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ABSTRACT 

M(77 --) 7r”xo) is computed using the effective chiral lagrangian to leading order in 

l/Nf, where Nf is the number of pion fields. The resulting amplitude is chirally invariant 

and unitary to all orders in momenta. Although the leading order calculation involves an 

infinite number of unknown coefficients, the final result depends only on the 7r-x scattering 

amplitude. 
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1. Introduction and Conclusion 

Current algebra and partial conservation of axial-vector currents form the basis 

of our understanding of pion physics. The general chiral-invariant lagrangian 

automatically imposes these constraints and also provides a way to compute uni- 

tarity corrections to the tree-approximation’. Recently, the chiral perturbation 

theory for strongly interacting W’s has also been studied2 as a probe into the 

Higgs sector. The idea here is that, at energies much higher than the W mass, the 

longitudinal modes of the gauge bosons can be treated as the associated would-be 

Goldstone bosons3. Since the would-be Goldstone bosons obey the same chiral 

symmetry as the pions in the chiral limit, the effective chiral lagrangian should 

also model the longitudinal modes of the gauge bosons. Much of the current 

literature on strongly interacting gauge bosons is based on this idea. 

In practice, chiral lagrangian predictions are computed in powers of external 

momenta, and predictions to 0(p4/f2) are good enough to understand the ob- 

served TX-scattering data to 0.7-0.8 GeV4. The momentum expansion technique, 

however, has two important limitations. First, although the effective lagrangian 

approach is general, the first few terms in the power series expansion cannot 

capture any resonance feature. Hence the very structures that will help us to 

identify the mechanisms for electroweak symmetry breaking cannot be seen in 

the momentum expansion. Second, even at energies much lower than 0.8 GeV, 

there are some meson processes for which the chiral predictions to leading order 

in momentum expansion deviate greatly from the data. The reaction 77 + r”~o 

shown on figure 1 is such an example5. 

In this paper, we propose an expansion of chiral effective lagrangian predic- 

tions in powers of l/Nf, where Nj is the number of pion fields, as a way to 
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overcome these limitations. Since the general effective chiral lagrangian contains 

an infinite number of unspecified coefficients, it is usually assumed that any cal- 

culation beyond the tree-level will necessarily involve a large number of unknown 

coefficients that must be measured independently. The l/Nf expansion does not 

solve this problem, but it organizes the unknown coeffcients in a way that is 

easier to control. In our case, the coefficients appearing in the leading order in 

l/Nf and A4z/E2 can be organized into a single function, which can be deter- 

mined in terms of the T-X scattering amplitudes. Thus, although the expression 

for M(77 4 ~‘a’) involves an infinite number of unknown constants, these can 

be replaced by a single observable function. 

Our main result is that to leading order in l/Nf and for on-shell photons, 

d,(y'y -+ ir"ro)= -SN+ e2 
--cl . e2F(S)dJ(r+a- -+ r”no) 

Nr @d2 

M,2 1 + (1 - 4M,“/S)“2 1 2 (1) 
F(S) = 1 + 7 log 

. 
1 - (1 - 4M,2/S)“2 - ‘* ’ 

where dJ’s are the partial wave amplitudes in the total angular momentum J, 

J, = 0 channel, N+ is the number of charged pion fields, and E;‘S are the polar- 

ization vectors of the two in-coming photons. Unitarity is automatically satisfied 

to O(l/ Nf), and, since the amplitudes contain all orders of momenta, there is a 

hope of capturing resonance features. 

Before we plunge into the proof of the claim, a few comments are in order: 

1. Formula (l), for the realistic case of NJ = 1 and N+ = 1, was conjectured 

by Donoghue, Holstein, and Lin5 as an extrapolation of the one-loop calculation 

of 77 -+ 7r07ro. The formula in fact agrees with the data over a wide range of 

energy, and this suggests that the identity holds in general. In principle, the 

3 



formula can accomodate contributions from heavy mesons exchanged in the T, 

U, or S channel6 as long as we work below production threshold for these heavier 

states. 

2. The expansion based on l/Nf automatically satisfies the constraints of crossing 

symmetry and chiral symmetry. Moreover, it is unitary to all orders in momenta. 

We believe that this is the first calculation of M(77 -+ K’T’) that satisfies all 

three constraints. In the lowest order in momentum expansion of M(77 * TOT’), 

the amplitude violates unitarity at Ok. Morgan and Pennington have con- 

structed an alternative theory of 77 + K O r O based on representing final-state 

correction to 77 + ~+7r- by an Omn& function. However, this theory has an 

awkward chiral limit, since the Born amplitude for 77 ---t 7rr+7r-, projected onto 

the S-wave, becomes a S-function at threshold as MT + 0. 

3. Folklore has it that any prediction based on an effective lagrangians will 

contain a large number of unspecified constants and will therefore lead to no 

prediction. Our result indicates that it may be possible to assemble these con- 

stants into a small number of observable functions. Hence, for applications in 

which predictions based on the first few terms in the momentum expansion is 

inappropriate, an alternative expansion such as l/Nf can lead to manageable 

and testable predictions. 

4. Effective chiral theories with higher derivative kinetic terms do not uniquely 

specify the 77r+w- vertex. Upon gauging the effective chiral lagrangian, this 

ambiguity generates operators of the form 7r+F,,FpV7r- over which we have no 

control and makes it impossible to write the 77 + r”ro amplitude purely in 

terms of the 7r--x scattering data. It is possible, however, to adopt a convention 

for gauging the theory in which these operators are not generated. This ambigu- 
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ity represents a limitation of our result. This is further discussed in section 3. 

5. Since Nj in our calculation is small (Nj= 3), one must question the efficacy of 

the whole approach based on expansion in powers of l/Nf . In fact, it will turn 

out later that the expansion parameter is actually 3/Nf. We chose the l/Nf ex- 

pansion, not for its convergence properties, but for the analytic properties that 

it satisfies at each order. In this sense, our choice of the l/Nf expansion should 

be understood as a systematic way to resum the ordinary perturbation series 

so that the amplitudes obey the analytic properties demanded by the two-body 

unitarity. Indeed, the leading order amplitude in l/Nf for the pion four-point 

function contains exactly the same diagrams as the self-consistent solution to the 

two-body unitarity, 21mT = &J’T*, where & is the two-body phase space. 

6. Two issues must be confronted when quantizing the effective chiral lagrangian 

containing higher derivative kinetic energy terms. . Barua and Gupta’ showed 

that theories with higher derivative interactions, such as the effective chiral la- 

grangian, exhibit subtle cancellations among various diagrams that are automat- 

ically handled by the use of dimensional regularization. Naturally, we choose 

dimensional regularization. Pais and Ulenbeckg showed that higher derivative 

theories in general contain states of negative norm and, as a result, its energy 

spectrum is no longer positive definite. It is possible to hide these states by plac- 

ing them above the cut-off for the theory. However, we find that the problem 

does not appear if we treat the higher derivative terms as perturbative vertices. 



2. l/N Expansion iI: the Limit M,2/E2 --) 0 

We first generalize the SU(2) x SU(2)/SU(2)(= 0(4)/O(3)) nonlinear a-model 

to the O(N+l)/O(N) nonlinear a-model and compute various Green’s functions, 

to leading order in l/Nf. The lagrangian is 

where U = ($3, Z), and x; = dmr;/f,. For Nj = 3 and m. = 0, this 

reduces to the effective lagrangian for massless pions. 

Many simplifications occur in the limit Mi/E* + 0. For example, all tadpole 

type diagrams may be ignored in this limit: All tadpoles come from two-point 

functions of the type 

< 7r(x)n-(xc> >- J ?!f!i?- 
(27r)d Q* ” rni (I+ a&” + - + .) (2) 

This integral is always proportional to rni and, since chiral symmetry guarantees 

that the pion mass is multiplicatively renormalized, such a quantity can only 

contribute to those renormalized terms that are always down by a factor of Mi/E* 

compared to the terms of the same order of momentum expansion that do not 

vanish in the massless limit. 

The self-consistent equation for the leading order pion two-point function is 

shown on figure 2. The full pion two-point function in the absence of any tadpole 

contribution reduces to the sum of contributions from the higher derivative kinetic 

terms (figure 2). Writing the full two-point function as G(*)(p*) E ;/(p” - mi) + 

q+c*p2+c~p4+-*, the same analysis also shows that all quadratic and higher 
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divergences in the loop diagram in figure 2a are all proportional to rni and can 

be ignored in the limit Mz/E* + 0. Thus, we have the following formula: 

J ddq (*I (2?r)dG (q *P*)((q + P>“>v,v, = J 
i*VlV2 

7$qq2 _ m,2)((q +# _ m;)’ 

where the Vi’s are arbitrary, momentum-dependent vertex functions. Figure 3 

illustrates these results. 

To leading order in l/Nj, the four-point function is then given by the sum of 

bubbles shown on figure 4. For our purpose, however, it is not necessary to find 

the exact expression for the four-point function in terms of the coefficients that 

appear in the lagrangian; it is enough to note that the on-shell four-point function 

must be of the form &,&dA(S, t, u) + &&A(t, s, u) + &d&A(u, t, s), where a, b, 

c, and d are the isospin indices, and A(s, t, u) is given by the diagrams in figure 

4. 

3. M(yv -+ n”ro) 

For the sake of clarity, we first present a calculation of M(yy + a’~‘) in which 

certain claims are made without proof. These claims are proven at the end of the 

chapter. 

The U(1) covariant derivative D, acts on the r’s in the usual way and on 

the U as a diagonal matrix: D,U = 8,U + iA,QU. Here we have chosen, for 

odd values of N = 2k + 1, charge e to k complex n-fields, and charge 0 to the 

remaining real x-field. 

Claim 1. Equation (2) and symmetry arguments show that the leading order 

M(yy + r”nO) in l/Nj is given simply by a loop diagram(figure 5a) formed by 
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the tree-level on-shell Compton scattering amplitude(figure 5b), 

M,, = ie* [2gpy + c2P, + Ic1hd2pb + k2)v + (2Pcz + kz)v(2pb + h),] + Mhigher 
(pa + h)* - mi (pa + kJ* - rnz w ’ 

where we have explicitly written out the Compton amplitude to the lowest order 

in momentum expansion, and the rest of the leading order on-shell amplitude 

M(a+x- -+ ?r”7ro). 

Claim 2. Using gauge invariance, MFygher can be shown to vanish on shell. By 

projecting the out-going T O state on to definite angular momentum states, the 

leading order on-shell amplitude for the T+T- -+ 7r07ro process in the S-channel 

reduces to the partial wave amplitude &r(s). dJ(s) is related to A(S, T, U) by 

dJ(S) = J dRA(s, t, u)Y~o, where t, u = s( 1 f cos 0)/2. 

Hence, we have a simple expression for M (77 + TOTS), in a given angular 

momentum J channel: 

2ie23N+ 

J 
ddq (2q - kl),(% + k2)y - gtiLy(q2 - mz> 

N AJ(s) (2~)~ ((q - ICI)* - mz)(q* - mz)((q + k2)* - mz)’ 

where, as before, N+ is the number of the charged pion fields, and AJ(s) is 

the partial wave amplitude in the angular momentum J, isoscalar channel. By 

contracting M with the photon polarization vectors and expanding the result to 

zeroth order in Mi/E*, we obtain 

dy’(yy -+ TOT’) = 
-6N+ e* 
--cl . c2dJ(r+r- + non’). 

4 cw* 

Notice that this is precisely the result (1) in the limit Mi/E* + 0. Away from 

this limit, A?) must be replaced with A?)( 1 +SdJ), where SdJ is some expression 

that must vanish in the limit M,f/E* + 0. Numerically, SdJ is important in the 
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low energy limit. But in the low energy limit, SdJ can be computed explicitly 

by chiral loop expansion5. It is 

4M3S)“” 

* 

1 + (1 - - 1 - (1 - 4M;/S)“* 2n- . 1 * 

Assembling these together, we obtain the result (1). 

The first claim is proven below: The general tree-level y7r+7rr-vertex is al- 

ways antisymmetric under exchange of the two pion momenta, p+ and p-. On the 

other hand, the r*“‘- vertices are always symmetric under exchange of any two 

pions on the same isospin line. Thus, all of the diagrams shown on figure 6 vanish 

identically. Thus, there are only four diagrams that contribute to M(yy + nor’) 

at the leading order in l/Nj. They are shown on figure 7. The loop integral dia- 

gram 7d has the form given in the equation (2) and may be ignored in the limit 

M,2/E2 ---) 0. 

The loop integral in diagram 7c is 

J 4 

[ei9*Y 8 $e-ik’Y 8e-i(4-kl).Y][eiq.Y 8 ES?e-ikz.y ,$e--i(q-kl).y] 

(q* - mi)((q - kd* - $3 
7 

where the first bracket is from the yr*-vertex, and the second bracket is from 

the yw4-vertex. In terms of Feynman parameters, this is 

J dQ 
[eiqeY 6 ,Je-ikl.Y ae-i(q-kl).Y][eiq.Y 8 cte-ik2.y ~e-i(q-kl).y]q=Q+zk, 

(Q" - A>” 
, 

where A = rni-z( 1-x)kT = rng for on shell photons. We may ignore all quadratic 

and higher divergences as j’dQQ*“/(Q* - rng)* N O(mim). The logarithmic 
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divergence is given by setting Q = 0 in the numerator of the integrand: 

J * [e i9.y 

dQ 
fj +-+ar ~e-+dd~y][eis.y 8 c;e-ikz.y ~e-i(q-k+y]q=+zkl 

(Q' - n-G>* 

But then the polarization vector e1 must be dotted into ICI, and the logarth- 

mic divergence identically vanishes. Thus, diagram 7c also vanishes in the limit 

M,2/E2 + 0. 

The remaining two diagrams can be regarded as a loop formed by the tree- 

level Compton scattering diagram, M (y-y ---f n+~-) to all orders in momenta,with 

the diagram for the leading order 7r4-vertex. We shall show that all terms con- 

tained in either of the two diagrams that vanish on shell gives a vanishing con- 

tribution in the limit Mi/E* + 0. In diagram 7a, any term in either vertex 

that vanishes on shell must be proportional to the square of one of the momenta 

in the loop, and therefore leads to a quadratic or higher divergence. These are 

always proportional to rni and vanish in the limit Mz/E* + 0. In diagram 7b, 

the vanishing terms give rise to log or higher divergences. As before, we only 

need to consider the logartithmic divergence. The logarithmic divergence can be 

isolated by setting Q = 0 as before. The two photon polarization vectors cannot 

be dotted into each other, and hence the integral vanishes once again by the 

virtue of the fact that these polarization vectors are orthogonal to the photon 

moment a. 

We now prove the second claim: If we replace ~Td*~7r by TO* ..a D*K, the 

tree-level on shell amplitude for the Compton scattering is given by 

< mry/ rA*n > $ < mryy r(8.A +A+ +A +A+ > 

+ < 7rry-y +A tA.d)8*(d-A +A+ > 

•i- < mry-/ x(&A +Ad)i?* T d2mr d*“(d-A tA+r >, 
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where 2 + m + n > 0, and m # 1. Evaluating this, we have 

M,, =ie* [2gpv t c2Pa •t kd,(2Pb + k2)v + @Pa t k&&3, t kl),] 
(pa t k1)2 - mz (pa t kJ* - mz 

+[(2Pa + Ic1),(2Pb + k2)v t (%-‘a t k2)$pb t k,),]F, 

where F is a power series in the scalar products of the external momenta and the 

polarization vectors. Imposing current conservation on this, we see that F 3 0. 

Unfortunately, the preceding argument is not complete because of an ambi- 

guity in ordering the covariant derivatives. For example, we have 

0 = Uta,&a,&U - Ut&a,a,ayU --f U+[D,D, - D,D,]D,D,U = &J+F,,F,,U. 

This ambiguity introduces a free parameter in M(yr --t ;~r+jlr-) at O(p4) in 

addition to those already present in the ungauged theory. This is the ambiguity 

referred to in point 4 of section 1. Chiral symmetry alone does not resolve this 

ambiguity, and this represents a limitation of chiral symmetry relations. However, 

there is no need for nonminimal operators in the J, = 0 channel calculation of 

yy ---) 7r07ro. 

4. Testing the Minimally Gauged Effective Chiral Lagrangian 

We use the x-r phase shift analysis of Estabrooks and Martin” to predict 

a(yy + r”7ro) using the formula 

CT&y + a07r0) = &&[]d;+ I" + JAY- 1” t 2)df- J*] 

a* =--Q(7r+7r- + Tono) 879 

Comparison with the data from the Crystal Ball Experiment l1 is on figure 1. 

In this figure, we compare the I = 0 J, = O-wave contribution to the process 
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yy -+ ?y”?yo to the total cross-section for yy + r”7ro. The large resonance in 

the data above ECM = 0.9GeV is the fi(l270) resonance, which is mostly in 

the J, = 2 channel’*. Comparison at low energies is complicated by the fact 

that the there is no direct measurement of ~--1r scattering amplitudes at , uergies 

below N 0;GGeV. The theoretical curve shown on figure 1 at these energies is 

based on an extrapolation of the CERN-Munich data due to Aston 13. Other 

extrapolations 14, together with a detailed analysis of the data from the Crystal 

Ball experiment and comparison with other theoretical predictions for ry + 7r07ro 

will be presented elsewhere 15. Nevertheless, the apparent success of our formula 

in reproducing the Crystal Ball data below about 1GeV suggests that it would 

be worthwhile to apply the formula to the problem of predicting yy + W’WL 

and ry + 2~2~. The results of this investiga,tion will be presented in a future 

publication16. 
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Figure 1. Cross-section for my t wore , as measured by the Crystal Ball ex- 

periment i1 : Our prediction for a(Jz=o)(solid line), the leading order chiral per- 

turbation theory prediction for a(JZ+(dotted line), and the leading order l/Nj 

prediction for a(~~,s) without finite mass effects(dashed line) are also shown for 

comparison. The broad peak in the data beginning at N 1GeV is the fi(1270) 

in the J, = 2 channel. The small absorption peak at 1GeV comes from the KI? 

threshold in the 7rlT-r scattering data that was used to produce the plot. This 

signals the break down of the calculation. Inclusion of kaons should remedy this 

problem. 

(4 __f_= +.at,-t**- 

(b) -=- t p t Qp t a* * 

Figure 2. (a) T o ea in or 1 d g d er in l/Nj , the pion two point function is a chain of 

the 1PI functions. (b) The 1PI function is the sum of all the contributions from 

the higher derivative kientic terms and the tadpole contributions. 
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Figure 3. Some of the simplifications that occur in the limit n/r/E2 + 0. (a) In a 

one-loop diagram formed by two arbitrary vertices VI and V2, the full propagator 

can be replaced by the bare propagators to leading order in Mi/p2. (b) All 

tadpole diagrams vanish in the limit Mz2/E2 + 0. 

Figure 4. The leading order pion four-point function in the S-channel(Pions on 

the same sold lines have the same isospin index; Solid lines joined by dashes lines 

come from the same local vertex) 

Figure 5. (a) The diagram for yy t r”ro in the limit M:/E2 + 0. (b) The 

Compton scattering amplitude yr + 7rr+7r- in the diagram in 5a. 

Figure 6. These diagrams identically vanish by symmetry considerations. 

Figure 7. Diagrams that contribute to yy + mono to leading order in l/Nf. 
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