SLAC-PUB-5629
August 1991
(T/EN)

Object Oriented Programming*

Paul F. Kunz

Stanford Linear Accelerator Center
Stanford University
Stanford, California 94309, USA

ABSTRACT

This paper is an introduction to object oriented programming. The object oriented approach is very pow-
erful and not inherently difficult, but most programmers find a relatively high threshold in learning it.
Thus, this paper will attempt to convey the concepts with examples rather than explain the formal theory.

1.0 Introduction program is a collection of interacting objects that commu-
nicate with each other vimessagingTo theFORTRAN
In this paper, the object oriented programming techprogrammer, a message is lik€ALL to a subroutine. In
niques will be explored. We will try to understand what itobject oriented programming, the message tells an object
really is and how it works. Analogies will be made with tra-what operation should be performed on its data. The word
ditional programming in an attempt to separate the basimethodis used for the name of the operation to be carried
concepts from the details of learning a new programminiout. The last key idea is that ioheritance This idea can
language. Most experienced programmers find there is not be explained until the other ideas are better understood,
relatively high threshold in learning the object orientedthus it will be treated later on in this paper.
techniques. There are a lot of new words for which ont An object is executable code with local data. This data
needs to know the meaning in the context of a progranis calledinstance variablesAn object will perform oper-
words likeobject instance variablemethodinheritance  ations on its instance variables. These operations are called
etc. As one reads this paper, these words will be definemethods. To clarify these concepts, consideFORTRAN
but the reader will probably not understand at that point thcode in Fig. 1. This is a strange way to WRDRTRAN, but
where and why of it all. Thus the paper is like a mystenit will serve to illustrate the key concepts. The style of cap-
story, where we will not know who's done it until the end.italization is that which is recommended for objective pro-
My word of advice to the reader is to have patience angramming, but for the moment is not important for the
keep reading. discussion. For this sample code, the name of the object is
The first key idea is that of abject An objectis re- anObject . The subroutine has two arguments. The first ar-
ally nothing more than a piece of executable code with logumentmsg, is used as the message, while the sedqnsl,
cal data. To thEORTRAN programmer, an object could be used as an input or output parameter. This object has one
considered a subroutine with local variable declarationsinstance variable with the nam®alue which is of type
By local, it is meant data that is neitherG®@MMON integer. There are two methods definsstyalue, and
blocks, nor passed as an argument. This data is private getvalue. What operations are performed on the data is
the subroutine. In object oriented parlance #nsapsu- defined in theFORTRAN statements. That is, if the value of
lated Encapsulation of data is one of the key concepts cthe character stringsg is “setValue " then the instance
object oriented programming. The second key idea is thatvariableaVvalue is set to the value of the argumenwhen

*Work supported by Department of Energy, contract DE-AC03-76SF00515.
Invited lecture presented at the 1991 CERN School of Computing, Ystad, Sweden, 23 Aug. - 2 Sept. 1991.



Object Oriented Programming

Subroutine anObject( msg, 1)
Character msg*(*)

Integer |

Integer*4 aValue

time to invent a new syntax. An example of such a new syn-
tax is the Objective-C[1] language, which is derived from
the SmallTalk language. On most platforms, it is imple-

If (msg .eq. "setValue" ) then
aValue = |
return

Elself (msg.eq. "getValue") then

| = aValue
return
Else
print( "OError")
EndIf
return
end

Fig. 1 Sample FORTRAN code

the string is YetValue ” then the current value of the in-
stance variable is returned via
To send a message 4aObject from some other
FORTRANToutine, one might find code fragments that look
like
CallanObject("setValue", 2)
CallanObject("getValue", )

In the first line anObject
to value 2, while in the second line, the current value of th
instance variable will be returned into the argument

Now the reader should have some of the key concep
understood, at least in their simplest sense. The variabl
that are local to 8BORTRANSubroutine, that is, neither in
COMMON nor passed as parameters,areapsulatedThe
data is protected from being changed or accessed by a
other routine. It is this that makes it@bject.An object has
boundaries and clearly limits the accessibility of the vari-
ables in the routine. AORTRAN COMMONoON the other
hand, has no boundaries. It is more like a fog. It spreads o
from where you are and you don’t know where it ends. Yol
also don’t know what else might be in the fog; or what yot
might run into.

Why we are programming this way is probably not yet
apparent; that will come later. But for now, the readel
should note the very different style of manipulating data. Ir
languages likEORTRAN, we think of passing data to a rou-
tine, via arguments @OMMON blocks. Here the routine,
i.e. the object, holds the data as instance variables and \
change or retrieve the data via methods implemented fc
the object.

This messaging style of programming is a rather te

will set its instance variable ject. Each method begins with a

mented as a translator that generates C code that works
with a run time system to handle the messaging. Objective-

C as alanguage is a proper super-set of C. It adds only one
new data type, the object, and only one new operation, the
message expression, to the base C language.

An example of Objective-C code is given in Fig. 2.
This Objective-C code is equivalent to #5@RTRAN code
shown in Fig. 1. In the Objective-C syntax, the code is di-
vided into two parts. The first part is called thierface it
is all the code between ti@interface  and the next
@end The interface part of the code serves two purposes. It
declares the number and type of instance variables, in this
case only one, and it declares to what methods the object
will respond. The interface is usually placed in a separate
file, then included via the standard C include mechanism.
Once again, the author can only say that the reasons for do-
ing this are certainly not apparent at this time, but will be
explained later. The second part of the code isnipde-
mentation this is all the code between tl@mplemen-
tation and the nex@end Within the implementation,
one writes the code for all the methods that make up the ob-
“~" and the name of the
method. Between the braces (“{}") can be any amount of
plain C code, including calls to C functions, and message
expressions. Even calls to other compiled languages, such

#import <objc/Object.h>
@interface anObject:Object
{

}

- setValue:(int) i;
- (int) getValue;
@end

int aValue;

@implementation anObject
- setValue:(int) i
{
aValue =i;
return self;
}
- (int) getValue
{

}
@end

return aValue;

dious way to get to the data that we want to operate on. |

Fig. 2 Objective-C example

2 SLAC-PUB-5629



Object Oriented Programming

asFORTRANcan be placed here. The example in Fig. 2 admay not be familiar with this language, or even the C lan-
mittedly doesn’t show very much of that possibility. guage. As an aid in following the text, the author offers Ta-
To send a message to the above object, from anothble 1., which crudely shows the correspondence between
object, one might find the following code fragments the Objective-C and C languages &RTRAN Of special
note is the use of colons (*:") in the method names. In the
id anObject; first instance above, the colon seems to be a separator be-
It tween the method name and the parameter; which it does
[ anObiject setvalue: 2 . except that the colon is also considered part of the method
i=[anObjectgetValue]; name. In the second instance in the table, there are two co-
lons, each separating the method name from the parame-
In these fragmentanObject is declared to be data of type ters. The full name of the method contains the two colons as
object, whilei is declared to be type integer. The messagshown by the pseudeORTRAN code:setLow:high:
expression is signaled by an expression starting with thThis is the style of the SmallTalk language and it is done
left bracket (“[") and ending with the right bracket (“]”). that way for readability. It is very upsettingRORTRAN
The syntax may seem strange t8GRTRAN programmer, programmers, but once one gets used to it, one begins to ap-
or even a C programmer; it comes from the SmallTalk lanpreciate its self describing value.
guage. There is a lot more behind it then can be understor So far, we've introduced a lot of new terms and a very
now, so the reader would do best by not questioning it eifferent syntax. But what is important is the very different
this point. For the remainder of this section, we’ll be usincway of handling data. Where we are headed is probably not
the Objective-C language for the examples so that we ceyet clear, but like | said in the beginning, this paper reads
study the object oriented concepts without needing to leallike a mystery story, we wouldn’t know until the end. |
a completely new language at the same time. Some readdon’t want to lose you, so the next section will work on a

Table 1. Correspondence between C, Objective-C, and FORTRAN.

C FORTRAN

#include <file> INCLUDE "file"

inti; INTEGER |

float a; REAL*4 A

int bins[100]; INTEGER BINS(100)

char title[80]; CHARACTER*1 TITLE(80)or
CHARACTER*80 TITLE

char *title; a pointer

if(x<y){ IF (X .LT.Y)THEN

} ENDIF

for (i=0;i<n;i++){ DO1=0,(N-1),1

} ENDDO

i++; I=1+1

Objective-C FORTRAN

#import <file> (include if not already included) INCLUDE "file"

- set:(int) i SUBROUTINE SET:( 1)
INTEGER |

- (int) get INTEGER FUNCTION GET()

- setLow:(float) x high:(float) y SUBROUTINE SETLOW:HIGH:( X, Y)
REAL X, Y

SLAC-PUB-5629 3



Object Oriented Programming

#import <objc/Object.h> The implementation of the histogram should be obvi-
@interface Hist:Object ous. In theacum: method, for example, one would find ex-
{ char title[80]; actly the same kind of coding one would findFORTRAN.
float xI, xw: That is, something like...
int nx;
int bins[100]; - acum:(float) x
int under, over; {
i = (X -xI)/xw;
- setTitle:(char *)atitle; if (i < Q) under = under+1;
- setLow:(float) x width:(float) y; elseif (i>=nx) over = over +1;
- setNbins:(int) n; else bins[i] = bins][i]+1;
- acum:(float) x; return self;
- Zero; }
- show;

There is nothing but ordinary C code in this implementa-
tion. By the way, I've written the C code likecF@RTRAN
programer might do, so as to not confuse the issue with
short cuts a C programmer might normally use. If you're
looking for something profound in all this, there isn't, yet.
much more concrete example using what we already al It is rare that one wants only one histogram, so we now

@end

Fig. 3 Objective-C interface for Hist object

beginning to understand. examine what needs to be changed to have more than one.
First of all, if we have multiple histograms its clear that
2.0 Another Example: A Histogram Object. they all behave the same way. In object oriented parlance,

we say there is elassof objects called histogram. In our
Its time to take another example, something more corexample, the name of the clasdist , as seen on the

crete. I've chosen to treat a histogram as an object. We'@interface  line. The only difference between one histo-
examine the code to do one histogram. Figure 3 shows whgram object and another is the values of its instance vari-
the interface part might look like. The object shown is ofables. Using the right object oriented words we would say
the clasgdist which inherits from the root clagmject . that one histogram obiject is astanceof the classlist .
The meaning of the word$assandinheritancewill be de-  We create an instance of the class Hist by sending a special
fined latter. The instance variables of the histogram objedype of message to the clagist . It is called thdactory
(shown between the braces) are the title, the low edge of timethod The messages that are sent to the class are factory
histogram, the bin width, the number of bins, etc. To makmethods. The ordinary messages are sent to an object,
the example simple, we have a fixed maximum number cwhich is an instance of a class. Its is important to remember
bins (100) and a fixed maximum title size. This is unnecthis distinction.
essary in C, and thus Objective-C, because these arrays ¢  We send a message to the class to create an object, then
be dynamically allocated when the histogram is definedwe can start sending messages to the object. The code
but for our present purposes, we’ll avoid introducing fea-might look like...
tures of the C language that are not availabRORTRAN.

Once the histogram object is created, the user woul id aHist, bHist;
aHist = [ Hist new J;

first send it messages to fix its title, set its low edge, bir X > .
. . . . [aHistsetTitle: “histoone™];
width, etc. These messages might look like the following bHist = [ Hist new J;
code fragments [bHistsetTitle: “histo two"];
[ hist setTitle:"my histogram" ]; .[“aHist acum: x J;
[ hist setLow: 0 width: 1. ]; [ bHist acum: y J;
To accumulate and print, the messages might look like thThe first messagenéw”, is sent the clasist . This is a
following code fragments... factory method. All the classes that are linked together to
_ form the program module are known at run time, just like
[ hist acum: x J; the subroutines and functions are knowmF@RTRAN.
[ hist show J;

Classes can only accept factory methods, so to distinguish

4 SLAC-PUB-5629



Object Oriented Programming

them from objects, one capitalizes the first letter of the clasto find the code. Program execution jumps to one of the
name. Factory methods return thieof the object created. methods we see in cladist . As the code executes, it sees
In the example, we've given theskes the nameaHist only the instance variables of the object to which we sent
andbHist . Once an object has been created, i.e. an irthe message. The net result for the programmer is pro-
stance of the classist , then we can send messages to thdéound. He writes the code for thist class as if there is
object to define the histogram, and accumulate into it. Nionly one histogram allowed. In the driver code, however, as
other changes are needed to make multiple histograms. /many histograms as needed can be created via the factory
the allocation of objects of classst , i.e. the memory method, and the system does all the bookkeeping
management, is done automatically by the compiler. Part ¢ At this point, we need to explain more about factory
this comes from the base C language, but the Objective-methods and what they do. We have already seen that they
factory methods make it even more transparent. will allocate memory space. It is also a place where one
At this point theFORTRAN programer is probably may initialize an object to a set of default values. For ex-
confused, since we have shown code which seems to lample, the following code fragment could be the factory
written for only one histogram, and yet we have manymethod of our histogram object
What’s going on? One way to understand it is to look be

hind the scenes and see how memory is being allocated, +new

shown in Fig. 4. We write code for the claist which { self = [ super new |
contains the instance variables of the class, its norm: xl = 0.0: '
methods, and maybe a factory method if it is not inheritec xw = 1.0;

At run time, we message the clasist with a factory nx = 0;

method. This method allocates space in memory for the ir féftzl‘r’r{(sitl'fe “none”);

stance variables, and some pointers to the executable co }
Thus each object of clasist has its private copy of the

instance variables, but pointers to the same code. The feThe “+” before the method name distinguishes a factory
tory method returns thid of the object just created. It is method from an ordinary one, otherwise the implementa-
actually just a pointer to the object. We can then send metion proceeds as normal. The full explanation for the first
sages to this object. The run time support uses the pointestatement will have to wait until the next section. At this

Objects: Code:

— g SetTitle:
setLow: width:

aHist ——— pm| isa
title

M setNbins:
XW acum:

nx zero

bins show

bHist ——p»

Fig. 4 Allocation of memory for objects

SLAC-PUB-5629 5



Object Oriented Programming

point we’ll only say that the messagestger , a reserved code than definition or accumulation code. Instead of meth-

name, does the memory allocation and returns another rods within a class being held together, we have independent
served nameself . This nameself , is how an object re- routines, related only, perhaps, by some naming conven-
fers to itself. For example, the following two statements artions. The data, instead of being encapsulated, is exposed

equivalent... since it is ina COMMONDblock. In short, everything is in-
side out when compared to the object oriented approach.
X';O-?l o Of course as a user of the histogram package, one
selr->xI = 0.]

doesn't really care about the difficulty of the implementa-
tion. Object oriented programming, at first, seems to offer
C programmers will recognize thadif is a pointer to the no benefit. It's worth mentioning two items along these
memory allocated for the instance variables. The remaininlines. The first is that what is provided with such packages
statements in the factory method are straight C code armight be limited by the implementation languag@Pp
need no further explanation. technology frees the programer of a lot of tedious work so
A class can have more than one factory method. Thihe can concentrate on providing a better product. And sec-
might be used, for example, to simultaneously create an oondly, the object oriented technology applies itself equally
ject of a class and set some of the initial values as is dowell to physics code since there is a lobobkkeeping
with the following code fragment code in dealing with tracks, vertices, etc. We’'ll see exam-

ples in the latter part of this paper.
+ newWithTitle:(char *)aString

t _ . 3.0 Inheritance
self = [super new];

strepy( title, aString ); . . .
return self; Another important aspect of object oriented program-

} ming is inheritance which has been alluded to already. Lets
start with an example. Let us define an object calis@ ,

Now compare the object oriented style of writing a his-which will be a two dimensional histogram. The interface
togramming code with what one usually finds in a FOR-file might look like the code shown in Fig. 5. It is just like
TRAN implementation. If we had written FORTRAN code theHist object in the previous section. We’'ll assume that
to handle only one histogram, and decided that we need¢he show method prints a table showing the accumulation
multiple histograms, the changes to the code would be ein each bin.
tensive. First of all, the local variables that held the defi  Note thatHist2 has some of the same method names
nition and bin contents would all need to become array<as those previously defined in tH&st class. Does this
dimensioned by some maximum number of histograms amean that one can not have bieiét andHist2 classes in
lowed. We would probably put these arrays @&MMON  the same program? No, one can use the same method
block and write one routine for each operation we wantenames in many classes. This is caffetymorphismand it
to perform on the histogram, corresponding to the messa
es in the object oriented approach. One of the arguments

these routines would be some kind of identifier of which #import <objc/Object.h>
histogram the operation was to be performed. The identifie {@'merface Hist2:Object
frequently is not just the index into the arrays, but somi char title[80];
character string, so we would need to write a lookup tabl float xI, xw, yl, yw;
to find the index from the identifier. To allow the flexibility int nx, ny;
of using the package for a large number of histograms wit int bins[100][100]....;
few bins, or a few histograms with many bimghoutre- . it

- . . -setTitle:(char *)atitle;
compiling, one would like to get away from fixed arrays in _setxlow:(float)x Xwidth:(float)y:
COMMON blocks. In its place we find a program allocating -setYlow:(float)x Ywidth:(float)y;
space in some larggOMMON block for the bins and the -acum:(float)x and:(float)y;
definitions. The net result in tlORTRAN implementation -show;
is that the person who writes the histogram package write @end
a lot of bookkeeping code, probably more bookkeeping Fig. 5 Interface for Hist2 class

6 SLAC-PUB-5629



Object Oriented Programming

#import "Hist2.h" @interface  line in the code above. It says that the class
@interface Lego:Hist2 Lego is a subclass ¢fist2 . The use of the worsubclass

{ . is a misnomer. One should not confuse subclass with sub-
float plotangle;

} set. In object oriented programing it doesn’t mean some-
- setAngle:(float) degrees; thing smaller, it means something bigger. When one class is
- show; a subclass of another, it inherits all of its superclass’ in-

@end

stance variables and all of its methods. Thus#ge class
has all the instance variables of Hist2 class and one ad-
ditional variableplotangle . It also inherits all the meth-
ods ofHist2 and adds one new orsetangle: . What
allows one to write code that is much easier to understarabout theshow method? A subclass can either take an in-
by re-using the name space for both data and function. Witherited method exactly as it is in its superclass, or it may
a language likEORTRAN one can only safely re-use the over-ride it. Since the fashion that thego class displays
name space for variables local to one subroutine or fundts accumulation is very different from thatiet2 |, the
tion. Attempting to have variables of the same name in twclassLego needs to over-ride the definition of thieow
different COMMON blocks all too often leads to clashes method with one of its own. The use of tlego object is
when bothCOMMON blocks are needed in the same rou-just like any other object. That is, we might see something
tine. Also, subroutine and function names must be uniqulike the following code fragments...
in one program. From this, one can see that the methods
OOP are not just subroutines or entry points. alego=[Legonew],
Now suppose we want to define another form of 2C [aLego setTitle"this plot"J;

. . . . . [ aLego setXlow: 0. Xwidth: 1. ];

histogram which shows its contents in 3D form with the Z

Fig. 6 Interface code for Lego class

axis being the contents of the bin, i.e. a lego plot. We'll cal .[.;’;ILego setAngle: 45. |;
this class théego class. We can write its interface file as
shown Fig. 6. There is only one instance variable and tw [aLego acum: x and:y [;

methods in the clagego . The instance variabfgotan- [aLego show];

gle is the angle at which the x-y axis should be showr  Again, its worthwhile to look behind the scenes and
when displaying. The two methods are to set that angle arunderstand how memory is being laid out. Figure 7 shows
to plot the histogram. how memory is allocated after one lego plot object is cre-
So what happened to all the methods to define and aated. The objeciLego consists of a concatenation of the
cumulate the lego plot? They are inherited. Notice thdnstance variables of thiist2 class and theego class. It

Code:

. setTitle:
Objects: setXLow: Xwidth:
setYLow: Ywidth:
setNbins:

acum:

show

aLego ———p» Itst?
Itie

I, xw
XW, yw
nx, ny
bins
setAngle:
plotangle show
|

Fig. 7 Memory layout for Lego object

SLAC-PUB-5629 7



Object Oriented Programming

is as if the block of memory for storing tH&st2 instance mouse, the user can pick from a number of pre-defined
variables has been extended to accommodate those shapes such as circles, rectangles, polygons, etc. One can
Lego. Theisa pointer points to the code defined in the move and resize these shapes in the drawing window. Ob-
Lego class. That class also has a pointer to the code of tlject oriented programming is a natural way to implement

Hist2 class. Thus, whediLego is sent the messagset- such a program. One could define a generic shape class
Angle :" the code defined in theego class is found. When from which one could sub-class each of the particular
alLego is sent the messageetTitle: 7, the method is shapes. In the shape class, one would find instance vari-

not found in the code for theego class. Instead, the code ables such as the x-y position on the screen and the size of
found inHist2 class is executed, because of inheritancethe shape. Thus the methods to re-position the shape on the
On the other hand, whealego is sent the message screen, or change its size would be implemented in the ge-
“show”, the method in theego class is executed, because neric shape class. Any particular shape such as a rectangle,
theshow method in théego class over-rides the one in the however, would have its own class derived from the generic
Hist2 class. shape class and contain its own drawing method. A rect-
One result of inheritance is much less code modificaangle would fill its height and width. Methods to set the line
tion when we want to add functionalitego performs ev-  width and color, to fill the area or not, etc. would be found
erything thaHist2 does and more. The author of tiego in the generic shape class.
class never needs to look at the codeHist2 ; he only The class hierarchy that one should use in an applica-
needs to know the methods he wants to over-ride and c&ion is sometimes difficult to design. The association of
add his own new methods at will. It also works in the op-physical objects with programming objects is frequently a
posite direction, ifHist2 changes, thelrego only needsto good rule to follow, but is not always the case. For example,
be re-compiled. The lego plot needed an extra instancone could argue that a square should be a subclass of a rect-
variable plotangle . This variable was added to the classangle since it is a kind of specialized rectangle. However,
without needing to change anything in thist2 classto making one’s class hierarchy in this manner only confuses
accomodate it. the program design. If one tried to define a square class as a
One programming note should be mentioned nowsubclass of the rectangle class, then how does one decide
Note that the interface file faego (Fig. 6) includes the in- what the length of the square’s side should be? That is,
terface file forHist2 . This is necessary so that whesgo which inherited instance variable, height or width, should
is compiled, the compiler can know what is inherited. Thicone use? It is better to leave a square shape as an instance
is one reason why the interface for a class is kept in a seof the rectangle class; one which happens to have equal
arate file; the so-called header file. Another reason is deaheight and width.

ing with messages. If in some object one has amessageli  Another example of confusion results in trying to
make the rectangle class as subclass of a polygon. If the
[ aLego setAngle: 45. ] polygon class responded to a message to increase the num-

ber of its sides, what should the rectangle subclass do if it

then the compiler needs to know the type of the parametreceived such a message? It can’t add one side to its shape
(e.g. int, float, etc.) and the type of the return value, if anybecause then it would no longer be a rectangle. Over-riding
Thus, in the source code of the object that sends the abathe inherited add side method to do nothing doesn’t seem
message, the interface filelafgo must be made visible to natural either. The answer is the rectangle class should not
the compiler by including theego class header file. In  be sub-classed from a polygon class. The rectangle class is
practice, the header file is a very good place to put docisimple, it fills its area with a rectangle. It's the polygon
mentation in the form of comments. In the ideal world, theclass which is more specialized and complex. It must not
user of an object would understand what operations are peonly fill its area, but have an additional instance variable to
formed by the object just from well chosen method nameknow the number of sides it has.
In practice, however, some documentation is necessary a  Although arriving at a good class hierarchy for an ap-
in many cases, the user might have to read the implemeplication may be difficult, especially for the beginner, it is
tation code as well. generally not difficult to change the hierarchy. That is, once

To further illustrate the use of inheritance, let us conthe problem becomes better understood, one can move
sider another example. Take a drawing program such imethods and instance variables up or down the class hier-
MacDraw or Canvas on the Apple Macintosh. With thearchy. For example, if one discovered a set of classes that

8 SLAC-PUB-5629



Object Oriented Programming

S S S S

| Bitmap || Font ||FontManager|| Printinfo || Pasteboard | | Speaker || Listener |

Cursor

SelectionCell

ActionCell

| FormCell ||TextFieIdCeII|| ButtonCell || SliderCell |

MenuCell

Responder

|
N R st e
Box | Text || ScrollView || ClipView |
Window
Panel
| SavePanel || FontPanel || PrintPanel ||ChoosePr|nter|| Pagelayout || Menu |

— e ——1—

| Matrix || TextField || Button || Slider || Scroller |

Form

Fig. 8 Graphical User Interface class hierarchy

all shared the same or nearly same properties, then oiControl, Box, Text, and ScrollView classes, will behave the
could add a super class for this set in which those propertisame way, since they inherit these methods. Classes which
could be stored and the methods for operating on them dare sub-classed from the View class all know how to draw
fined. This super class would become a abstract class, lithemselves inside a window or panel. Classes which are
the generic shape class of a drawing program, and the stsub-classed from the Control class have the additional
classes would become more specific, like rectangles, ciproperty that when they receive an event from mouse or

cles, etc. of a drawing program. keyboard, they may send a message to another object, even
one that does not present itself on the screen. For example,
4.0 Graphical User Interfaces And Oop a slider that is clicked and dragged, will send a message to

some object, perhaps with the current value of the slider as
An example of the use of object oriented programminga parameter.

for the graphical user interface toolkit is shown in Fig. 8 The use of the NeXTstep class structure can also il-
This example is the class structure of NeXTstep, the GUlustrate another aspect of object oriented programming that
developed for NeXT computers. In this figure we see that one frequently makes use of. That is, an object can be com-
button is implemented by the Button class, which is a sukposed of many different objects from different parts of the
class of the Control class. Since controls are visible on thclass hierarchy. The panel shown in Fig. 9, for example, is
screen, they are a subclass of the View class, and since one used to display particle properties stored in a data base
views might respond to mouse or keyboard input, they areobject. It was developed for the Gismo project[2] and later
subclass of the Responder class. For those methods impused within the Reason project[3] as well. Note already that
mented in the Responder class, all subclasses of View, ethis panel object is used by another object to display its val-

SLAC-PUB-5629 9



Object Oriented Programming

TN 50 Object Oriented FORTRAN
w?:;éﬂhﬂ n g So far we have given all the examples in the Objective-
C language. This language is C with one new data type, an
_ﬂ_ﬂ:"““"‘"‘ | [ object, and one new expression, the message, compared to
Elecie Y the C language. The Objective-C language was originally
— implemented as a pre-processor to the C compiler. It gen-
. erates C code which is then compiled and linked to the Ob-
oo R jective-C run time library. It was designed so that the syntax
== could be added to other languages as well.
E::': !'_ Such a pre-processor can be writterHFORTRAN. For
| the NeXT computer, the Absoft company has done exactly
i e - [Me ot ™ that in order that programs writtenBORTRAN can make
il | | : use of the NeXTstep class library. An example of object
Dt _| ] orientedFORTRAN code is shown in Fig. 10. One can tell
this isFORTRAN code because of the use of symbols like

false .One can also recognize that it uses the same syntax
as Objective-C with statements like the message expres-
sions. After passing this source code through a pre-proces-
sor, it is compiled by thEORTRAN compiler and linked
ues. This implies that the data base object has an instanwith the standard NeXT libraries. Thus one has an exist-
variable that is thal of the panel object. The panel con- ence proof of an object orientE@RTRAN. However, the
tains buttons, text fields, scroll-able views, etc., each ocurrent implementation permits only one instance of an ob-
which are also objects which are subclasses of Control arject; a limitation will be removed in future implementation.
View subclasses. Thus the panel object for the applicatio It is the author’s belief that an object orientaoR-

is made up of objects from various classes. The panel is eTRAN has more value tdEP thanFORTRAN‘90. Not that
fectively a container object which controls its position on

the screen. It contains a number of view objects which dra

Fig. 9 Panel object with imbedded view objects

themselves within the panel. Those that are also control ol INCLUDE "appkit.inc” ! Include AppKit
jects can send messages between themselves, the pane 'NCLUDE "Timer.inc _
INCLUDE "Cube.inc" ! Include the interfac e

the database object that owns the panel, depending on u:
input. Likewise, the database object can send messages
the panel object or any of the view and/or control object:
contained by the panel. Each object manages its own litt|
world as defined by the instance variables of its class and i

@implementation Cube : View

@+ newView:REAL*4 rect(4)
self = [self newFrame:&rect]

inherited instance variables. The application works by th
objects sending messages to each other.

The lesson to learn from this complex panel object is t
make the distinction between the class hierarchy and oth
hierarchies that might appear in an application. The forme
defines for a subclass what methods and instance variabl
are inherited, while the latter defines how various object:
are linked together in an application. For example, the par
el object contains a view object which holds its contents
Within that content view there are a number of different
kinds of sub-views which may also contain sub-views. Thi
forms a view hierarchy. But each one of these sub-view
derives their class definition from the same point within the

[self setClipping:NQ] ! This speeds drawing
width = 2.0 !'line width of 2.0

suspend = .false. ! with cube rotating
[Timer newTimer: @0.02D0

+ target: self

+ action: Selector("display\0")]

newView_ = self ! Return, by convention, self
@end

@- step I do a single step
suspend = .false. ! Temporarily turn off
[self display] ! Display rotation of cube
suspend = .true. ! Suspend cube

step = self ! Return, by convention, self
@end

class hierarchy.

Fig. 10 Example of object oriented FORTRAN

10 SLAC-PUB-5629



Object Oriented Programming

class ThreeVec {
float x;
float y;
float z;
public:
ThreeVec(floatpx=0.0, floatpy=0.0, float pz=0.0) {
X =pX; y = py; z= pz;}
ThreeVec( ThreeVec& );
inline float px(){ return x; }
inline float py(){ returny; }
inline float pz(){ return z; }
inline void setx( float px X{ x = px; }
inline void sety( float py Xy = py; }
inline void setz( float pz ){ z = pz; }
inline void setVec( float px, float py, float pz )
{x=px;y=py;z=pz;}
inline float p2(){ return x*x + y*y + z*z; }
inline float p(){ return sqrt( p2() ); }
inline float pt2(){ return x*x + y*y; }
inline float pt(){ return sqrt( pt2() ); }
float phi();
float theta();
ThreeVec operator+( ThreeVec& );
ThreeVec operator-( ThreeVec& );
float operator*( ThreeVec& );
friend ThreeVec operator*( float, ThreeVec& );
friend ThreeVec operator*( ThreeVecg&, float );
friend ThreeVec operator-( ThreeVec& );
void rotatePhi( float );
void rotateTheta( float );
*etc...*

Fig. 11 C++ header file to 3-Vector Class

FORTRAN ‘90 doesn’t have some interesting features, aply of books on the language for further information (see
we will see in the next section, but ttr@RTRANfalls  Refs. [4] to [6]).

short of being an object oriented language. An example of a C++ class header file is shown in. Fig.
11. The class defined is that of a 3-vector as it might be used
6.0 Introduction To C++ in HER The class definition consists of two parts; the class

head with the keywordass followed by the class name,

There are a number of reasons for giving this short inand the class body which is enclosed in braces (“{}"). This
troduction to C++. Although C++ is the most widely usedcorresponds directly with the Objective-C interface sec-
of all object oriented languages, its syntax is initially a bittion. In the class body, we have the definition of instance
difficult to understand. In this section, we hope to undervariables which are called data members in C++. The class
stand enough of it, by making analogies with Objective-CThreeVec has three data membexsyy, andz. They are
to take away a bit of the fear of C++. Besides supportinfollowed by methods which are called member functions in
OOP, C++ also supports abstract data types and operaiC++. Unlike Objective-C, the member functions are not
overloading. These are very useful features but are somvisible to objects of different classes unless they are ex-
times confused with object oriented programming, so weplicitly declared to be visible. The keywopdblic: ~ has
need to understand them to see how they differ from OOlthis effect.
C++ is a very powerful language but its syntax can be te Instead of factory methods, C++ has special member
dious as a result. Only certain aspects of the language cfunctions called constructors which have more or less the
be covered here and the reader is referred to the ample sisame effect. A constructor member function is distin-

SLAC-PUB-5629 11



Object Oriented Programming

guished from the others by having the same name as tlas one would in the C language. Also note that one can de-
class. Thus, the functidrhreeVec() is the constructor of clare the type of a variable anywhere before it is first used
theThreeVec class. With these pointers, the header fileas was done with the varialdetan |, i.e. they do not need
shown in the example should start making a bit more sensto be at the head of the function. Otherwise, a C++ member

In C++ each class is considered a new abstract dafunction is pretty much like a C function. The inline dec-
type which adds to the data types, suctioas andint , laration of new variables is one example of many improve-
that are built into the language. Thus, TieeeVec class ments that C++ brings to the C language. There are many
can be used just like the built-in data types can be used. Tothers, this paper is not the place to discuss them.

following code fragment illustrates allocatinglareeVec In C++, functions distinguish themselves from others
and sending messages to it with the same name not only by which class they are a
member of, but also by what is calleignature The sig-
int main() nature is the number and type of arguments and the return
{ ThreeVec a; type. Thus the functioimt max(int,int) is distinct
asetVec(1., 1., 1.); from float max(float,float) . This aspect of the lan-
phi = a.phi(); guage is known aginction name overloading here are

two constructor member functions in thi@eeVec class.

Which one is invoked is controlled by the signature used. In
The variablea is of abstract data typehreeVec and its  addition, constructors may be invoked with a variable num-
space is allocated at compile time in the same manner ber of arguments and default values can be applied to miss-
data typedloat orint . The member functions are in- ing arguments. The following code fragment shows four
voked with the syntax that looks like accessing a data menways that ahreeVec constructor might be invoked
ber of a C struct. In the example, the member functions h ¢
a.setVec() anda.phi() illustrate this. The authors of  Threeveca lisetsato 0., 0., 0.
C++ were concerned about run-time efficiency. Thus, in- Iﬂreevec b(L), ~ /setsbtol,0,0.
) i . . reeVec c(1., 1., 1.); // sets c to unit vector
line functions were included in the language to allow ac: threevec d = ¢; // invokes ThreeVec( ThreeVecs. )
cess to data members while preserving their encapsulatic
The keywordnline  declares this as is shown in Fig. 11 The last method is similar to allocating and initializing a
for the member functiosetVec . Inline functions do not  built-in type (nt i = 1; ).
invoke a function call, rather code is placed at the pointth  To complete the data abstraction aspect of the lan-
appear to be called. In addition, the implementation of inguage, C++ also suppoxperator overloadingAn oper-
line functions can be placed directly in the body, as i«ator is simply that character symbol in the language that
shown forsetVec . This, however, is recommended only if causes an operation to be performed on one or more oper-
the implementation is short. ands. For example, the plus character (“+") is an operator to

The implementation of the member functjgti() in invoke the addition of quantities. Operator overloading

the example is not inline. Thus it is usually done in anothemeans that for the abstract data types defined by the pro-
file, sort of like the Objective-C implementation file. A pos- grammer, one can supply the meaning of the operators, i.e.
sible implementation is shown in the example below.  overload the operator. For example, the + operator for the

ThreeVec class might be defined as follows
float ThreeVec::phi()

ThreeVec ThreeVec::operator+( ThreeVec& b)

if (x==0.0) {
if (y>=0.0) ThreeVec sum;
return 0.5*M_PI; sum.x = X + b.x;
else sum.y =y +b.y;
return (-0.5*M_PI; sum.z=z + b.z;
float arctan = atan2(y, x ); return sum;
return arctan; }

}
Reading the first line above can be confusing at first. Let's

The double colon (¢ ") separates the class name from thedecipher it. The function name isgerator+ ”. Itis a
member function name, otherwise the function is declaremember function of the cla#areevVec as seen by double

12 SLAC-PUB-5629



Object Oriented Programming

colons (%: "). It takes one argument which is a reference tcNote that only because this non-member function has been
a instance of th@hreeVec class, or we could say that the declared to be a friend of thi@reevec class (cf. Fig. 11)
argument is of typ&hreeVec . The ampersand &) in- can it have access to the protected data members of that
dicates the argument is passed by reference; without it ticlass. Note also that operator overloading functions, the
argument would be passed by value. It also returns a valinon member function requires one more argument then the
of type ThreeVec which is indicated by the first member function. One can use either the member function
“ThreeVec " on that line. or non-member function methods of implementing opera-
One might be immediately puzzled about what haptor overloading, but not both for the same class. This is be-
pened to the other operand for the operator “+”. It turns oLcause the compiler would find an ambiguity, which it could
that the instance of the class, i.e. the object which was menot resolve.
saged, will be the other operand, and it will be the operan In both examples of operator overloading, the function
on the left of the + sign. With this knowledge, we can seweturned a result of typehreeVec . This object is in fact
how the implementation works. When we see the use of tronly temporary. When the function is invoked with a code
data membex, for example, it means the data member offragment like
the object on the left of the + sign.
At this point it is worth noting that an object of a class d=a+b*c;//add and scale ThreeVec's
has direct access to the instance variables of other objec
of the same class. This would seem to violate the protecticthe object returned is the temporary the compiler must pro-
of the data. But main purpose of protecting the data is tduce to form the result. The operator “=" for the class
hide its structure, i.e. where and how it is stored, so theThreeVec must also be overloaded by a member function
should one change the structure, other classes don't neof the form
any changes. But if we change the structure of the data in
class, that class is going to be re-compiled, so there’s I,ThreeVec& ThreeVec::operator=(const ThreeVec& a)
harm giving direct access to members of the same class = ax
There is another mechanism to implement operato - a.y;
overloading which must be used when the left operand is ¢  z=az;
a type that one does not have control over. For example,  return *this;
one wants to multiply oufhreeVec by afloat

;hreevﬁ_c vi,v2, v3; which does the assignmentdfo the result. The compiler
oata,b; has this member function pre-defined for all abstract data
V2= arvi: types, but the programmer can over ride it by supplying his

v3 = vi*b; own. By the way, théhis variable in C++ corresponds to

theself variable in Objective-C, namely, its a reserved
then the typdloat may be the left operand. Tigend  name for the object at hand.
mechanism was invented to handle this situation. It allow  The above description of adding two vectors may
functions that are not members of a class to have accessmake it appear that there is a large overhead in the proce-
the protected data members of the class. ImMheevVec dure. In fact, it is not. We are just looking at the step by step
example, the overloaded operatawas implemented this process a compiler must do to handle the addition of any
way. It was declared as a friend non member function in thtwo data types, even the built-in types. That is, operate on

class body. The implementation might look like two quantities and store the result as a temporary, finally
make the assignment to the variable on the left of the equal
ThreeVec operator*(float& a, ThreeVec&b) sign by copying it from the temporary space. As with any
{ ThreeVec mul: good compiler, a goc_)d C++ compiler will optimize these
mulx = a* b.x: sequences of operations.
muly =a*b.y; There are many member functions in @treeVec
mul.z=a*b.z example. Many of them simply access the vector in differ-
return mul; ent ways. For example, in HEP one frequently deals with

the transverse momentum. Thus whenTiheeVec class

SLAC-PUB-5629 13



Object Oriented Programming

class FourMom : public ThreeVec {
float energy;
public:
FourMom(floatpx=0.0, floatpy =0.0, floatpz=0.0, float pe =0.0)
{(px, py, pz){ energy = pe; }
friend FourMom operator+( FourMomé&, FourMom& );
friend FourMom operator-( FourMom&, FourMom& );
friend float operator*( FourMomé&, FourMom& );
inline float e(){ return energy; }
inline void sete( float pe ){ energy = pe; }
inline float p2(){ return energy*energy - ThreeVec::p2(); }
inline float mass(){ return sqrt( p2() ); }
inline void setFourMom( float px, float py, float pz, float pe ){
sete( pe);
setx( px );
sety(py );
setz(pz);

virtual void boost( double, double, double );

virtual void boostToCMOf( FourMom& );

virtual void boostFromCMOf( FourMom& );

virtual void print( int, char* form = "%8.4f");
Il etc. ...

Fig. 12 FourMom class declaration

is used for momentum, we have the member functionportant aspects of object oriented programmingerit-
float pt() andfloat pt2() to access the transverse ance The keywordoublic in the class head is used to
and square of the transverse components of the vectimake public to th€ourMom class the private members of
There are also member functions to rotate the vector in pithe ThreeVec class. The other optiongrotected and
or theta. It may be tedious to implement all the variationprivate  are too detailed to be discussed in this introduc-
that we may want to use. But by doing so, we will make thtion to C++.
code that uses thghreeVec class much easier and much The FourMom class has one additional instance vari-
more self describing. Most of these additional functions arable, or data member; the energy. ThusFtheMom class
declarednline thus there will be no lost in run time ef- differs from a vector with four components in that it is a
ficiency since they are not real function calls. If we did nolLorenz vector. It consists of a ordinary 3-vector compo-
include member functions likiéoat pt() , then we nent, which it inherits from thehreeVec class and the en-
would wind up implementing it explicitly each time we ergy component. Note how the member funcipag
needed it. One could consider inline member functions cdiffers from an ordinary vector of four dimensions...
this type as something like a macro, but it is much safe
then a macro because the compiler handles it. inline float p2() {

Everything we've said about C++ in this section so far, ~ 'Sturnenergy“energy - Threevec::p2();}
is the data abstraction aspect of the language. Other la
guages that support data abstraction with operator oveThe use of the function narpg() for both theThreeVec
loading as wellAdaandFORTRAN 90 are examples. Each andFourMom classes is making use of the polymorphism
have their own syntax for accomplishing more or less ththat is available to us. To force the call to TheeeVec
same features. C++ distinguishes itself from these languafunctionp2() , we had to use the scope operator (double
es in supporting object orientation as well as data abstracolon “: ). As with theThreeVec class example, we've
tion. To understand the significance of this, consider thiput into theFourMom class many auxiliary member func-
FourMom class shown in Fig. 12. This class is declared astions to make the class easy to use. For example, if we want
subclass of th&hreeVec class, thus it uses one of the im- to boost a four momentum to the center of mass frame of

14 SLAC-PUB-5629



Object Oriented Programming

ThreeVec I

FourMom I

Particle I

String I Cluster I Collision I

Fig. 13 Particle class hierarchy

another four momentum we have the member functioiparticle undergoes a physics process, it’s just like an object
void boostToCMOf() to do it. responding to a message. Encapsulation allows one to store
Many of the member functions need to over-ride thethe particle properties and program implementation of
inherited member functions of the same name, includinphysics processes together.
the operator functions. While, if we want to get the trans: ~ We’ll look at prototype code from théC++ project
verse momentum of a four momentum vector, we have ththat is under development at University of Lund and
inheritedfloat pt() member function of th&hreeVec SLAC[7]. The key idea in th&C++ project is to formulate
class available to us. This latter features brings out the dithe event generation chain as generalized “partiales”
ference between using the pure data abstraction and the (caying into other generalized “particles”. For example, at
ject oriented approach. With data abstraction, a fouLEP one would start with an *e—-collision” particle
momentum abstract data type might have a three vectwhich decays into a G particle. It in turn decays into per-
component of it and thus look roughly like the same as othaps a “g-dipole” particle which may decay into adgq
jects with inheritance. However, with objects one inheritsstring” particle. Further down the chain one would even-
functions such as the transverse momentum functiontually create the hadrons and leptons which will also decay
while with data abstraction alone, one would have to exuntil we reach stable particles at the end of the chain. Each
plicitly write code in the four momentum abstract data typesuch generalized particle will have a list of ways it can de-
to extract that information. Thus we see that data abstracay and each element of the list will have a branching ratio,
tion is quite distinct from object orientation even though fora list of decay products, and a pointer to a class which im-
light weight objects, such as vectors, matrices, etc., theplements the decay.

can be easily confused. Let’s first look at the class inheritance hierarchy in
which the particle class is imbedded as shown in Fig. 13.
7.0 Particle Production Monte Carlo With Oop TheParticle  class is derived from theourMom class

that was discussed in the previous section. Thus energy and
In this section the use of object oriented techniques fcmomentum aspects of a particle will be fully taken care of
particle production and decay simulation will be studied by its superclasses. The instance variables or data members
OOP is well suited for such simulations for many reasonsin the particle class are divided into two groups. The first
The creation of particles in the real world corresponds tgroup describes the generic features of the particle type,
the creation of objects in the programming context. Particlsuch as charge, mass, a pointer to its decay channels, etc.
properties correspond to data members of a class. WherThe second group describes a particular instance of a par-

SLAC-PUB-5629 15



Object Oriented Programming

class Particle:public FourMom
{
float mass;
int charge; // charge is in units e/3
int spin;  //in units 1/2
boolean isStable;
DecayList* decayTable;
/* etc... */
Particle* parent;
ParticleList childList;
float lifeTime;
boolean hasDecayed;
public:
Particle(); // constructor
inline float charge() { return (charge/3.); }
inline int icharge() { return charge; }
inline float spin() { return (spin/2.); }
virtual void decay();
virtual ParticleList* decay();
/* etc... */

Fig. 14 Particle class head and body

ticle such as its lifetime, creation values, a pointer to a li<To the theorists developing this code, these choices are very
of its decay products, etc. Further specialization from thnatural. However, to avoid confusion to an experimentalist
genericParticle  class will be achieved by sub-classing. who may want to access the charge, the inline function
Thus one will handle the special attributes of strings, cluscharge returns the charge of the particle in normal units.
ters, collisions, etc. Of particular note are the decay methods inRthe

Figure 14. shows a code fragment of what the clasticle class. Their implementations are shown in Fig. 15.
definition might look like. Some interesting design choicesand they are the heart of the code. The first metwd,
are worth calling out. For example, the data membedecay() , | call the theorist's method. It decays the particle
charge is stored as an integer with units of 1/3 the electroiinto its children, then has each of the children decay. Since

void Particle::decay() {
if (isStable || hasdecayed ) return;
DecayChannel channel
= decayTable->selectChannel( random.flat);
(channel->decayer)->decay(this,channel->products);
hasDecayed = YES;

Particle* child = childList.top();
while( child = childList++ ) child->decay;
}
ParticleList* Particle::decay() {
if (isStable || hasdecayed ) return;
DecayChannel channel
= decayTable->selectChannel( random.flat);
(channel->decayer)->decay(this,channel->products);
hasDecayed = YES;
return childList;

}

Fig. 15 Decay methods of Particle class

16 SLAC-PUB-5629



Object Oriented Programming

Decayer

TwoBody ThreeBody StringFrag ?

Fig. 16 Decayer class hierarchy

the children are particles, the decay method is invoked re¢particle through a detector and finds that it needs to decay,
cursively. Since stable particles just return when the meshe can invoke this decay method to get the decay products
sage is received (as seen by the first line of the codeand then track them further through the detector. This
recursion ends with stable particles. Theorists normallmethod is identical to the theorist’ method with the recur-
don’t care about detector simulation, so this decay methcsive decays removed.
suits their needs. A key component of theIC++ program is the decayer

In the second line of code, a decay channel is createclass and their hierarchy. A representative sample of them
by randomly selecting one from the available channels iis shown in Fig. 16. The main aspect of the decayer, as
the decay table. The line of code says it about as well as nshown in Fig. 17, is that itkecay() method is presented
words. The decay channel object that one receives bawith two arguments; the first gives it the particle that is to
from the decay table has a pointer to a decayer object. Tidecay and the second a list of particles that will be pro-
third line of code invokes the decay member function of thiduced as has already been described aboveDddzger
decayer with two arguments; the particle being decayeclass is just an abstract place holder which is meant to be
and the list of decay products. The former is needed in osub-classed by a class that represent a real physics process-
der to access the four momentum and perhaps other prces. The keywordirtual  tells the compiler about this.
erties. Obviously the latter is needed as well for similaiThat is, that the function is meant to be over-ridden by a
reasons and to know what particles to create. The remaisubclass. For example, theoBody class would imple-
ing lines of code in theecay() function recursively caus- ment pure kinematics for most particle decay3hfee-
es the decay products to decay. Body decayer might just use phase space. Rather then re-

The second decay method I call the experimentalist'writing 3-body phase space in C++TlareeBody class
method. This method decays the particle and returns the limight be implemented by presenting the relevant parame-
of decay products. Thus, if the experimentalist is tracking ters to aFORTRAN function or subroutine.

class Decayer {
char* genericName;
char* name;
int number;

public:
Decayer( char* name, int number );
virtual boolean isAllowed( Particle* parent, ParticleList* children );
virtural int decay( Particle* parent, ParticleList* children);
~Decayer();
Il etc.

Fig. 17 Decayer class body

SLAC-PUB-5629 17



Object Oriented Programming

main()
{
ParticleFactory factory; // invokes constructor
/I which reads disk file
Particle p;

p = factory.getA( "e+e-collision" );
p.decay(); // decay it.
p.print(); // to see results

} /I that's all folks!

Fig. 18. A simple main program

This latter suggestion highlights the difference ancwe only looked at a prototype program and we didn’t show
similarities between the object oriented approach and a lot of the details, but nevertheless it appears that a full
procedural one likEORTRAN. At some low level, the production quality program would retain the simplicity and
physics calculations are the same; there’s no way arourmodularity we have seen. One should also notice the com-
that. C++ through its abstract data types allows for operatplete lack of dimensioned arrays, only minor use of con-
overloading, thus the calculation can be written in a muclditional statements, do-loops are almost completely hidden
easier to understand manner. That is, adding two vectoby the use of lists. All these attributes of object oriented
has the same programming notation as adding two integeicode greatly clean up the implementation, allowing the au-
its just like one would add two vectors on the blackboardthor to concentrate on implementation of the algorithms.
with a shorthand notation. Some non-object oriented lan
guages support data abstraction as well. Data abstracti8.0 Summary
also changes dramatically the way such abstract data typ
are created and stored. The use of inheritance makes C-  This paper has presented an overview of object orient-
also an object oriented language which further simplifieed programming. The basic concepts have been explored.
the way the programming to be done. The meaning behind word like instance variables, methods,

One important aspect of tMC++ program will not be  member functions, overloading, etc. has been explained.
shown here. It is the mechanism by which the properties \We have seen that although the style of programming is
the generalized particles are initialized. It is done via «ery different, it is not inherently difficult.

ParticleFactory class of which only one instance exists There are many benefits of object oriented program-
in the program. It is a reference table, or could be consicming. Generally, programs using these techniques are
ered an on-line Particle Data Book for the known particlesmuch more readable and maintainable. Also the code is
and a reference model for the less well known or generamore easily re-usable and is generally very modular. In
ized particles. Th@articleFactory class supports short, the goals of software engineering are far more easily
reading in a reference table from disk and interactive mocachieved with the object oriented approach. Compared to
ification of the table, in order to study particular decaytraditional programming, object oriented code has fewer
modes or models by the user of the program. It is also rarray declarations, thus minimizing the possibility of inad-
sponsible for setting up the list DEcayer classes that vertently exceeding array boundaries. Through the creation
make up part of the program. When all these classes aof objects, the system does the kind of bookkeeping that
done, the main program to simulate orfie’ecollision  one would need to do by hand in the traditional program-
might be as simple as the code shown in Fig. 18. This priming approach. Inheritance makes is easy to modify and
gram decays on€'@ collision but could easily be extend- extend existing objects, while preserving the encapsulation
ed to do more. It is also a prototype for code that would bof data. Overall, it is much easier to implement large so-
put into a detector simulation program. phisticated programs.

We have just walked through the basics of a particle ~ Object oriented programming is made much easier
generation simulation program written in C++ using bothwhen one starts with a class library well suited to one’s
its data abstraction and object oriented features. Of coursneeds. For example, the NeXTstep class library is well suit-

18 SLAC-PUB-5629



Object Oriented Programming

ed for programming an application with a graphical user in
terface. High energy physics will need a class library for it
specialized applications. It is hoped that out of project:
such as Gismo[2MC++[7], andCABS[8] such a class li-
brary will develop.

In an age where one frequently talks of a “software cri:
sis”, the object oriented programming approach seems 1
offer some real solutions. Programmers and scientists wt
use the object oriented techniques will find themselves t
be much more productive.

References

[1] Brad J. Cox, Object Oriented Programming,
Addison-Wesley, 1986.

[2] W.B. Atwood, T.H. Burnett, R. Cailliau, D.R. Myers,
K.M. Storr,Gismo: Application of OOP to HEP
Detector Design, Simulation and Reconstruction
Proc. Computing in High Energy Physics ‘91,
Tsukuba, Mar. 11-15, 1991.

[3] W.B. Atwood, R. Blankenbecler, P. F. Kunz, B.
Mours, A. Weir, G. Word, Proc. 8th Conf. on
Computing in High Energy Physics, Santa Fe, NM,
Apr 9-13, 1990, AIP Conference Proceedi@gs,
320, (1990).

[4] Bjarne Stroustrup, The C++ Programming
Language, 2nd Edition, Addison-Wesley (1991).

[5] Stanley Lippman, C++ Primer, 2nd Edition, Addison-
Wesley (1991).

[6] Ira Pohl, C++ for C Programmers,
Benjamin/Cummings (1989).

[7] Richard Blankenbecler and Leif Lonnbld#rticle
Production and Decays in an Object Oriented
Formulation Private communication, to be published.

[8] Nobu KatayamaQbject Oriented Approach to B

ReconstructionProc. Computing in High Energy
Physics ‘91, Tsukuba, Mar. 11-15, 1991.

SLAC-PUB-5629

19



