NEW RESULTS IN THE PARTIAL WAVE ANALYSIS OF THE $K^{-} \omega$ SYSTEM IN THE REACTION $K^{-} p \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{0} p^{*}{ }^{\dagger}$

D. Aston, ${ }^{1}$ N. Awaji, ${ }^{2}$ T. Bienz, ${ }^{1}$ F. Bird, ${ }^{1}$ J. D'Amore, ${ }^{3}$ W. Dunwoodie, ${ }^{1}$ R. Endorf, ${ }^{3}$ K. Fujii, ${ }^{2}$ H. Hayashii, ${ }^{2}$ S. Iwata, ${ }^{2}$ W. Johnson, ${ }^{1}$ R. Kajikawa, ${ }^{2}$ P. Kunz, ${ }^{1}$ Y. Kwon, ${ }^{1}$ D. Leith, ${ }^{1}$ L. Levinson, ${ }^{1}$ J. Martinez, ${ }^{3}$ T. Matsui, ${ }^{2}$ B. Meadows, ${ }^{3}$ A. Miyamoto, ${ }^{2}$ M. Nussbaum, ${ }^{3}$ H. Ozaki, ${ }^{2}$ C. Pak, ${ }^{2}$ B. Ratcliff, ${ }^{1}$ P. Rensing, ${ }^{1}$ D. Schultz, ${ }^{1}$ S. Shapiro, ${ }^{1}$ T. Shimomura, ${ }^{2}$ P. Sinervo, ${ }^{1}$ A. Sugiyama, ${ }^{2}$ S. Suzuki, ${ }^{2}$ G. Tarnopolsky, ${ }^{1}$ T. Tauchi, ${ }^{2}$ N. Toge, ${ }^{1}$ K. Ukai, ${ }^{4}$ A. Waite, ${ }^{1}$ S. Williams ${ }^{1}$
${ }^{1}$ Stanford Linear Accelerator Center, Stanford University, CA94309, USA
${ }^{2}$ Dept of Physics, Nagoya University, Nagoya 464, Japan
${ }^{3}$ Dept of Physics, University of Cincinnati, OH45221, USA
${ }^{4}$ Institute for Nuclear Study, University of Tokyo, Tokyo 188, Japan

Abstract

Preliminary results are presented from the first large-statistics partial wave analysis of the $K^{-} \omega$ system produced in the reaction $K^{-} p \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{0} p$ at $11 \mathrm{GeV} / \mathrm{c}$ observed with the LASS spectrometer at SLAC. The analysis is based on the moments of the joint angular distributions of the decay to the $K^{-} \omega$ system, with subsequent ω decay to $\pi^{+} \pi^{-} \pi^{0}$. The resulting $J^{P}=2^{-}, 2^{+}$and 3^{-} amplitudes exhibit resonant behavior, and are discussed in the context of the relevant Breit-Wigner fits.

1. Introduction

Although much has been learned about the spectroscopy of the strange meson sector from amplitude analysis of the $K \pi, K \eta$ and $K \pi \pi$ systems, the $K \omega$ system has the potential of providing useful information of a complementary nature, especially concerning states of unnatural spin-parity. For example, precise measurements of branching fractions (BF) to $K \omega$, together with results from the $K \rho, K \phi$ and $K^{*} \pi$ channels should provide precise checks of flavor $S U(3)$ symmetry. In this regard, the present analysis constitutes the first high-statistics study of the $K \omega$ system, and yields the most accurate measurements to date of several such branching fractions.

2. Data and Results

Over $10^{5} K^{-} \omega p$ events have been reconstructed from the reaction $K^{-} p \rightarrow$ $K^{-} \pi^{+} \pi^{-} \pi^{0} p$ at $11 \mathrm{GeV} / \mathrm{c}$ observed with the Large Aperture Superconducting Solenoid

[^0]
(LASS) spectrometer ${ }^{1}$ at SLAC. Initially, events with 4 charged tracks and net charge zero from the primary vertex were chosen. These events were then subject to geometric and kinematic fits (MVFit). Four-constraint (4C) kinematic fits are used to exclude the $K^{-} \pi^{+} \pi^{-} p$ events; events with good 4 C confidence level ($C L_{4 C}>10^{-10}$) arc thus removed. Also, the events with bad 1C confidence level ($C L_{1 C}<10^{-2}$) are removed. Particle identification methods using the cylindrical chambers ($d E / d x$), a time of flight hodoscope and two threshold Cerenkov counters are applied to further purify the data sample. The 4 -momentum transfer squared between the target proton and the recoil proton, $t^{\prime}=\left|t_{p \rightarrow p}\right|-\left|t_{p \rightarrow p}\right|_{\text {min }}$ is restricted to $0.1<t^{\prime}<2.0(\mathrm{GeV} / \mathrm{c})^{2}$ to select events containing a peripherally produced $K^{-} \omega$ system; the lower cut-off is made since, for $t^{\prime} \lesssim 0.08(\mathrm{GeV} / \mathrm{c})^{2}$, the resulting slow proton almost always does not escape the target.

The $\pi^{+} \pi^{-} \pi^{0}$ mass spectrum shows a clear ω signal (Figure 1), with signal to background ratio about one to one in the signal region $\left(0.72-0.84 \mathrm{GeV} / \mathrm{c}^{2}\right)$. To remove the effect of the background, the events in the side-band regions ($0.64-0.70 \mathrm{GeV} / \mathrm{c}^{2}$ and $0.86-0.92 \mathrm{GeV} / \mathrm{c}^{2}$) are given weight of -1 in the moments calculation, while those in the ω signal region are given +1 . The uncorrected weighted moments, representing the joint decay moments of the $K^{-} \omega$ and subsequently ω into $3 \pi^{\prime}$ s, are given by

$$
H(L M l m)=\sum_{i} w_{i}\left[D_{M m}^{L}\left(\Omega_{1}\right) D_{m 0}^{l}\left(\Omega_{2}\right)\right]_{i} .
$$

$$
\begin{gathered}
0 \leq L \leq 6 \\
0 \leq M \leq 2 \\
l=0,2 \\
-2 \leq m \leq 2
\end{gathered}
$$

Table 1: The double moments indices

The solid angle Ω_{1} describes the ω direction in the $K^{-} \omega$ rest frame, Ω_{2} describes the normal to the ω decay plane, and w_{i} is the above-mentioned weight for the i th event. This background subtraction procedure assumes that there is no interference between the ω and the non $-\omega 3 \pi$ background contributing to the moments $H(L M l m)$, and that the background is a linear function of $\pi^{+} \pi^{-} \pi^{0}$ mass; this appears to be a good approximation in general. However, for the $H(0000)$ moment, which describes the $K^{-} \omega$ mass spectrum, the background is not well described by a linear function. For this moment, the background is parametrized by a quadratic function, and the ω lineshape is fitted to measure the signal contribution. The $K^{-} \omega$ mass spectrum reconstructed by this method is shown in Fig. 2.

To remove the background due to baryon resonance production, events with $M_{p \omega}<2.28 \mathrm{GeV} / \mathrm{c}^{2}$ or $M_{p K}<2.0 \mathrm{GeV} / \mathrm{c}^{2}$ are eliminated. Monte Carlo samples are used to compute the acceptance correction matrix $A_{L^{\prime} M^{\prime} l^{\prime} m^{\prime}}^{L M l m}$ in order to obtain the acceptance-corrected moments $H_{c}(L M l m)=\left(A_{L^{\prime} M^{\prime} l^{\prime} m^{\prime}}^{L M{ }^{\prime}}\right)^{-1} H\left(L^{\prime} M^{\prime} l^{\prime} m^{\prime}\right)$. Using the expressions for the moments in terms of the ampliudes as in the paper by Martin and Nef, ${ }^{2}$ a χ^{2}-minimization fit to the $H_{c}(L M l m)^{\prime}$ s is made to obtain the real and imaginary parts of the partial wave amplitudes. The range of the indices L, M, l, m, are shown in Table 1 . The 1^{+}wave is dominant in the $K^{-} \omega$ threshold region and also present in the $1.7-1.8 \mathrm{GeV} / \mathrm{c}^{2}$ region; its structure is not well-understood at present and will not be discussed further in this preliminary report. Resonant structures are observed for the 2^{-}and 3^{-}waves in the $1.7-1.8 \mathrm{GeV} / \mathrm{c}^{2}$ region, and for the 2^{+}wave in the $1.4-1.5 \mathrm{GeV} / \mathrm{c}^{2}$ region; these correspond to the production of $K_{2}(1770), K_{3}^{*}(1780)$ and $K_{2}^{*}(1430)$, respectively. Breit-Wigner lineshape fitting has been performed for these waves.

Figure 3 shows the amplitudes of the 2^{-}waves. Models using one B-W resonance (solid curve) and two B-W resonances (dotted curves) with the same width value, which was determined from the $1 \mathrm{~B}-\mathrm{W}$ fit, have been applied to simultaneously fit the three 2^{-}waves showing peaks, i.e. $2^{-} 0^{+} \mathrm{P}, 2^{-} 0^{+} \mathrm{F}$ and $2^{-} 1^{+} \mathrm{F}$. The results of both fits are shown in Table 2.

The productions of $K_{2}^{*}(1430)$ and $K_{3}^{*}(1780)$ are compared with the other reactions ($K \eta p,{ }^{3} K \pi p^{4}$) in the same experiment. Figures 4 and 5 show the intensities of the $2^{+} 1^{+} \mathrm{D}$ (or D_{+}) and $3^{-} 1^{+} \mathrm{F}$ (or F_{+}) waves in the various decay channels, corrected for the unseen decays. The solid curves represent the B-W resonance fits with the same

Figure 3: The 2^{-}wave amplitudes

Fit	Resonance	Mass $\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	Width $\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$\chi^{2} /$ dof.
one B-W		1721 ± 9	212 ± 23	$53.0 / 49$
two B-W's	1	1731 ± 23	212 ± 23	$23.6 / 43$
	2	1770 ± 25		

Table 2: The Breit-Wigner fits to the 2^{-}waves

Figure 4: $K_{2}^{*}(1430)$ in $K \pi, K \omega$ channels

Figure 5: $K_{3}^{*}(1780)$ in $K \eta, K \pi, K \omega$ channels

mode	branching fractions (\%)
$K_{2}^{\star}(1430) \rightarrow K \omega$	1.8 ± 0.3
$K_{3}^{\star}(1780) \rightarrow K \omega$	2.9 ± 0.4

Table 3: The branching fractions to the $K \omega$ channel
fitting parameters (mass, width and radius factor) for each channel, while the dotted curves show the B-W fits with free mass parameter for each channel. By comparing the peak values of the B-W fits, the branching fractions have been measured to give the following results:

$$
\begin{aligned}
& \frac{\mathrm{BF}\left(K_{2}^{*}(1430) \rightarrow K \omega\right)}{\mathrm{BF}\left(K_{2}^{*}(1430) \rightarrow K \pi\right)}=3.7 \pm 0.6 \% \\
& \frac{\mathrm{BF}\left(K_{3}^{*}(1780) \rightarrow K \omega\right)}{\mathrm{BF}\left(K_{3}^{*}(1780) \rightarrow K \pi\right)}=15 \pm 2 \%
\end{aligned}
$$

Then by using the corresponding PDG^{5} values for the absolute branching fractions to $K \pi$, we obtained the absolute branching fractions to $K \omega$ channel as in Table 3.

3. Conclusion

A high-statistics study of the $K^{-} \omega$ system has been performed using a data sample at least 25 times larger than in any other experiment. Partial wave analysis using 22 partial waves with the $K^{-} \omega$ system spin up to 3 has revealed $K_{3}^{*}(1780)$ decay into $K \omega$ for the first time, and also a clear signal for $K_{2}^{*}(1430)$. Branching fractions are measured. The observed resonant structure of the 2^{-}wave has been studied.

References

1. D. Aston et al., The LASS Spectrometer, SLAC-REP-298 (1986).
2. A.D. Martin and C. Nef, Nucl. Phys. B181 (1981) 61.
3. D. Aston et al., Phys. Lett. B201 (1988) 169.
4. F. Bird, SLAC-REP-332, PhD Thesis.
5. M. Aguilar-Benitez et al., Review of Particle Properties, Phys. Lett. B239 (1990)

[^0]: *Work supported in part by the Department of Energy under contract No. DE-AC03-76SF00515; the National Science Foundation under grant Nos. PHY82-09144, PHY85-13808, and the Japan U.S. Cooperative Research Project on High Energy Physics.
 ${ }^{\dagger}$ presented by Y. Kwon
 Exteinded version presented at the Particles and Fields 91: Meeting of the Division of Particles © Fields of the APS, Vancouver, Canada, August 18-22, 1991.

