear 

dilaton background (3.2) on beta-function calculations is to shift the anomalous 

dimensions of vertices. For example, a tachyon with target space momentum k, 

has its dimension shifted from dk = 2 - k2 to dk = 2 + iqko - k2, but this is the 

only place where an explicit factor of q enters into the tachyon beta-function. One 

can easily convince oneself of this by considering sigma model Feynman graphs 

[2]. As a result, all terms in the equations of motion with higher-order derivatives, 

with respect to the conformal mode, pick up factors of qw2, when we express the 

equations in terms of the scale factor a. These terms will therefore all vanish in 

the q -+ 00 semi-classical limit and should be viewed as gravitational corrections 

to the renormalization group beta-functions computed on a flat worldsheet. 

In fact, by using simple manipulations, we can rewrite the target space equa- 

tions of motion as conventional renormalization group equations with gravitational 

corrections. This is easily illustrated for the example considered above. The right- 

hand side of (4.4) is the leading contribution to /?:(A;), the beta-function of A, 

on a flat worldsheet. To obtain the leading order gravitational correction to ,Bi we 

write the second-order equation (4.3) as 

[-$(+ t l]a-$L = PO@.) n z 7 (4.5) 
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and solve for the corrected beta-function to the next order in 4 !7 ’ 

h(A) E aLAn 

We can use this trick to rewrite any higher-derivative term in the target space 

equations as a contribution to the renormalization group beta-functions, suppressed 

by some powers of q -2. In this way a systematic large q expansion can be developed 

to compute gravitational corrections to beta-functions. The higher-order equation 

of motion for a given target space field has a number of solutions. For example, 

we have a choice of sign in the exponential tachyon background (3.5). Only one 

of these solutions reduces to the expected classical behavior in the limit of large 

q, and it is not hard to see that this semi-classical branch also provides a solution 

to the corresponding first-order renormalization group equation with gravitational 

corrections. 

We have so far been considering two-dimensional cosmology with a trivial mat- 

ter sector, consisting of several free fields. A more complicated theory, involving an 

interacting matter sector coupled to the conformal mode, provides more stringent 

tests of the above ideas. One can, for instance, study an asymptotically free sigma- 

model coupled to gravity. This case was considered in reference [a], taking three 

of the target-space dimensions compactified to a sphere of time-dependent radius 

r(X’), but leaving the remaining D-3 spatial coordinates flat. We will not go 

into the details here, but only discuss the qualitative behavior. The sigma-model 

coupling strength is l/r, and the X0 dependence of r(X”) gives the running of 

the coupling with scale. This is easily checked by inserting a metric of the above 

form into the target space equations of motion (3.1). In the semi-classical limit the 
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standard renormalization group flow, 

ug (;) = 2(g3, (4.7) 

is reproduced. This calculation is valid for large r, where the sigma-model is 

weakly coupled, but breaks down as the system passes into the strongly coupled 

regime. However, since we know that the flat space sigma-model contains only 

massive particles [ 191, we may speculate that well below the induced mass scale, the 

sigma-model degrees of freedom decouple. This would correspond to the effective 

central charge of the matter becoming smaller at some point in the evolution of 

the universe. 

All this has important consequences for the cosmological constant. The non- 

trivial sigma-model dynamics generates a two-dimensional vacuum energy, which 

manifests itself as a source term in the tachyon equation of motion. As explained 

before, it is the exponential growth of the tachyon field as it rolls off the top of 

the hill that gives rise to the cosmological constant term in the Wheeler-Dewitt 

equation (3.9). W e might imagine that it would be possible to “fine tune” the initial 

conditions so that the tachyon stays balanced at the top, and the cosmological 

constant would thus vanish. In our simpler examples in which the target-space 

was flat, we saw that this could indeed be done. Now, however, the coupling of 

the sigma-model to the two-dimensional gravity will make it impossible. There 

are terms in the target space effective action which couple T and G,,. They can 

be determined explicitly by beta-function calculations, but for our argument it 

will suffice to note that there must be some such term because string theory has 

a non-zero graviton-graviton-tachyon vertex. There will thus be an extra source 

term involving some power of the target space curvature in the tachyon equation 

of motion. As the three-sphere contracts, this will knock the tachyon from the 

top of the potential. We would therefore have to search for new fine-tuned initial 

conditions to make the tachyon end up balanced at the top of the potential at large 

scales. This need to account for the matter vacuum energy is just the familiar 

cosmological constant problem. 
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5. The Tachyon Beta-Function 
and the Cosmological Constant 

In this section we return to the issue of a large-scale cosmological constant. We 

will follow the system as the tachyon background rolls off the top of its potential 

into the non-linear region and investigate whether observers in a two-dimensional 

universe, interacting with the background, would register a non-zero cosmological 

constant. In order to discuss the evolution of the tachyon background at large 

scales we need to compute its beta-function. A more or less standard perturbative 

approach is described in reference [2] and the leading terms are obtained there. 

Such calculations rapidly get quite involved and it is not tractable to compute the 

complete beta-function to all orders. In addition, the cosmological interpretation 

of the results is sensitive to the choice of perturbative renormalization prescription. 

- In the semi-classical limit the problem simplifies enormously. The general 

argument given in the previous section can be applied to the equation of motion for 

a homogeneous tachyon background. As q + 00 all terms with higher derivatives, 

with respect to the conformal mode, will be suppressed. Since all space-derivatives 

vanish for homogeneous backgrounds the equation becomes first-order in the semi- 

classical limit, 

a-&T = -V’(T), (54 

and the dynamics is completely determined by the shape of the effective potential. 

The problem is reduced to finding the beta-function for tachyons with vanishing 

target space momentum, i.e. for a constant tachyon field. This might appear to be 

a trivial task since, according to (2.3), a constant tachyon background only con- 

tributes a c-number, & s d2a fi, to the two-dimensional action. This is too simple 

a view to take, for it does not take into account the effect of the regularization 

which is required to define the quantum theory. If, for example, the ultra-violet 

divergences are cut off using a hard sphere regulator, then the excluded volume 

introduces non-trivial effects even when T is constant. 
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The tachyon potential V(T) can be obtained using a lattice method introduced 

in reference [2]. Th’ is regularization scheme is particularly suitable for cosmolog- 

ical applications because the renormalized couplings are directly identified with 

Wheeler-Dewitt amplitudes. Begin by introducing a square lattice on the fiducial 

coordinate space with lattice spacing E. In each cell we define an amplitude !O on 

the boundary by integrating over the two-dimensional fields in the interior of that 

cell, fixing the values on the boundary. This defines an effective theory that lives 

on the lattice edges. The remaining integration over the boundary values of the 

fields yields the full path integral. The integrand of the effective theory is given by 

the product over all cells of the cell amplitudes. Schematically, 

Z= D4boundary ‘@ ($boundary ) * (5.2) 

Renormalization can be carried out by fixing the field values on some sub-lattice 

and integrating over the field on the remaining lattice edges. 

The amplitudes 9 are by construction Wheeler-Dewitt amplitudes. To intro- 

duce target-space fields we can expand @(C$bOundary) in terms of string modes. Let 

X be the zero-mode part of X on the boundary. Then 

Q = (1 - T(i) - Gp&%)&! . . +& , (54 

where 90 is the free theory amplitude. By requiring the long wavelength behavior 

to be independent of the cutoff we can define beta-functions for the target space 

fields T, G,, . . . . This is certainly not a convenient scheme for beta-function cal- 

culations in the presence of general couplings, but in the special case of a constant 

tachyon field, we can obtain the full answer. Then the partition function is simply 

Z= Jn D4boundary ( 1 - T) *O (4boundary) 
cells 

= (1 - T)%‘(T = 0)) 
(5.4 

where the total number of cells N is proportional to $. The free energy is therefore 

F = c2 log 2 = log(l-T). Th e running of the coupling T with E is defined by 
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requiring the partition function to be independent of the cutoff scale. This implies 

0 = $F(T) 

= -SF(T) t $F’(T)g. 
(5.5) 

We define the beta-function in the usual way, 

P(T) = cg 

F(T) 
= 2F’(T) 

(5.6) 

= - 2(1-T) log(l-T) . 

This zero-momentum tachyon beta-function corresponds to the following potential, 

V(T) = -T t ;T2 - (1-T)210g(l-T), F-7) 

which has the form of an unstable tachyon potential near T = 0 and has a sta- 

tionary point at T = 1, which is singular (V” - 00). The potential cannot be 

continued past the singularity but, as we shall see, the tachyon field never rolls 

beyond T = 1. To see how this works, insert (5.7) into the first-order equation of 

motion, 

u; T = -2(1-T) log(l-T) . 

This is easily solved by writing (1-T) = es, so that 

d 
azS=2S. (5.9) 

There is one integration constant which is determined by initial conditions on T, 

T = 1 - eeAa2 . (5.10) 

For small T this solution reduces to the classical cosmological term (2.4) with 

cosmological constant A. The equation for S is linear so we see that this example 
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provides a realization of the fact that tachyon field redefinition can eliminate the 

non-linear terms in the equation of motion. However, the resulting field S is no 

longer proportional to the Wheeler-Dewitt amplitude in equation (3.6). 

Now consider a two-dimensional universe containing some matter excitation in- 

teracting with the tachyon background (5.10). The fluctuation equation it satisfies 

is linear, 

O=u-+k2r+V”(T)~ 

=(u$ + k2 - 2 + iu’) 7. 
(5.11) 

In the semi-classical limit this is equivalent to the Wheeler-Dewitt equation (3.9) 

with non-vanishing cosmological constant. 

It is very important for the large-scale cosmology that the tachyon potential 

we obtained takes precisely the form (5.7). It is the singular behavior at T = 1, 

due to the logarithm, which allows a non-vanishing cosmological constant at large 

scale. It is quite striking that in spite of the apparently complicated non-linear 

evolution of the tachyon background T given by (5.10), the linear Wheeler-Dewitt 

equation obtained from (5.1) is precisely that of mini-superspace Liouville theory 

in the q + co limit [3,15,20,21]. It is interesting in this context to note that the 

tachyon background also satisfies a linear equation, 

+-(1-T) + i u2(1-T) = 0. (5.12) 

This suggests the alternate definition for the canonical tachyon field (3.6), 

o(X) = e-@(X)(l - T(X)). (5.13) 

In the large q limit the following linear second-order equation for 0, 

(5.14) 

is equivalent to (5.12). Equation (5.14) d ff i ers from the k = 0 Wheeler-Dewitt 

equation (3.9) by the term due to the bare dimension of the tachyon. This is the 

21 



equation that the SL(2, C) vacuum of string theory satisfies [3], and it is natural 

to identify that state with the most symmetric or Hartle-Hawking state of a one- 

dimensional universe [3,22]. 

For any non-zero cosmological constant the tachyon background (5.10) ap- 

proaches the minimum of its potential at T = 1 as the two-dimensional universe 

evolves to ever larger scale. It is unclear what conformal field theory, if any, cor- 

responds to a tachyon field sitting at rest at T = 1, but we suspect it to be a 

rather trivial one. By the arguments of Kutasov and Seiberg [20,23] it cannot be 

a standard matter theory coupled to gravity. Apparently the 2’ = 1 fixed point 

describes the asymptotic behavior of an expanding universe long after all relevant 

scales (e.g. the cosmological constant scale) have been passed. The only remaining 

degrees of freedom are conformal matter fields from which the scale of the metric 

decouples. The situation is analogous to that in QCD at very large distance scales 

where the only degrees of freedom are massless pions. Another closer example 

is provided by the D = 0 one-matrix model. In this case a non-zero cosmologi- 

cal constant corresponds to a matrix potential slightly off criticality. The model 

flows to the trivial Gaussian matrix model at large scales and the random surface 

interpretation breaks down. 

6. Conclusions 

Our results can be summarized as follows. Two-dimensional quantum cosmol- 

ogy can be formulated as a string theory with background fields. The dynamics 

of fields in the string theory target-space determines the values of coupling con- 

stants in the two-dimensional universe. In particular, the cosmological constant 

in two dimensions is governed by the background tachyon field, which satisfies 

a non-linear equation of motion. Nevertheless, the non-linear dynamics is such 

that, for generic initial conditions, a two-dimensional universe interacting with 

the background obeys a standard linear Wheeler-Dewitt equation with a non-zero 

cosmological constant. 
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If this picture is correct then there is nothing in the classical target space 

dynamics which favors a vanishing cosmological constant at large scales. The 

question remaining is whether the effects of wormhole topologies can change this 

conclusion. Including arbitrary worldsheet topologies in string theory turns the 

classical target-space field theory into a quantum field theory. As emphasized by 

Coleman, the couplings of the worldsheet field theory become quantum variables. 

However, the effective value of Planck’s constant for the target-space theory is itself 

a field, and is given by h,ff cc e2@ = e-‘Jxo. Thus quantum corrections are expected 

to become negligible for large X0, and hence only to influence small scales. 

Now consider the quantum mechanics of a tachyon field depending only on X0. 

Its Lagrangian is 

V 
Qe 

qxo ( -f2 + 2T2 + . . .) , (64 

where V is the volume of (Xl,. . . , XD)-space. If this volume is infinite, then 

quantum fluctuations are negligible and the tachyon evolves classically. If the 

volume is finite, then the tachyon, and therefore the two-dimensional cosmological 

constant, is a true quantum variable. To describe it, a quantum wave-function 

for the target space fields must be introduced. The form of this wave-function 

at some value of X0 for which e-qxo is already small summarizes the effect of 

small wormholes. If we assume that this wave-function is of some generic form at 

X0 N 0, then since the subsequent behaviour rapidly becomes classical, the only 

effect of wormholes is to provide a generic probability distribution for the initial 

conditions. Thus, we see no way in which target-space quantization can force the 

large-scale cosmological constant to zero. 
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