
 SLAC-PUB-5629
August 1991

(T/E/I)

* Work supported by Department of Energy, contract DE-AC03-76SF00515.

Invited lecture presented at the 1991 CERN School of Computing, Ystad, Sweden, 23 Aug. - 2 Sept. 1991.

ESTABLISHED
1962

 Object Oriented Programming*

Paul F. Kunz

Stanford Linear Accelerator Center
Stanford University

Stanford, California 94309, USA

ABSTRACT

This paper is an introduction to object oriented programming. The object oriented approach is very pow-
erful and not inherently difficult, but most programmers find a relatively high threshold in learning it.
Thus, this paper will attempt to convey the concepts with examples rather than explain the formal theory.

1.0 Introduction

In this paper, the object oriented programming tech-
niques will be explored. We will try to understand what it
really is and how it works. Analogies will be made with tra-
ditional programming in an attempt to separate the basic
concepts from the details of learning a new programming
language. Most experienced programmers find there is a
relatively high threshold in learning the object oriented
techniques. There are a lot of new words for which one
needs to know the meaning in the context of a program;
words like object, instance variable, method, inheritance,
etc. As one reads this paper, these words will be defined,
but the reader will probably not understand at that point the
where and why of it all. Thus the paper is like a mystery
story, where we will not know who’s done it until the end.
My word of advice to the reader is to have patience and
keep reading.

The first key idea is that of an object. An object is re-
ally nothing more than a piece of executable code with lo-
cal data. To the FORTRAN programmer, an object could be
considered a subroutine with local variable declarations.
By local, it is meant data that is neither in COMMON
blocks, nor passed as an argument. This data is private to
the subroutine. In object oriented parlance it is encapsu-
lated. Encapsulation of data is one of the key concepts of
object oriented programming. The second key idea is that a

program is a collection of interacting objects that commu-
nicate with each other via messaging. To the FORTRAN
programmer, a message is like a CALL to a subroutine. In
object oriented programming, the message tells an object
what operation should be performed on its data. The word
method is used for the name of the operation to be carried
out. The last key idea is that of inheritance. This idea can
not be explained until the other ideas are better understood,
thus it will be treated later on in this paper.

An object is executable code with local data. This data
is called instance variables. An object will perform oper-
ations on its instance variables. These operations are called
methods. To clarify these concepts, consider the FORTRAN
code in Fig. 1 . This is a strange way to write FORTRAN, but
it will serve to illustrate the key concepts. The style of cap-
italization is that which is recommended for objective pro-
gramming, but for the moment is not important for the
discussion. For this sample code, the name of the object is
anObject . The subroutine has two arguments. The first ar-
gument, msg, is used as the message, while the second, I , is
used as an input or output parameter. This object has one
instance variable with the name aValue which is of type
integer. There are two methods defined, setValue, and
getValue. What operations are performed on the data is
defined in the FORTRAN statements. That is, if the value of
the character string msg is “setValue ” then the instance
variable aValue is set to the value of the argument I ; when

Object Oriented Programming

 2 SLAC-PUB-5629

the string is “getValue ” then the current value of the in-
stance variable is returned via I .

To send a message to anObject from some other
FORTRAN routine, one might find code fragments that look
like

In the first line, anObject will set its instance variable
to value 2, while in the second line, the current value of the
instance variable will be returned into the argument I .

Now the reader should have some of the key concepts
understood, at least in their simplest sense. The variables
that are local to a FORTRAN subroutine, that is, neither in
COMMON nor passed as parameters, are encapsulated. The
data is protected from being changed or accessed by an-
other routine. It is this that makes it an object. An object has
boundaries and clearly limits the accessibility of the vari-
ables in the routine. A FORTRAN COMMON on the other
hand, has no boundaries. It is more like a fog. It spreads out
from where you are and you don’t know where it ends. You
also don’t know what else might be in the fog; or what you
might run into.

Why we are programming this way is probably not yet
apparent; that will come later. But for now, the reader
should note the very different style of manipulating data. In
languages like FORTRAN, we think of passing data to a rou-
tine, via arguments or COMMON blocks. Here the routine,
i.e. the object, holds the data as instance variables and we
change or retrieve the data via methods implemented for
the object.

 This messaging style of programming is a rather te-
dious way to get to the data that we want to operate on. Its

Subroutine anObject(msg, I)
Character msg*(*)
Integer I
Integer*4 aValue
If (msg .eq. "setValue") then
 aValue = I
 return
ElseIf (msg .eq. "getValue") then
 I = aValue
 return
Else
 print("0Error")
EndIf
return
end

 Fig. 1 Sample FORTRAN code

Call anObject("setValue", 2)
Call anObject("getValue", I)

time to invent a new syntax. An example of such a new syn-
tax is the Objective-C [1] language, which is derived from
the SmallTalk language. On most platforms, it is imple-
mented as a translator that generates C code that works
with a run time system to handle the messaging. Objective-
C as a language is a proper super-set of C. It adds only one
new data type, the object, and only one new operation, the
message expression, to the base C language.

An example of Objective-C code is given in Fig. 2 .
This Objective-C code is equivalent to the FORTRAN code
shown in Fig. 1 . In the Objective-C syntax, the code is di-
vided into two parts. The first part is called the interface; it
is all the code between the @interface and the next
@end. The interface part of the code serves two purposes. It
declares the number and type of instance variables, in this
case only one, and it declares to what methods the object
will respond. The interface is usually placed in a separate
file, then included via the standard C include mechanism.
Once again, the author can only say that the reasons for do-
ing this are certainly not apparent at this time, but will be
explained later. The second part of the code is the imple-
mentation; this is all the code between the @implemen-

tation and the next @end. Within the implementation,
one writes the code for all the methods that make up the ob-
ject. Each method begins with a “–” and the name of the
method. Between the braces (“{}”) can be any amount of
plain C code, including calls to C functions, and message
expressions. Even calls to other compiled languages, such

 Fig. 2 Objective-C example

#import <objc/Object.h>
@interface anObject:Object
{
 int aValue;
}
- setValue:(int) i;
- (int) getValue;
@end

@implementation anObject
- setValue:(int) i
{
 aValue = i;
 return self;
}
- (int) getValue
{
 return aValue;
}
@end

 SLAC-PUB-5629 3

Object Oriented Programming

as FORTRAN can be placed here. The example in Fig. 2 ad-
mittedly doesn’t show very much of that possibility.

To send a message to the above object, from another
object, one might find the following code fragments

In these fragments, anObject is declared to be data of type
object, while i is declared to be type integer. The message
expression is signaled by an expression starting with the
left bracket (“[”) and ending with the right bracket (“]”).
The syntax may seem strange to a FORTRAN programmer,
or even a C programmer; it comes from the SmallTalk lan-
guage. There is a lot more behind it then can be understood
now, so the reader would do best by not questioning it at
this point. For the remainder of this section, we’ll be using
the Objective-C language for the examples so that we can
study the object oriented concepts without needing to learn
a completely new language at the same time. Some readers

id anObject;
int i;
. . .
[anObject setValue: 2];
i = [anObject getValue];

may not be familiar with this language, or even the C lan-
guage. As an aid in following the text, the author offers Ta-
ble 1 ., which crudely shows the correspondence between
the Objective-C and C languages and FORTRAN. Of special
note is the use of colons (“:”) in the method names. In the
first instance above, the colon seems to be a separator be-
tween the method name and the parameter; which it does
except that the colon is also considered part of the method
name. In the second instance in the table, there are two co-
lons, each separating the method name from the parame-
ters. The full name of the method contains the two colons as
shown by the pseudo-FORTRAN code: setLow:high: .
This is the style of the SmallTalk language and it is done
that way for readability. It is very upsetting to FORTRAN
programmers, but once one gets used to it, one begins to ap-
preciate its self describing value.

 So far, we’ve introduced a lot of new terms and a very
different syntax. But what is important is the very different
way of handling data. Where we are headed is probably not
yet clear, but like I said in the beginning, this paper reads
like a mystery story, we wouldn’t know until the end. I
don’t want to lose you, so the next section will work on a

Table 1 . Correspondence between C, Objective-C, and FORTRAN.

C FORTRAN

#include <file> INCLUDE "file"

int i; INTEGER I

float a; REAL*4 A

int bins[100]; INTEGER BINS(100)

char title[80]; CHARACTER*1 TITLE(80)or
 CHARACTER*80 TITLE

char *title; a pointer

if (x < y) { IF (X .LT. Y) THEN
} ENDIF

for (i = 0; i < n; i++) { DO I = 0, (N-1), 1
} ENDDO

i++; I = I + 1

Objective-C FORTRAN

#import <file> (include if not already included) INCLUDE "file"

- set:(int) i SUBROUTINE SET:(I)
 INTEGER I

- (int) get INTEGER FUNCTION GET()

- setLow:(float) x high:(float) y SUBROUTINE SETLOW:HIGH:(X, Y)
 REAL X, Y

Object Oriented Programming

 4 SLAC-PUB-5629

much more concrete example using what we already are
beginning to understand.

2.0 Another Example: A Histogram Object.

Its time to take another example, something more con-
crete. I’ve chosen to treat a histogram as an object. We’ll
examine the code to do one histogram. Figure 3 shows what
the interface part might look like. The object shown is of
the class Hist which inherits from the root class Object .
The meaning of the words class and inheritance will be de-
fined latter. The instance variables of the histogram object
(shown between the braces) are the title, the low edge of the
histogram, the bin width, the number of bins, etc. To make
the example simple, we have a fixed maximum number of
bins (100) and a fixed maximum title size. This is unnec-
essary in C, and thus Objective-C, because these arrays can
be dynamically allocated when the histogram is defined,
but for our present purposes, we’ll avoid introducing fea-
tures of the C language that are not available in FORTRAN.

 Once the histogram object is created, the user would
first send it messages to fix its title, set its low edge, bin
width, etc. These messages might look like the following
code fragments

To accumulate and print, the messages might look like the
following code fragments…

 Fig. 3 Objective-C interface for Hist object

#import <objc/Object.h>
@interface Hist:Object
{
 char title[80];
 float xl, xw;
 int nx;
 int bins[100];
 int under, over;
}
- setTitle:(char *)atitle;
- setLow:(float) x width:(float) y;
- setNbins:(int) n;
- acum:(float) x;
- zero;
- show;
@end

[hist setTitle:"my histogram"];
[hist setLow: 0 width: 1.];

[hist acum: x];
[hist show];

The implementation of the histogram should be obvi-
ous. In the acum: method, for example, one would find ex-
actly the same kind of coding one would find in FORTRAN.
That is, something like…

There is nothing but ordinary C code in this implementa-
tion. By the way, I’ve written the C code like a FORTRAN
programer might do, so as to not confuse the issue with
short cuts a C programmer might normally use. If you’re
looking for something profound in all this, there isn’t, yet.

It is rare that one wants only one histogram, so we now
examine what needs to be changed to have more than one.
First of all, if we have multiple histograms its clear that
they all behave the same way. In object oriented parlance,
we say there is a class of objects called histogram. In our
example, the name of the class is Hist , as seen on the
@interface line. The only difference between one histo-
gram object and another is the values of its instance vari-
ables. Using the right object oriented words we would say
that one histogram object is an instance of the class Hist .
We create an instance of the class Hist by sending a special
type of message to the class Hist . It is called the factory
method. The messages that are sent to the class are factory
methods. The ordinary messages are sent to an object,
which is an instance of a class. Its is important to remember
this distinction.

We send a message to the class to create an object, then
we can start sending messages to the object. The code
might look like…

The first message, “new”, is sent the class Hist . This is a
factory method. All the classes that are linked together to
form the program module are known at run time, just like
the subroutines and functions are known in FORTRAN.
Classes can only accept factory methods, so to distinguish

- acum:(float) x
{
 i = (x -xl)/xw;
 if (i < 0) under = under+1;
 elseif (i >= nx) over = over + 1;
 else bins[i] = bins[i]+1;
 return self;
}

id aHist, bHist;
aHist = [Hist new];
[aHist setTitle: “histo one”];
bHist = [Hist new];
[bHist setTitle: “histo two”];
...
[aHist acum: x];
[bHist acum: y];

 SLAC-PUB-5629 5

Object Oriented Programming

them from objects, one capitalizes the first letter of the class
name. Factory methods return the id of the object created.
In the example, we’ve given these id s the names aHist

and bHist . Once an object has been created, i.e. an in-
stance of the class Hist , then we can send messages to the
object to define the histogram, and accumulate into it. No
other changes are needed to make multiple histograms. All
the allocation of objects of class Hist , i.e. the memory
management, is done automatically by the compiler. Part of
this comes from the base C language, but the Objective-C
factory methods make it even more transparent.

 At this point the FORTRAN programer is probably
confused, since we have shown code which seems to be
written for only one histogram, and yet we have many.
What’s going on? One way to understand it is to look be-
hind the scenes and see how memory is being allocated, as
shown in Fig. 4 . We write code for the class Hist which
contains the instance variables of the class, its normal
methods, and maybe a factory method if it is not inherited.
At run time, we message the class Hist with a factory
method. This method allocates space in memory for the in-
stance variables, and some pointers to the executable code.
Thus each object of class Hist has its private copy of the
instance variables, but pointers to the same code. The fac-
tory method returns the id of the object just created. It is
actually just a pointer to the object. We can then send mes-
sages to this object. The run time support uses the pointers

 Fig. 4 Allocation of memory for objects

setTitle:
setLow: width:
setNbins:
acum:
zero
show
...

Code:Objects:

aHist

isa
title
xl
xw
nx
bins
...

bHist

isa
title
xl
xw
nx
bins
...

to find the code. Program execution jumps to one of the
methods we see in class Hist . As the code executes, it sees
only the instance variables of the object to which we sent
the message. The net result for the programmer is pro-
found. He writes the code for the Hist class as if there is
only one histogram allowed. In the driver code, however, as
many histograms as needed can be created via the factory
method, and the system does all the bookkeeping

At this point, we need to explain more about factory
methods and what they do. We have already seen that they
will allocate memory space. It is also a place where one
may initialize an object to a set of default values. For ex-
ample, the following code fragment could be the factory
method of our histogram object

The “+” before the method name distinguishes a factory
method from an ordinary one, otherwise the implementa-
tion proceeds as normal. The full explanation for the first
statement will have to wait until the next section. At this

+ new
{
 self = [super new];
 xl = 0.0;
 xw = 1.0;
 nx = 0;
 strcpy(title, "none");
 return self;
}

Object Oriented Programming

 6 SLAC-PUB-5629

point we’ll only say that the message to super , a reserved
name, does the memory allocation and returns another re-
served name, self . This name, self , is how an object re-
fers to itself. For example, the following two statements are
equivalent …

C programmers will recognize that self is a pointer to the
memory allocated for the instance variables. The remaining
statements in the factory method are straight C code and
need no further explanation.

A class can have more than one factory method. This
might be used, for example, to simultaneously create an ob-
ject of a class and set some of the initial values as is done
with the following code fragment

Now compare the object oriented style of writing a his-
togramming code with what one usually finds in a FOR-
TRAN implementation. If we had written FORTRAN code
to handle only one histogram, and decided that we needed
multiple histograms, the changes to the code would be ex-
tensive. First of all, the local variables that held the defi-
nition and bin contents would all need to become arrays,
dimensioned by some maximum number of histograms al-
lowed. We would probably put these arrays in a COMMON
block and write one routine for each operation we wanted
to perform on the histogram, corresponding to the messag-
es in the object oriented approach. One of the arguments in
these routines would be some kind of identifier of which
histogram the operation was to be performed. The identifier
frequently is not just the index into the arrays, but some
character string, so we would need to write a lookup table
to find the index from the identifier. To allow the flexibility
of using the package for a large number of histograms with
few bins, or a few histograms with many bins without re-
compiling, one would like to get away from fixed arrays in
COMMON blocks. In its place we find a program allocating
space in some large COMMON block for the bins and the
definitions. The net result in the FORTRAN implementation
is that the person who writes the histogram package writes
a lot of bookkeeping code, probably more bookkeeping

xl = 0.;
self->xl = 0.;

+ newWithTitle:(char *)aString
{
 self = [super new];
 strcpy(title, aString);
 return self;
}

code than definition or accumulation code. Instead of meth-
ods within a class being held together, we have independent
routines, related only, perhaps, by some naming conven-
tions. The data, instead of being encapsulated, is exposed
since it is in a COMMON block. In short, everything is in-
side out when compared to the object oriented approach.

Of course as a user of the histogram package, one
doesn’t really care about the difficulty of the implementa-
tion. Object oriented programming, at first, seems to offer
no benefit. It’s worth mentioning two items along these
lines. The first is that what is provided with such packages
might be limited by the implementation language. OOP
technology frees the programer of a lot of tedious work so
he can concentrate on providing a better product. And sec-
ondly, the object oriented technology applies itself equally
well to physics code since there is a lot of bookkeeping
code in dealing with tracks, vertices, etc. We’ll see exam-
ples in the latter part of this paper.

3.0 Inheritance

Another important aspect of object oriented program-
ming is inheritance which has been alluded to already. Lets
start with an example. Let us define an object called Hist2 ,
which will be a two dimensional histogram. The interface
file might look like the code shown in Fig. 5 . It is just like
the Hist object in the previous section. We’ll assume that
the show method prints a table showing the accumulation
in each bin.

Note that Hist2 has some of the same method names
as those previously defined in the Hist class. Does this
mean that one can not have both Hist and Hist2 classes in
the same program? No, one can use the same method
names in many classes. This is called polymorphism and it

#import <objc/Object.h>
@interface Hist2:Object
{
 char title[80];
 float xl, xw, yl, yw;
 int nx, ny;
 int bins[100][100],...;
}
-setTitle:(char *)atitle;
-setXlow:(float)x Xwidth:(float)y;
-setYlow:(float)x Ywidth:(float)y;
-acum:(float)x and:(float)y;
-show;
@end

 Fig. 5 Interface for Hist2 class

 SLAC-PUB-5629 7

Object Oriented Programming

allows one to write code that is much easier to understand
by re-using the name space for both data and function. With
a language like FORTRAN one can only safely re-use the
name space for variables local to one subroutine or func-
tion. Attempting to have variables of the same name in two
different COMMON blocks all too often leads to clashes
when both COMMON blocks are needed in the same rou-
tine. Also, subroutine and function names must be unique
in one program. From this, one can see that the methods in
OOP are not just subroutines or entry points.

Now suppose we want to define another form of 2D
histogram which shows its contents in 3D form with the Z
axis being the contents of the bin, i.e. a lego plot. We’ll call
this class the Lego class. We can write its interface file as
shown Fig. 6 . There is only one instance variable and two
methods in the class Lego . The instance variable plotan-

gle is the angle at which the x-y axis should be shown
when displaying. The two methods are to set that angle and
to plot the histogram.

So what happened to all the methods to define and ac-
cumulate the lego plot? They are inherited. Notice the

#import "Hist2.h"
@interface Lego:Hist2
{
 float plotangle;
}
- setAngle:(float) degrees;
- show;
@end

 Fig. 6 Interface code for Lego class

@interface line in the code above. It says that the class
Lego is a subclass of Hist2 . The use of the word subclass
is a misnomer. One should not confuse subclass with sub-
set. In object oriented programing it doesn’t mean some-
thing smaller, it means something bigger. When one class is
a subclass of another, it inherits all of its superclass’ in-
stance variables and all of its methods. Thus the Lego class
has all the instance variables of the Hist2 class and one ad-
ditional variable: plotangle . It also inherits all the meth-
ods of Hist2 and adds one new one: setangle: . What
about the show method? A subclass can either take an in-
herited method exactly as it is in its superclass, or it may
over-ride it. Since the fashion that the Lego class displays
its accumulation is very different from that of Hist2 , the
class Lego needs to over-ride the definition of the show

method with one of its own. The use of the Lego object is
just like any other object. That is, we might see something
like the following code fragments…

Again, its worthwhile to look behind the scenes and
understand how memory is being laid out. Figure 7 shows
how memory is allocated after one lego plot object is cre-
ated . The object aLego consists of a concatenation of the
instance variables of the Hist2 class and the Lego class. It

aLego = [Lego new];
[aLego setTitle:"this plot"];
[aLego setXlow: 0. Xwidth: 1.];
...
[aLego setAngle: 45.];
...
[aLego acum: x and: y];
[aLego show];

 Fig. 7 Memory layout for Lego object

setTitle:
setXLow: Xwidth:
setYLow: Ywidth:
setNbins:
acum:
show

Code:

Objects:

isa
title
xl, xw
xw, yw
nx, ny
bins
...
plotangle

aLego

setAngle:
show

Object Oriented Programming

 8 SLAC-PUB-5629

is as if the block of memory for storing the Hist2 instance
variables has been extended to accommodate those of
Lego . The isa pointer points to the code defined in the
Lego class. That class also has a pointer to the code of the
Hist2 class. Thus, when aLego is sent the message “set-

Angle :” the code defined in the Lego class is found. When
aLego is sent the message “setTitle: ”, the method is
not found in the code for the Lego class. Instead, the code
found in Hist2 class is executed, because of inheritance.
On the other hand, when aLego is sent the message
“show”, the method in the Lego class is executed, because
the show method in the Lego class over-rides the one in the
Hist2 class.

One result of inheritance is much less code modifica-
tion when we want to add functionality. Lego performs ev-
erything that Hist2 does and more. The author of the Lego

class never needs to look at the code for Hist2 ; he only
needs to know the methods he wants to over-ride and can
add his own new methods at will. It also works in the op-
posite direction, if Hist2 changes, then Lego only needs to
be re-compiled. The lego plot needed an extra instance
variable, plotangle . This variable was added to the class
without needing to change anything in the Hist2 class to
accomodate it.

One programming note should be mentioned now.
Note that the interface file for Lego (Fig. 6) includes the in-
terface file for Hist2 . This is necessary so that when Lego

is compiled, the compiler can know what is inherited. This
is one reason why the interface for a class is kept in a sep-
arate file; the so-called header file. Another reason is deal-
ing with messages. If in some object one has a message like

then the compiler needs to know the type of the parameter
(e.g. int, float, etc.) and the type of the return value, if any.
Thus, in the source code of the object that sends the above
message, the interface file of Lego must be made visible to
the compiler by including the Lego class header file. In
practice, the header file is a very good place to put docu-
mentation in the form of comments. In the ideal world, the
user of an object would understand what operations are per-
formed by the object just from well chosen method names.
In practice, however, some documentation is necessary and
in many cases, the user might have to read the implemen-
tation code as well.

To further illustrate the use of inheritance, let us con-
sider another example. Take a drawing program such as
MacDraw or Canvas on the Apple Macintosh. With the

[aLego setAngle: 45.]

mouse, the user can pick from a number of pre-defined
shapes such as circles, rectangles, polygons, etc. One can
move and resize these shapes in the drawing window. Ob-
ject oriented programming is a natural way to implement
such a program. One could define a generic shape class
from which one could sub-class each of the particular
shapes. In the shape class, one would find instance vari-
ables such as the x-y position on the screen and the size of
the shape. Thus the methods to re-position the shape on the
screen, or change its size would be implemented in the ge-
neric shape class. Any particular shape such as a rectangle,
however, would have its own class derived from the generic
shape class and contain its own drawing method. A rect-
angle would fill its height and width. Methods to set the line
width and color, to fill the area or not, etc. would be found
in the generic shape class.

The class hierarchy that one should use in an applica-
tion is sometimes difficult to design. The association of
physical objects with programming objects is frequently a
good rule to follow, but is not always the case. For example,
one could argue that a square should be a subclass of a rect-
angle since it is a kind of specialized rectangle. However,
making one’s class hierarchy in this manner only confuses
the program design. If one tried to define a square class as a
subclass of the rectangle class, then how does one decide
what the length of the square’s side should be? That is,
which inherited instance variable, height or width, should
one use? It is better to leave a square shape as an instance
of the rectangle class; one which happens to have equal
height and width.

Another example of confusion results in trying to
make the rectangle class as subclass of a polygon. If the
polygon class responded to a message to increase the num-
ber of its sides, what should the rectangle subclass do if it
received such a message? It can’t add one side to its shape
because then it would no longer be a rectangle. Over-riding
the inherited add side method to do nothing doesn’t seem
natural either. The answer is the rectangle class should not
be sub-classed from a polygon class. The rectangle class is
simple, it fills its area with a rectangle. It’s the polygon
class which is more specialized and complex. It must not
only fill its area, but have an additional instance variable to
know the number of sides it has.

Although arriving at a good class hierarchy for an ap-
plication may be difficult, especially for the beginner, it is
generally not difficult to change the hierarchy. That is, once
the problem becomes better understood, one can move
methods and instance variables up or down the class hier-
archy. For example, if one discovered a set of classes that

 SLAC-PUB-5629 9

Object Oriented Programming

all shared the same or nearly same properties, then one
could add a super class for this set in which those properties
could be stored and the methods for operating on them de-
fined. This super class would become a abstract class, like
the generic shape class of a drawing program, and the sub-
classes would become more specific, like rectangles, cir-
cles, etc. of a drawing program.

4.0 Graphical User Interfaces And Oop

An example of the use of object oriented programming
for the graphical user interface toolkit is shown in Fig. 8 .
This example is the class structure of NeXTstep, the GUI
developed for NeXT computers. In this figure we see that a
button is implemented by the Button class, which is a sub-
class of the Control class. Since controls are visible on the
screen, they are a subclass of the View class, and since all
views might respond to mouse or keyboard input, they are a
subclass of the Responder class. For those methods imple-
mented in the Responder class, all subclasses of View, e.g.

 Fig. 8 Graphical User Interface class hierarchy

Box

SelectionCell

Object

ActionCell

ButtonCell

MenuCell

Responder

Application

View

ClipView

SavePanel FontPanel PrintPanel ChoosePrinter

OpenPanel

Control

Matrix Slider Scroller

Form

Window

Panel

TextFieldCell SliderCell

ButtonTextField

Speaker Listener

FormCell

Pasteboard CellBitmap

Cursor

Font FontManager PrintInfo

Menu

PopUpList

PageLayout

Text ScrollView

Control, Box, Text, and ScrollView classes, will behave the
same way, since they inherit these methods. Classes which
are sub-classed from the View class all know how to draw
themselves inside a window or panel. Classes which are
sub-classed from the Control class have the additional
property that when they receive an event from mouse or
keyboard, they may send a message to another object, even
one that does not present itself on the screen. For example,
a slider that is clicked and dragged, will send a message to
some object, perhaps with the current value of the slider as
a parameter.

The use of the NeXTstep class structure can also il-
lustrate another aspect of object oriented programming that
one frequently makes use of. That is, an object can be com-
posed of many different objects from different parts of the
class hierarchy. The panel shown in Fig. 9 , for example, is
one used to display particle properties stored in a data base
object. It was developed for the Gismo project [2] and later
used within the Reason project [3] as well. Note already that
this panel object is used by another object to display its val-

Object Oriented Programming

 10 SLAC-PUB-5629

ues. This implies that the data base object has an instance
variable that is the id of the panel object. The panel con-
tains buttons, text fields, scroll-able views, etc., each of
which are also objects which are subclasses of Control and
View subclasses. Thus the panel object for the application
is made up of objects from various classes. The panel is ef-
fectively a container object which controls its position on
the screen. It contains a number of view objects which draw
themselves within the panel. Those that are also control ob-
jects can send messages between themselves, the panel, or
the database object that owns the panel, depending on user
input. Likewise, the database object can send messages to
the panel object or any of the view and/or control objects
contained by the panel. Each object manages its own little
world as defined by the instance variables of its class and its
inherited instance variables. The application works by the
objects sending messages to each other.

The lesson to learn from this complex panel object is to
make the distinction between the class hierarchy and other
hierarchies that might appear in an application. The former
defines for a subclass what methods and instance variables
are inherited, while the latter defines how various objects
are linked together in an application. For example, the pan-
el object contains a view object which holds its contents.
Within that content view there are a number of different
kinds of sub-views which may also contain sub-views. This
forms a view hierarchy. But each one of these sub-views
derives their class definition from the same point within the
class hierarchy.

 Fig. 9 Panel object with imbedded view objects

5.0 Object Oriented FORTRAN

So far we have given all the examples in the Objective-
C language. This language is C with one new data type, an
object, and one new expression, the message, compared to
the C language. The Objective-C language was originally
implemented as a pre-processor to the C compiler. It gen-
erates C code which is then compiled and linked to the Ob-
jective-C run time library. It was designed so that the syntax
could be added to other languages as well.

Such a pre-processor can be written for FORTRAN . For
the NeXT computer, the Absoft company has done exactly
that in order that programs written in FORTRAN can make
use of the NeXTstep class library. An example of object
oriented FORTRAN code is shown in Fig. 10 . One can tell
this is FORTRAN code because of the use of symbols like
.false . One can also recognize that it uses the same syntax
as Objective-C with statements like the message expres-
sions. After passing this source code through a pre-proces-
sor, it is compiled by the FORTRAN compiler and linked
with the standard NeXT libraries. Thus one has an exist-
ence proof of an object oriented FORTRAN. However, the
current implementation permits only one instance of an ob-
ject; a limitation will be removed in future implementation.

It is the author’s belief that an object oriented FOR-
TRAN has more value to HEP than FORTRAN ‘90. Not that

 INCLUDE "appkit.inc" ! Include AppKit
 INCLUDE "Timer.inc"
 INCLUDE "Cube.inc" ! Include the interfac e

 @implementation Cube : View

 @+ newView:REAL*4 rect(4)
 self = [self newFrame:&rect]
 [self setClipping:NO] ! This speeds drawing
 width = 2.0 ! line width of 2.0
 suspend = .false. ! with cube rotating
 [Timer newTimer: @0.02D0
 + target: self
 + action: Selector("display\0")]
 newView_ = self ! Return, by convention, self
 @end

 @- step ! do a single step
 suspend = .false. ! Temporarily turn off
 [self display] ! Display rotation of cube
 suspend = .true. ! Suspend cube
 step = self ! Return, by convention, self
 @end

 Fig. 10 Example of object oriented FORTRAN

 SLAC-PUB-5629 11

Object Oriented Programming

FORTRAN ‘90 doesn’t have some interesting features, as
we will see in the next section, but that FORTRAN falls
short of being an object oriented language.

6.0 Introduction To C++

There are a number of reasons for giving this short in-
troduction to C++. Although C++ is the most widely used
of all object oriented languages, its syntax is initially a bit
difficult to understand. In this section, we hope to under-
stand enough of it, by making analogies with Objective-C,
to take away a bit of the fear of C++. Besides supporting
OOP, C++ also supports abstract data types and operator
overloading. These are very useful features but are some-
times confused with object oriented programming, so we
need to understand them to see how they differ from OOP.
C++ is a very powerful language but its syntax can be te-
dious as a result. Only certain aspects of the language can
be covered here and the reader is referred to the ample sup-

ply of books on the language for further information (see
Refs. [4] to [6]).

An example of a C++ class header file is shown in. Fig.
11 . The class defined is that of a 3-vector as it might be used
in HEP. The class definition consists of two parts; the class
head with the keyword class followed by the class name,
and the class body which is enclosed in braces (“{}”). This
corresponds directly with the Objective-C interface sec-
tion. In the class body, we have the definition of instance
variables which are called data members in C++. The class
ThreeVec has three data members; x , y, and z . They are
followed by methods which are called member functions in
C++. Unlike Objective-C, the member functions are not
visible to objects of different classes unless they are ex-
plicitly declared to be visible. The keyword public: has
this effect.

Instead of factory methods, C++ has special member
functions called constructors which have more or less the
same effect. A constructor member function is distin-

 Fig. 11 C++ header file to 3-Vector Class

class ThreeVec {
 float x;
 float y;
 float z;
public:
 ThreeVec(float px = 0.0, float py = 0.0, float pz = 0.0) {
 x = px; y = py; z= pz;}
 ThreeVec(ThreeVec&);
 inline float px(){ return x; }
 inline float py(){ return y; }
 inline float pz(){ return z; }
 inline void setx(float px){ x = px; }
 inline void sety(float py){ y = py; }
 inline void setz(float pz){ z = pz; }
 inline void setVec(float px, float py, float pz)
 { x = px; y = py; z = pz; }
 inline float p2(){ return x*x + y*y + z*z; }
 inline float p(){ return sqrt(p2()); }
 inline float pt2(){ return x*x + y*y; }
 inline float pt(){ return sqrt(pt2()); }
 float phi();
 float theta();
 ThreeVec operator+(ThreeVec&);
 ThreeVec operator-(ThreeVec&);
 float operator*(ThreeVec&);
 friend ThreeVec operator*(float, ThreeVec&);
 friend ThreeVec operator*(ThreeVec&, float);
 friend ThreeVec operator-(ThreeVec&);
 void rotatePhi(float);
 void rotateTheta(float);
 /* etc ... */
}

Object Oriented Programming

 12 SLAC-PUB-5629

guished from the others by having the same name as the
class. Thus, the function ThreeVec() is the constructor of
the ThreeVec class. With these pointers, the header file
shown in the example should start making a bit more sense.

In C++ each class is considered a new abstract data
type which adds to the data types, such as float and int ,
that are built into the language. Thus, the ThreeVec class
can be used just like the built-in data types can be used. The
following code fragment illustrates allocating a ThreeVec

and sending messages to it

The variable a is of abstract data type ThreeVec and its
space is allocated at compile time in the same manner as
data types float or int . The member functions are in-
voked with the syntax that looks like accessing a data mem-
ber of a C struct. In the example, the member functions h as
a.setVec() and a.phi() illustrate this. The authors of
C++ were concerned about run-time efficiency. Thus, in-
line functions were included in the language to allow ac-
cess to data members while preserving their encapsulation.
The keyword inline declares this as is shown in Fig. 11
for the member function setVec . Inline functions do not
invoke a function call, rather code is placed at the point the
appear to be called. In addition, the implementation of in-
line functions can be placed directly in the body, as is
shown for setVec . This, however, is recommended only if
the implementation is short.

The implementation of the member function phi() in
the example is not inline. Thus it is usually done in another
file, sort of like the Objective-C implementation file. A pos-
sible implementation is shown in the example below.

The double colon (“:: ”) separates the class name from the
member function name, otherwise the function is declared

int main()
{
 ThreeVec a;
 a.setVec(1., 1., 1.);
 phi = a.phi();
}

float ThreeVec::phi()
{
 if (x == 0.0)
 if (y >= 0.0)
 return 0.5*M_PI;
 else
 return (-0.5*M_PI;
 float arctan = atan2(y, x);
 return arctan;
}

as one would in the C language. Also note that one can de-
clare the type of a variable anywhere before it is first used
as was done with the variable arctan , i.e. they do not need
to be at the head of the function. Otherwise, a C++ member
function is pretty much like a C function. The inline dec-
laration of new variables is one example of many improve-
ments that C++ brings to the C language. There are many
others, this paper is not the place to discuss them.

In C++, functions distinguish themselves from others
with the same name not only by which class they are a
member of, but also by what is called signature. The sig-
nature is the number and type of arguments and the return
type. Thus the function int max(int,int) is distinct
from float max(float,float) . This aspect of the lan-
guage is known as function name overloading. There are
two constructor member functions in the ThreeVec class.
Which one is invoked is controlled by the signature used. In
addition, constructors may be invoked with a variable num-
ber of arguments and default values can be applied to miss-
ing arguments. The following code fragment shows four
ways that a ThreeVec constructor might be invoked

The last method is similar to allocating and initializing a
built-in type (int i = 1;).

To complete the data abstraction aspect of the lan-
guage, C++ also supports operator overloading. An oper-
ator is simply that character symbol in the language that
causes an operation to be performed on one or more oper-
ands. For example, the plus character (“+”) is an operator to
invoke the addition of quantities. Operator overloading
means that for the abstract data types defined by the pro-
grammer, one can supply the meaning of the operators, i.e.
overload the operator. For example, the + operator for the
ThreeVec class might be defined as follows

Reading the first line above can be confusing at first. Let’s
decipher it. The function name is “operator+ ”. It is a
member function of the class ThreeVec as seen by double

ThreeVec a; // sets a to 0., 0., 0.
ThreeVec b(1.); // sets b to 1., 0., 0.
ThreeVec c(1., 1., 1.); // sets c to unit vector
ThreeVec d = c; // invokes ThreeVec(ThreeVec&)

ThreeVec ThreeVec::operator+(ThreeVec& b)
{
 ThreeVec sum;
 sum.x = x + b.x;
 sum.y = y + b.y;
 sum.z = z + b.z;
 return sum;
}

 SLAC-PUB-5629 13

Object Oriented Programming

colons (“:: ”). It takes one argument which is a reference to
a instance of the ThreeVec class, or we could say that the
argument is of type ThreeVec . The ampersand (“&”) in-
dicates the argument is passed by reference; without it the
argument would be passed by value. It also returns a value
of type ThreeVec which is indicated by the first
“ThreeVec ” on that line.

One might be immediately puzzled about what hap-
pened to the other operand for the operator “+”. It turns out
that the instance of the class, i.e. the object which was mes-
saged, will be the other operand, and it will be the operand
on the left of the + sign. With this knowledge, we can see
how the implementation works. When we see the use of the
data member x , for example, it means the data member of
the object on the left of the + sign.

At this point it is worth noting that an object of a class
has direct access to the instance variables of other objects
of the same class. This would seem to violate the protection
of the data. But main purpose of protecting the data is to
hide its structure, i.e. where and how it is stored, so that
should one change the structure, other classes don’t need
any changes. But if we change the structure of the data in a
class, that class is going to be re-compiled, so there’s no
harm giving direct access to members of the same class.

There is another mechanism to implement operator
overloading which must be used when the left operand is of
a type that one does not have control over. For example, if
one wants to multiply our ThreeVec by a float …

then the type float may be the left operand. The friend
mechanism was invented to handle this situation. It allows
functions that are not members of a class to have access to
the protected data members of the class. In our ThreeVec

example, the overloaded operator * was implemented this
way. It was declared as a friend non member function in the
class body. The implementation might look like

ThreeVec v1, v2, v3;
float a, b;
 ...
 v2 = a*v1;
 v3 = v1*b;

ThreeVec operator*(float& a, ThreeVec& b)
{
 ThreeVec mul;
 mul.x = a * b.x;
 mul.y = a * b.y;
 mul.z = a * b.z;
 return mul;
}

Note that only because this non-member function has been
declared to be a friend of the ThreeVec class (cf. Fig. 11)
can it have access to the protected data members of that
class. Note also that operator overloading functions, the
non member function requires one more argument then the
member function. One can use either the member function
or non-member function methods of implementing opera-
tor overloading, but not both for the same class. This is be-
cause the compiler would find an ambiguity, which it could
not resolve.

In both examples of operator overloading, the function
returned a result of type ThreeVec . This object is in fact
only temporary. When the function is invoked with a code
fragment like

the object returned is the temporary the compiler must pro-
duce to form the result. The operator “=” for the class
ThreeVec must also be overloaded by a member function
of the form

which does the assignment of d to the result. The compiler
has this member function pre-defined for all abstract data
types, but the programmer can over ride it by supplying his
own. By the way, the this variable in C++ corresponds to
the self variable in Objective-C, namely, its a reserved
name for the object at hand.

The above description of adding two vectors may
make it appear that there is a large overhead in the proce-
dure. In fact, it is not. We are just looking at the step by step
process a compiler must do to handle the addition of any
two data types, even the built-in types. That is, operate on
two quantities and store the result as a temporary, finally
make the assignment to the variable on the left of the equal
sign by copying it from the temporary space. As with any
good compiler, a good C++ compiler will optimize these
sequences of operations.

There are many member functions in our ThreeVec

example. Many of them simply access the vector in differ-
ent ways. For example, in HEP one frequently deals with
the transverse momentum. Thus when the ThreeVec class

d = a + b*c; // add and scale ThreeVec’s

ThreeVec& ThreeVec::operator=(const ThreeVec& a)
{
 x = a.x;
 y = a.y;
 z = a.z;
 return *this;
}

Object Oriented Programming

 14 SLAC-PUB-5629

is used for momentum, we have the member functions
float pt() and float pt2() to access the transverse
and square of the transverse components of the vector.
There are also member functions to rotate the vector in phi
or theta. It may be tedious to implement all the variations
that we may want to use. But by doing so, we will make the
code that uses the ThreeVec class much easier and much
more self describing. Most of these additional functions are
declared inline thus there will be no lost in run time ef-
ficiency since they are not real function calls. If we did not
include member functions like float pt() , then we
would wind up implementing it explicitly each time we
needed it. One could consider inline member functions of
this type as something like a macro, but it is much safer
then a macro because the compiler handles it.

Everything we’ve said about C++ in this section so far,
is the data abstraction aspect of the language. Other lan-
guages that support data abstraction with operator over-
loading as well. Ada and FORTRAN ‘90 are examples. Each
have their own syntax for accomplishing more or less the
same features. C++ distinguishes itself from these languag-
es in supporting object orientation as well as data abstrac-
tion. To understand the significance of this, consider the
FourMom class shown in Fig. 12 . This class is declared as a
subclass of the ThreeVec class, thus it uses one of the im-

 Fig. 12 FourMom class declaration

class FourMom : public ThreeVec {
 float energy;
public:
 FourMom(float px = 0.0, float py = 0.0, float pz = 0.0, float pe = 0.0)
 :(px, py, pz){ energy = pe; }
 friend FourMom operator+(FourMom&, FourMom&);
 friend FourMom operator-(FourMom&, FourMom&);
 friend float operator*(FourMom&, FourMom&);
 inline float e(){ return energy; }
 inline void sete(float pe){ energy = pe; }
 inline float p2(){ return energy*energy - ThreeVec::p2(); }
 inline float mass(){ return sqrt(p2()); }
 inline void setFourMom(float px, float py, float pz, float pe){
 sete(pe);
 setx(px);
 sety(py);
 setz(pz);
 }
 virtual void boost(double, double, double);
 virtual void boostToCMOf(FourMom&);
 virtual void boostFromCMOf(FourMom&);
 virtual void print(int, char* form = "%8.4f");
 // etc. ...
};

portant aspects of object oriented programming; inherit-
ance. The keyword public in the class head is used to
make public to the FourMom class the private members of
the ThreeVec class. The other options, protected and
private are too detailed to be discussed in this introduc-
tion to C++.

The FourMom class has one additional instance vari-
able, or data member; the energy. Thus, the FourMom class
differs from a vector with four components in that it is a
Lorenz vector. It consists of a ordinary 3-vector compo-
nent, which it inherits from the ThreeVec class and the en-
ergy component. Note how the member function p2()

differs from an ordinary vector of four dimensions…

The use of the function name p2() for both the ThreeVec

and FourMom classes is making use of the polymorphism
that is available to us. To force the call to the ThreeVec

function p2() , we had to use the scope operator (double
colon “:: ”). As with the ThreeVec class example, we’ve
put into the FourMom class many auxiliary member func-
tions to make the class easy to use. For example, if we want
to boost a four momentum to the center of mass frame of

inline float p2() {
 return energy*energy - ThreeVec::p2(); }

 SLAC-PUB-5629 15

Object Oriented Programming

another four momentum we have the member function
void boostToCMOf() to do it.

Many of the member functions need to over-ride the
inherited member functions of the same name, including
the operator functions. While, if we want to get the trans-
verse momentum of a four momentum vector, we have the
inherited float pt() member function of the ThreeVec

class available to us. This latter features brings out the dif-
ference between using the pure data abstraction and the ob-
ject oriented approach. With data abstraction, a four
momentum abstract data type might have a three vector
component of it and thus look roughly like the same as ob-
jects with inheritance. However, with objects one inherits
functions such as the transverse momentum functions,
while with data abstraction alone, one would have to ex-
plicitly write code in the four momentum abstract data type
to extract that information. Thus we see that data abstrac-
tion is quite distinct from object orientation even though for
light weight objects, such as vectors, matrices, etc., they
can be easily confused.

7.0 Particle Production Monte Carlo With Oop

In this section the use of object oriented techniques for
particle production and decay simulation will be studied.
OOP is well suited for such simulations for many reasons.
The creation of particles in the real world corresponds to
the creation of objects in the programming context. Particle
properties correspond to data members of a class. When a

particle undergoes a physics process, it’s just like an object
responding to a message. Encapsulation allows one to store
the particle properties and program implementation of
physics processes together.

We’ll look at prototype code from the MC++ project
that is under development at University of Lund and
SLAC [7] . The key idea in the MC++ project is to formulate
the event generation chain as generalized “particles” de-
caying into other generalized “particles”. For example, at
LEP one would start with an “e+e−-collision” particle
which decays into a “Z0” particle. It in turn decays into per-
haps a “qq-dipole” particle which may decay into a “qq-
string” particle. Further down the chain one would even-
tually create the hadrons and leptons which will also decay
until we reach stable particles at the end of the chain. Each
such generalized particle will have a list of ways it can de-
cay and each element of the list will have a branching ratio,
a list of decay products, and a pointer to a class which im-
plements the decay.

Let’s first look at the class inheritance hierarchy in
which the particle class is imbedded as shown in Fig. 13 .
The Particle class is derived from the FourMom class
that was discussed in the previous section. Thus energy and
momentum aspects of a particle will be fully taken care of
by its superclasses. The instance variables or data members
in the particle class are divided into two groups. The first
group describes the generic features of the particle type,
such as charge, mass, a pointer to its decay channels, etc.
The second group describes a particular instance of a par-

 Fig. 13 Particle class hierarchy

FourMom

ThreeVec

Particle

String Cluster Collision

Object Oriented Programming

 16 SLAC-PUB-5629

ticle such as its lifetime, creation values, a pointer to a list
of its decay products, etc. Further specialization from the
generic Particle class will be achieved by sub-classing.
Thus one will handle the special attributes of strings, clus-
ters, collisions, etc.

Figure 14. shows a code fragment of what the class
definition might look like. Some interesting design choices
are worth calling out. For example, the data member
charge is stored as an integer with units of 1/3 the electron
charge and the spin is stored as an integer with units of 1/2.

class Particle:public FourMom
{
 float mass;
 int charge; // charge is in units e/3
 int spin; // in units 1/2
 boolean isStable;
 DecayList* decayTable;
 /* etc... */
 Particle* parent;
 ParticleList childList;
 float lifeTime;
 boolean hasDecayed;
public:
 Particle(); // constructor
 inline float charge() { return (charge/3.); }
 inline int icharge() { return charge; }
 inline float spin() { return (spin/2.); }
 virtual void decay();
 virtual ParticleList* decay();
 /* etc... */
}

 Fig. 14 Particle class head and body

To the theorists developing this code, these choices are very
natural. However, to avoid confusion to an experimentalist
who may want to access the charge, the inline function
charge returns the charge of the particle in normal units.

Of particular note are the decay methods in the Par-

ticle class. Their implementations are shown in Fig. 15 .
and they are the heart of the code. The first method, void

decay() , I call the theorist’s method. It decays the particle
into its children, then has each of the children decay. Since

void Particle::decay() {
 if (isStable || hasdecayed) return;
 DecayChannel channel
 = decayTable->selectChannel(random.flat);
 (channel->decayer)->decay(this,channel->products);
 hasDecayed = YES;

 Particle* child = childList.top();
 while(child = childList++) child->decay;
}
ParticleList* Particle::decay() {
 if (isStable || hasdecayed) return;
 DecayChannel channel
 = decayTable->selectChannel(random.flat);
 (channel->decayer)->decay(this,channel->products);
 hasDecayed = YES;
 return childList;
}

 Fig. 15 Decay methods of Particle class

 SLAC-PUB-5629 17

Object Oriented Programming

the children are particles, the decay method is invoked re-
cursively. Since stable particles just return when the mes-
sage is received (as seen by the first line of the code),
recursion ends with stable particles. Theorists normally
don’t care about detector simulation, so this decay method
suits their needs.

In the second line of code, a decay channel is created
by randomly selecting one from the available channels in
the decay table. The line of code says it about as well as my
words. The decay channel object that one receives back
from the decay table has a pointer to a decayer object. The
third line of code invokes the decay member function of the
decayer with two arguments; the particle being decayed
and the list of decay products. The former is needed in or-
der to access the four momentum and perhaps other prop-
erties. Obviously the latter is needed as well for similar
reasons and to know what particles to create. The remain-
ing lines of code in the decay() function recursively caus-
es the decay products to decay.

The second decay method I call the experimentalist’s
method. This method decays the particle and returns the list
of decay products. Thus, if the experimentalist is tracking a

particle through a detector and finds that it needs to decay,
he can invoke this decay method to get the decay products
and then track them further through the detector. This
method is identical to the theorist’ method with the recur-
sive decays removed.

A key component of the MC++ program is the decayer
class and their hierarchy. A representative sample of them
is shown in Fig. 16 . The main aspect of the decayer, as
shown in Fig. 17 , is that its decay() method is presented
with two arguments; the first gives it the particle that is to
decay and the second a list of particles that will be pro-
duced as has already been described above. The Decayer

class is just an abstract place holder which is meant to be
sub-classed by a class that represent a real physics process-
es. The keyword virtual tells the compiler about this.
That is, that the function is meant to be over-ridden by a
subclass. For example, the TwoBody class would imple-
ment pure kinematics for most particle decays. A Three-

Body decayer might just use phase space. Rather then re-
writing 3-body phase space in C++, a ThreeBody class
might be implemented by presenting the relevant parame-
ters to a FORTRAN function or subroutine.

 Fig. 16 Decayer class hierarchy

Decayer

TwoBody ThreeBody StringFrag ?

 Fig. 17 Decayer class body

class Decayer {
 char* genericName;
 char* name;
 int number;

public:
 Decayer(char* name, int number);
 virtual boolean isAllowed(Particle* parent, ParticleList* children);
 virtural int decay(Particle* parent, ParticleList* children);
 ~Decayer();
 // etc.
}

Object Oriented Programming

 18 SLAC-PUB-5629

This latter suggestion highlights the difference and
similarities between the object oriented approach and a
procedural one like FORTRAN. At some low level, the
physics calculations are the same; there’s no way around
that. C++ through its abstract data types allows for operator
overloading, thus the calculation can be written in a much
easier to understand manner. That is, adding two vectors
has the same programming notation as adding two integers;
its just like one would add two vectors on the blackboard,
with a shorthand notation. Some non-object oriented lan-
guages support data abstraction as well. Data abstraction
also changes dramatically the way such abstract data types
are created and stored. The use of inheritance makes C++
also an object oriented language which further simplifies
the way the programming to be done.

One important aspect of the MC++ program will not be
shown here. It is the mechanism by which the properties of
the generalized particles are initialized. It is done via a
ParticleFactory class of which only one instance exists
in the program. It is a reference table, or could be consid-
ered an on-line Particle Data Book for the known particles,
and a reference model for the less well known or general-
ized particles. The ParticleFactory class supports
reading in a reference table from disk and interactive mod-
ification of the table, in order to study particular decay
modes or models by the user of the program. It is also re-
sponsible for setting up the list of Decayer classes that
make up part of the program. When all these classes are
done, the main program to simulate one e+e− collision
might be as simple as the code shown in Fig. 18 . This pro-
gram decays one e+e− collision but could easily be extend-
ed to do more. It is also a prototype for code that would be
put into a detector simulation program.

We have just walked through the basics of a particle
generation simulation program written in C++ using both
its data abstraction and object oriented features. Of course,

main()
{
 ParticleFactory factory; // invokes constructor
 // which reads disk file
 Particle p;

 p = factory.getA("e+e-collision");
 p.decay(); // decay it.
 p.print(); // to see results
} // that’s all folks!

 Fig. 18. A simple main program

we only looked at a prototype program and we didn’t show
a lot of the details, but nevertheless it appears that a full
production quality program would retain the simplicity and
modularity we have seen. One should also notice the com-
plete lack of dimensioned arrays, only minor use of con-
ditional statements, do-loops are almost completely hidden
by the use of lists. All these attributes of object oriented
code greatly clean up the implementation, allowing the au-
thor to concentrate on implementation of the algorithms.

8.0 Summary

This paper has presented an overview of object orient-
ed programming. The basic concepts have been explored.
The meaning behind word like instance variables, methods,
member functions, overloading, etc. has been explained.
We have seen that although the style of programming is
very different, it is not inherently difficult.

There are many benefits of object oriented program-
ming. Generally, programs using these techniques are
much more readable and maintainable. Also the code is
more easily re-usable and is generally very modular. In
short, the goals of software engineering are far more easily
achieved with the object oriented approach. Compared to
traditional programming, object oriented code has fewer
array declarations, thus minimizing the possibility of inad-
vertently exceeding array boundaries. Through the creation
of objects, the system does the kind of bookkeeping that
one would need to do by hand in the traditional program-
ming approach. Inheritance makes is easy to modify and
extend existing objects, while preserving the encapsulation
of data. Overall, it is much easier to implement large so-
phisticated programs.

Object oriented programming is made much easier
when one starts with a class library well suited to one’s
needs. For example, the NeXTstep class library is well suit-

 SLAC-PUB-5629 19

Object Oriented Programming

ed for programming an application with a graphical user in-
terface. High energy physics will need a class library for its
specialized applications. It is hoped that out of projects
such as Gismo [2] , MC++ [7] , and CABS [8] such a class li-
brary will develop.

In an age where one frequently talks of a “software cri-
sis”, the object oriented programming approach seems to
offer some real solutions. Programmers and scientists who
use the object oriented techniques will find themselves to
be much more productive.

 References

[1] Brad J. Cox, Object Oriented Programming,
Addison-Wesley, 1986.

[2] W.B. Atwood, T.H. Burnett, R. Cailliau, D.R. Myers,
K.M. Storr, Gismo: Application of OOP to HEP
Detector Design, Simulation and Reconstruction,
Proc. Computing in High Energy Physics ‘91,
Tsukuba, Mar. 11-15, 1991.

[3] W.B. Atwood, R. Blankenbecler, P. F. Kunz, B.
Mours, A. Weir, G. Word, Proc. 8th Conf. on
Computing in High Energy Physics, Santa Fe, NM,
Apr 9-13, 1990, AIP Conference Proceedings 209,
320, (1990).

[4] Bjarne Stroustrup, The C++ Programming
Language, 2nd Edition, Addison-Wesley (1991).

[5] Stanley Lippman, C++ Primer, 2nd Edition, Addison-
Wesley (1991).

[6] Ira Pohl, C++ for C Programmers,
Benjamin/Cummings (1989).

[7] Richard Blankenbecler and Leif Lönnblad, Particle
Production and Decays in an Object Oriented
Formulation, Private communication, to be published.

[8] Nobu Katayama, Object Oriented Approach to B
Reconstruction, Proc. Computing in High Energy
Physics ‘91, Tsukuba, Mar. 11-15, 1991.

