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ABSTRACT 

It is proven that a recently derived simple configuration-space wave equation 

for two spin-l/2 particles is equivalent to the Breit equation and to the Salpeter 

equation in first order perturbation theory. The wave equation is based on a sim- 

ple quasipotential approximation. The potential in the equation is given by the 

Blankenbecler-Sugar correction series. The proof holds for an arbitrary combina- 

tion of scalar and vector interactions. 
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Interest in S-dimensional two-body bound state equations for spin-l/2 particles 

has revived in the last 15 years, due to the success of the qij model of mesons. But 

two important questions have not been answered yet [1,2]. (1) What equation is 

best? (2) What interaction is best? 

This note is about equations. Two have dominated: the Breit equation [3] 

and Salpeter’s reduction [4] of the Bethe-Salpeter equation [5]. As we shall explain 

below, neither of these “big two” equations can be solved numerically exactly in 

configuration space. They are only solved in first-order perturbation theory, which 

is trusted most for non-relativistic systems. Here we will prove the equivalence 

in first order perturbation theory of these two equations to a recently derived 

third equation [6] which h as f avorable configuration space behaviour and may be 

susceptible to an exact numerical solution. 

Light mesons, where relativistic effects are high, are still treated by first-order 

perturbation theory [7]. A practical configuration-space equation which treats rela- 

tivistic effects in some way beyond first-order perturbation theory is badly needed. 

A one-particle example of what we mean is the Dirac equation with a static source. 

For weak potentials the level splitting can be calculated satisfactorily either from 

the exact solution of the equation or from first-order perturbation theory. But 

for stronger potentials it is clearly better to solve the Dirac equation exactly- 

numerically if need be. Because of the simple form of the Dirac equation in config- 

uration space, such a numerical solution is easy to carry out. For this reason the 

Dirac equation is accepted as a relativistic wave equation. We would like to have 

a solvable relativistic wave equation for two spin-l/2 particles. 

We first briefly review the two dominant equations. In the CM system the 

Breit equation is [3] 

[(7’m + 7’7. p) + (lT”A4 - Fora p) - E] $(r) = -y”lToW(r)$(r) . (1) 

Here y”, 7, m refer to one particle and I”, I’, M refer to the other. The total energy 
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is E. 

It is generally accepted that the primary qij binding potential is a scalar plus 

a vector. Therefore in this note we take the interaction W(r) to be an arbitrary 

combination of scalar and vector potentials: 

W(r) = S(r) + y”roV(r) . (2) 

We omit non-binding correction terms such as the Breit interaction, the second 

term in the Coulomb-gauge photon propagator, and possible corrections to the 

long-range scalar potential, as they can be treated adequately by first-order per- 

turbation theory. 

At first sight the Breit equation appears to be a wave equation with as simple 

a singularity structure as the Dirac equation, and it looks as easy to solve. Yet 

60 years have passed without an analytic solution. It is well known [3] that in 

the perturbation solution to the Breit equation the second-order terms are bigger 

than the first-order terms instead of smaller. Presumably for that reason, the Breit 

equation is treated in practice as a prescription for first-order perturbation theory 

only. 

Bethe-Salpeter equations with an interaction kernel which depends on the rela- 

tive position only (“instantaneous kernel”) were reduced by Salpeter down to three 

dimensions [4]. Keeping first-order perturbation terms, Salpeter’s reduction is 

[E - WP - f+b(P> = qq 
J 

- w(k2)yor0g(e), k = p - e . (3) 

Here xP+ E [wp + yam - y”7. p] /2wp , AP+ E [O, + r”M + r”I’ .p] /2R are 

Casimir energy-projection operators, with wp G dv, R, E dm. The 

terms wp, R, clearly preclude a numerical exact solution in configuration space. In 

practice these terms are expanded to order p* and first-order perturbation theory 

in configuration space is used. 
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Recently a wave equation was derived which may be a candidate to be the 

first numerically exactly solvable simple wave equation for two spin-l/2 particles 

in configuration space. The equation is [6] 

(-V2+p2)$(r)=-& [m-f7.V+y”E,] [M+~I’+V+I’“E~] 

(4) 

In Eq. (4) the total bound-state energy and the partial energy of each particle are 

parametrised as 

EC/--+,/m, Em=,/-, Eiv=dm. c5) 

Equation (4) is derived from a simple quasipotential approximation [8:9] to 

the Bethe-Salpeter equation combined with a correction series in the error of the 

approximation first given by Blankenbecler and Sugar [lo]. The term W2/2E is 

the large component of the leading Blankenbecler-Sugar correction, the only one 

that contributes in first-order perturbation theory. In Ref. [6] we found that Eq. 

(4) gives the energy levels for the hydrogen atom and positronium without the 

annihilation term correctly to lowest order in the fine and hyperfine structure, i.e. 

to order 04. In that case W was given by S = 0, V = -a/r, the Breit interaction 

was included, and the correction term W2/2E was (a2/r2)/2E. 

In the present note we strengthen the case for the wave equation (4) by prov- 

ing that for any combination of scalar and vector potentials, i.e. for the general 

interaction W(r) given by (2), Eq. (4) g ives the same results as the “big two” 

equations (1) and (3) to first-order perturbation theory. 

Since the Breit equation must be solved by first order perturbation theory, 

Casimir operators are typically used [4] and the result is again Eq. (3). Thus it is 

sufficient to show that Eqs. (3) and (4) are equivalent in first order perturbation 

theory. 
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To that order (3) reads in configuration space: 

E+= m+M+$+[C.+Sj (64 

-{; (--&+$) I++; (--$++J Pw+,)B w 

1 o.pd+ C*p,c*L 
$4 m2 { M2 > 

iv - m (64 

in which $ is the 4-dimensional large component of the 16-component wavefunction 

+. The reduced mass is ~1. The domains of the configuration space differential 

operators p,e are described by the integral form, Eq. (3). 

To expand our wave equation (4) Casimir operators are not required. For 

E < m + M, it was shown in Ref. [6] that the operators on the right hand side of 

(4) are non-singular and that each of them is a divisor of ( -V2 + ,02). Thus (4) is 

identical to 

1 
m + f 7. V - TOE,] $(r) = 

--& M+:r.V+rOEM 
[ 2 I 

and is also identical to 

M - f I’. V + I”EM 1 $(r) = 

(7) 
[ W(r) + z] $$f) 

(8) 
m-~+y-V+y”Em I [ W(r) + s] $(r) . 

The identity of Eqs. (4), (7) and (8) h s ow that each spin-l/2 particle obeys a 

Dirac equation in the field of the other, as would be expected physically. The 

Dirac equation (7) g ives a Pauli reduction (small component) = (-o.p/2m) (large 
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component) for its particle. A similar Pauli reduction for the other particle from 

the other Dirac equation (8) gives all components of + terms of the 4-dimensional 

large component 4. 

To express the resultant equation for C$ we need to define the eigenvalue of the 

zero-order equation: 

-PO” 
zc(40=(Eo-m-M)$o= $ + IV + Sl) 40 . C-9 

From Eq. (5) up to first-order perturbation theory, replacing p2 by ,802 in the 

perturbation term, we have 

Solving this equation for p2 we can substitute for p2 in Eq. (4). Also from (5) we 

have to the required order 

(m + Em)(M + EM) 
2E 

Finally, (m + M) may b e substituted for E in the Blankenbecler-Sugar term. From 

all these, Eq. (4) g ives an equation for 4, the large component of 4: 

m+M+$+[V+.F] 4 Pa> 

+{ -;($+$?:-~(~-~)2&w+sl+2~~)}4 (lob) 

1 a.pa.e+ C.p,c.l 
$4 m2 { M2 1 

iv - 44 * (104 

We wish to show that Eqs. (6) and (10) give identical results. The zero- 

order binding potential in lines (6a) and (lOa) is the same, and is the sum of the 
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vector and scalar potentials. Lines (6~) and (10 c are also identical, and represent ) 

the well-known spin-independent and spin-orbit terms where the scalar potential 

appears with opposite sign to the vector potential. To complete the proof it is 

only necessary to show that the expectation values of the lines (6b) and (lob) are 

identical no matter what V and S are. 

The procedure is familiar. The expectation value of line (6b) is 

-(,I; (--$+$) PJ+; (f+$) Pw+Sj~do) * (11) 

From Eq. (9) we have p2& = -(p,” + 2p[V + S])&. Bearing in mind that in 

momentum space p4 = P~(~T)~S~(P-!)!~ (see Eq. (3)), the expectation value (11) 

is equivalent to 

(PO1 -; (--$+&) (Po2+2P[v+m2 

+; (-$+&) (P~+2P[v+s])[v+sl $0 * 1) 
It is elementary to show that the coefficients of 1, ([V + S]) and ([V + S12) in (12) 

are all exactly the same as those of (lob). This completes the proof. 

In conclusion, we have shown that the wave equation (4) gives the same results 

in first order perturbation theory as the “big two” equations (1) and (3) for any 

combination (2) f o vector and scalar potentials. The point of the proof was to 

establish Eq. (4) as a legitimate alternative to the Breit and Salpeter equations, as 

a preliminary to solving the equation numerically in situations-e.g. light mesons- 

which are too relativistic for first order perturbation theory to handle. 

Since Eq. (4) would have 32 components when written as a set of first-order 

differential equations, the numerical solution would presumably start from one of 

the 16-component Dirac equations (7) or (8), which are equivalent to (4). That 

work is beyond the scope of the present note. 
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