
SLAC-PUB-5622
August, 1991

(Ml

Pipelines Programming Paradigms: Prefab Plumbing*

Chuck Boeheim

Stanford Linear Accelerator Center
Stanford University, Stanford, CA 94309

ABSTRACT

Mastery of CMS Pipelines is
increasingly

a process
sophisticated tools

of learning
and techniques that

can be applied to your problem.
compilation of

This paper presents a
techniques that can be used as a

reference for solving similar problems.

* Work supported by Department of Energy contract DE-AC03-76SF00515

Presented at SHARE 77
Chicago, IL, August 19-23, 1991

Pipelines Programming Paradigms: Prefab Plumbing
page ii _________________---____________________-----------------------------------

This document and/or portions of the material and data
furnished herewith, was developed under sponsorship of the
U.S. Government. Neither the U.S. nor the U.S.D.O.E. nor
the Leland

- makes any
Stanford Junior University nor their employees

warranty, express or implied, or
liability or responsibility for accuracy,

assumes any

usefulness of
completeness or

any information, apparatus,
process disclosed,

product or
or represents that its use will not

infringe privately-owned rights. Mention
its manufacturer, or

of any product,
suppliers shall not, nor is it

intended to, imply approval, disapproval, or fitness for
any particular use. The U.S.
times retain the right to use

and the University at all

purpose whatsoever.
and disseminate same for any

+---+

For reprints of this paper, write:

Stanford Linear Accelerator Center
Publications Dept, Mail Stop 68
P-0. Box 4349
Stanford, CA 94309

Copyright (C)
University.

1991 The Board of Trustees of The Leland Stanford Junior
All Rights Reserved.

Permission is granted to SHARE Inc.
the SHARE Proceedings

to publish this presentation paper in

Pipelines Programming Paradigms: Prefab Plumbing
page iii

Contents

Section.1: Introduction . .

Section 2: Coding Paradigms

Naming Pipes
Portrait style
F'MTP XEDIT
SC XEDIT
Multi-stream pipes

Section 3: Testing Paradigms

Console
Disk ;. ..
Special debugging stages .
PIPEDEMO

Section 4:' Pipeline Paradigms

Locating alternatives - AND
Locating alternatives - OR .
Locate ignoring case
Search file for match . . .
Constructing host commands ,

.

.

.

.

.

.

.

.

.

.

.

.

.

.........

.........

.........

.

.........

.........

.........

.........

.

..........

.........

.........

.........

.........
Read a CMS file into a REXX stem
Dump REXX variables to a file for debugging .
Save and restore REXX variables
Load CP SET values into REXX stem
Restore CP settings from REXX stem
Compute length of records
Using LOOKUP
Using DELAY for monitoring

Section 5: CallPipe Paradigms

Two pipeline connections
One pipeline connection
No pipeline connections

.

........

........

........

.

........

........

........

........

.

........

........

........

........

........

........

........

........

........

........

........

........

.

........

........

........
Multiple pipeline connections - multiple streams
Pass stream through unchanged

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

* . 1.1

. . 2.1

. . 2.1

. . 2.1

. . 2.3

. . 2.4

. . 2.4

. . 3.1

. . 3.1

. . 3.1

. . 3.2

. . 3.2

. . 4.1

. . 4.1

. . 4.1

. . 4.2

. . 4.3

. . 4.3

. . 4.4

. . 4.5

. . 4.6

. . 4.7

. . 4.8

. . 4.9

. 4.10

. 4.10

. . 5.1

. . 5.1

. . 5.1

. . 5.2

. . 5.2

. . 5.3

Pipelines Programming Paradigms: Prefab Plumbing
page iv

Section 6: Filter Paradigms . 6.1

NULL................................6 .l
Non-Delay6.1
Summary6.2
Circumventing the REXX 500-character limit 6.3
EXEC & Filter in same file 6.3
Using INTERPRET to apply a REXX function to each record 6.4
Read contents of a list of files into the pipeline 6.5

Section 7: A Simple Service VM . 7.1

GETCMD REXX 7.1
DELAYCMDREXX.:::........................7.2
Main pipeline 7.3

Pipelines Programming Paradigms: Prefab Plumbing
1. Introduction page 1.1
__--____-----------_--~~~~-----------~-~~~~~--~~~~--~~~~---~~~---~~~---~~~-

Section 1

Introduction

The bas.ic concepts of CM.9 Pipelines can be learned in a few hours; after
that, attaining mastery is a process of learning increasingly sophisticated
tools and techniques that can be applied to your problems. There are over
100 builtin drivers and filters, and large collections of stages written by
users available on tools disks and bulletin boards.

To help the apprentice plumber learn the Pipelines techniques that can be
applied to various classes of data manipulation problems, this guide
catalogs common programming paradigms or idioms that can be copied into
pipelines with little or no change.

These sections of prefabricated plumbing were collected from various
sources. Where they are not either standard well-known constructs or taken
from the author's own toolkit, the first contributor of the pipeline is
acknowledged. Each pipeline is presented as it would appear in an exec with
address command in effect, ready to be inserted into an exec for use.
Contributions may have been altered to fit the style of the other examples.
This is not to say that any coding style is better than any other; it is
simply to lend consistency to the examples to make them easier to follow.

Pipelines Programming Paradigms: Prefab Plumbing

"I--_____------__--_____________________---------------------------------~-
Coding Paradigms page 2 1

Section 2

Coding Paradigms

A. Naming Pipes

CMS Pipelines has a sometimes underused option called NAME. It may seem
an unnecessary bit of icing to name all of your pipelines until receive
an error message such as the first one from some exec that calls other
execs as subroutines, and each contains dozens of pipelines. (This
particular error message means that you named a stage that didn't
exist. You may not have had a disk accessed that contained the needed
stage.) If you name your pipelines, that name will appear in the error
messages, and you will have an easier time locating the errant
plumbing. To encourage this style, all examples in this guide are shown
with names.

-PIPSCB027E Entry point SWAP not found.
PIPSCA0031 . . . Issued from stage 3 of pipeline 1.
PIPSCAOOlI . . . Running "swap".
Ready(-0027); T=O.Ol/O.Ol 16:24:23

+---+

+--- +

+---+

PIPSCB027E Entry point SWAP not found.
PIPSCA0041 . . . Issued from stage 3 of pipeline 1 name "swap".
PIPSCAOOlI . . . Running "swap".
Ready(-0027); T=O.Ol/O.Ol 16:24:50

B. Portrait style

Portrait style is a way of writing pipelines in REXX execs that makes
them easier to understand. One stage of the pipe is written per line,
with a comment explaining what that stage does. This is a good habit
for you to get into early, even for pipes that you don't expect anyone
else to be reading. Chances are that you'll end up reading your own
pipes weeks or months later, and that you'll be grateful that you took
the time to document their workings.

Pipelines Programming Paradigms: Prefab Plumbing
2. Coding Paradigms page 2.2 _____------~__-------~~~~~~-----~~~~~------~~~-------~--------~~----~~~~~~~

One further argument for the portrait style is that you will find that
you tend to cut sections of pipelines out of one exec to paste into new
execs that you write. If you write your pipelines in portrait style,
you'll find it far easier to select just the stages you need.

Below is a sample of a portrait style pipeline. The final comma on each
line but the last is the REXX continuation character. REXX will read
those lines as a single command, removing the commas
lines with a single blank between them.

and joining the
(I happen to

the commas in one
left one out.

column to make it easy to visually
like to line up

Missing
spot when I have

commas can make your exec fail in sometimes
non-obvious ways.)

Another matter of personal preference is
character goes on the left of each

whether the pipe separator
line or the right. Some choose the

left because the pipe separators line up nicely, and again it is harder
to accidentally leave one out. However,
technique that makes

there is a pitfall in this
some choose the right. The pitfall is that when

REXX concatenates the strings on each line, it inserts a blank between
them. An extra blank on the right
makes a difference,

side of a separator character never
but an extra blank on the left side is potentially

meaningful data to the preceding stage.

Consider the pipeline 'PIPE < paradigm script * 1 find :hl console' to
display all the GML heading tags in this script file.
FIND begins after exactly one blank and runs

The argument of

separator character.
tags, because

If you write it as ' (
up to the next pipe

find :h 1' it will find no
':h' is never followed by a blank in the source. The two

ways around the problem are to write the separators on the right, or to
use the REXX concatenate operator in
(primarily FIND,

cases were the blank would matter
NFIND, TOLABEL, and related filters).

--+

/* Left-sided portrait display sample.

'PIPE (name LEFTY)' 1
1 Q;=$!Ty, script a 1 : /* Read the input file.

, /* Find headers. 1 console' /* Display on console.

Pipelines Programming Paradigms: Prefab Plumbing
2. Coding Paradigms page 2.3
----_--___---__--_____________________~~~--~~~~---~~--~~~~~~~~~~~~~~~~~~~

+---

/* Right-sided portrait display sample. */

'PIPE (name RIGHTY)'
.'< paradigm script a' 1'

- 'find :hl'
: /* Read the input file. */
, /* Find headers.

'console' /* Display on console.

+

+---+

C. FMTP XEDIT

An XEDIT macro (which prefers the right-sided style) named FMTP is
distributed with CMS Pipelines to help you format your pipes in

.portrait style. With a pipe positioned at the current line and one or
more lines of stages, FMTP will reformat your pipe for you. You can
also assign FMTP to a PF key and use the cursor to indicate which pipe
to format.

+---

=====

==E== 'PIPE (name RIGHTY) < paradigm.script a) find :h) console'
=====

====> fmtp

+---

+---

=====
===== 'PIPE (name RIGHTY)I ',
===== '< paradigm script a (I,
===== 'find :hl',
===z= 'console'
=====

===z >

+---+

Pipelines Programming Paradigms: Prefab Plumbing
2. Coding Paradigms page 2.4
---_---------_---

D. SC XEDIT

Unfortunately, FMTP won't write your comments for you, but once you add
your comments another tool can make them look pretty. The SC XEDIT
macro aligns REXX comments on a specified set of lines.

+---+
===== I
===== 'PIPE (name RIGHTY)I ',
===== '< paradigm script a I ', /* Read the input file. */
===== 'find :hl', /* Find headers. */
===== 'console' /* Display on console. */
=====

====> SC 4

+---+

+

=====
===== 'PIPE (name RIGHTY)I ',
===== '< paradigm script a I ',

'find- :hl', =====
===== 'console'
=====

/* Read the input file. */
/* Find headers. */
/* Display on console. */

cc== >

+---+

E. Multi-stream pipes

Multi-stream pipes are conceptually simple, but their notation can be
tricky. In a multi-stream pipe, you can define alternate streams with
different processing for selected records. One simple example is the
LOCATE filter: it passes selected records along the main pipeline, and
in addition can pass the rejected records to a secondary pipeline for
further processing.

Pipelines Programming Paradigms: Prefab Plumbing
2. Coding Paradigms page 2.5
----__-------~~~~_______________________~~~-------~~--------~~------~~~~~~~

+---

+--------+
-----> Locate

I I

-------> selected records

+---------+
-------> rejected records

+---

+

+

What makes the notation difficult is representing this two-dimensional
idea in a one-dimensional pipeline. First we need an END character,
which delimits the alternate linear sections of pipeline, and then we
need labels within those sections, to show where they connect.

'PIPE (name MULTI end ?)' ,
. . . 1

/* Define END character */
/* Some record source.

tee: locate /something/' , /* Produce two streams. 1 > selected records a'
:;

I
'? tee:'

/* Process first stream. */

' I > rejected records a'
I /* Begin second stream. */

/* Process second stream. */

The end character separates the linear
each other. These sections are

sections of the pipeline from

to do with each other until
independent pipelines and have nothing

you define connections between them with
labels. (If you didn't define any connections between them, they would
happily run as two self-contained parallel pipelines.)

Labels are one to eight character strings,
are two ways for a label to appear:

followed by a colon. There

on the LOCATE stage above);
1) as a prefix to a stage name (as

this is the DEFINITION of the label; or 2)
as a stage by itself (as in the second appearance of 'tee' above); this
is a REFERENCE of the label. Two simple rules about specifying labels:
the first appearance of a label must be a definition,
any number of following references.

and there may be

The definition of a label only tells you where connections to other
pipelines can be made;
whether they are for

it doesn't tell you how many there are or
input or output to the stage. The number of

connections is determined by the number of references, and the type of
connection is determined by the placement of the references.
you have to check the description of

Further,

or help file to
the stage in the reference manual

stage;
find out what kind of connections are used by that

it is certainly possible to define connections that will never
be used!

I

Pipelines Programming Paradigms: Prefab Plumbing
2. Coding Paradigms page 2.6
--____-__----_------~~---~------~----~----~~------~~~~~~---~~~~~~~~~~~~~~~-

All references to a label are relative to the original definition. If a
reference has more stages to its right, it defines an output from the
original stage (and input to the stages to its right). If a reference
has more stages to its left, it defines an input to the original stage
(and output from the stages to its left). If a reference has stages on
both sides, it defines both an input and an output.

+---+

output: Input: Both:

? label: I I label: ? . . . I label: I . . .

!-----> >----1 I I >------+ +------>
+-T--- +

The streams intersecting at a labeled stage are numbered. The primary
stream'(flowing through the pipe connectors from left to right), is
numbered zero. The alternate input and output streams are each numbered
starting at one.

LOOKUP is a good example to study to understand multi-stream pipes.
LOOKUP reads two input files, and writes matched records to the primary
stream and unmatched records to two additional streams depending on
which input file they came from. So in addition to the primary input
and output it needs a second input defined and two additional outputs
defined.

Start by writing the LOOKUP stage and giving it a label. This defines
where the potential connections may be made. Then in a second pipeline
(after an end character), write a reference to that label to the right
of the source of the second file. To the left of that label, write the
destination of the first set of unmatched records. You have just
defined input stream 1 and output stream 1 to the lookup stage.
Finally, in a third pipeline, begin with another reference to the
label, followed by the destination of the second set of unmatched
records. You have just defined output stream 2. That's all there is to
it.

Pipelines Programming Paradigms: Prefab Plumbing
2. Coding Paradigms page 2.7
-____-_--__-----____~-----~~~~~-----~-~~~-----~~~~~-----~~~~~--~~~~~~~~~~~~

Detail Matches
+------+ +-~----------~+ +-----+

Pipe 1 I < I--->
+-----+ Lookup

-----> 1 > 1
+-----+

+-> --- +

Master Only Master

Pipe 3

Only Detail
+-----+

+---> 1 > 1
+-----+

'PIPE (name LOOKDEMO end ?)', 1 < detail records *' , /* .Read Detail file. 1 lkup: lookup detail' , /* Match the files. 1 > matches file a' , /* Write matches.
'?' , /* End of first pipe. 1 < master records *' , /* Read Master file. 1 lkup:' , /* Route through lookup. ' > master only a , /* Lookup's secondary output:;
'3' , /* End of second pipe. */ 1 lkup:'
') > detail only a' ' /* Lookup's tertiary output.*/

+---

Pipelines Programming Paradigms: Prefab Plumbing

'L-------______----_______________---___---------------------------------~-
Testing Paradigms page 3 1

Section 3

Testing Paradigms

A. ~Console

When you are first learning CMS Pipelines, or when you write a pipeline
that doesn't do what you expect, you can use CONSOLE stages at
strategic points in your pipeline to display the records that flow past
that point in the pipe. The key here is that CONSOLE both displays
records on the console, and passes them along unaltered to the
following stage, if any.

+---

/* Demonstrate use of CONSOLE stage for debugging. */

'PIPE (name CONSDEMO)',
. * . 1 console' 1 split' ' strip' ' console'
. . .

/* Some source for records. */
, /* Display unaltered records.
, /* Split into words.
, /* Remove extra blanks.
, /* Display changes to this point.://

/* Continue processing. */

+

+---+

B. Disk

The DISK stage can be used similarly to CONSOLE to collect the records
passing each point in the pipeline. DISK has the advantage that it can
collect larger quantities of data, and can segregate the output by
directing it to different files. On the other hand, it has the
disadvantage that the relative timing of the different outputs is not
apparent.

Pipelines Programming Paradigms: Prefab Plumbing
3. Testing Paradigms page 3.2
-------__-----_--_____________________-~~---~~~-------~~~-~~~~--~~~~--~~~

/* Demonstrate use of DISK stage for debugging. */

'PIPE (name DISKDEMO)',,
. . . /* Some source for records. */ - 1 disk set1 recs a', /* Display unaltered records. */ 1 split' , /* Split into words. */ I strip'

disk set2 recs a':
/* Remove extra blanks. */ 1 /* Display changes to this point.*/

. . . /* Continue processing. */

+---+

C. Special debugging stages

A handy REXX filter to keep around is one like the following TATTLE:
it reports on the records flowing through it, like CONSOLE does, but
prefixes the data with the stage number, to allow you to identify from
which portion of the pipeline the output came.

/* TATTLE REXX: Report on records passing through. */

'stagenum'
stagenum = rc

Signal On Error

Do Forever /* Do until EOF
'readto record' /* Read from pipe
say 'Stage' stagenum': ' record /* Report record. */
'output' record /* Write to pipe */

End

Error: Exit RC*(RC<>12) /* RC = 0 if EOF */

D. PIPEDEMO

One of the most powerful tools for debugging or demonstrating Pipelines
is the PIPEDEMO EXEC, written by the author of this paper (so you know
that this is an unbiased evaluation!) PIPEDEMO displays a full-screen
animation of the data flowing through your pipeline. Your stages are
shown in portrait format (one stage per line) on the left side of the

Pipelines Programming Paradigms: Prefab Plumbing
3. Testing Paradigms page 3.3
--_-------~------~~~~---~~~~~~~~~~~~~---------------------------~-----~~---

display, and the data that was most recently written by that stage
appears on the right side. The cursor moves to show the currently
executing stage, and the data display is updated every time a new
record is written.

PIPEDEMO can show you how data really flows through your pipeline, and
will demonstrate the order in which the various stages perform their

-tasks. It can illustrate multiple-stream pipelines, asynchronous
pipelines, and most CALLPIPE subroutines.

PIPEDEMO is not part of CMS Pipelines. It is available on the VMSHARE
electronic conference as NOTE PIPEDEMO. It is also available on the
LISTSERV at AWIIMC12. Send the following line to LISTSERV at AWIIMC12
via the TELL command, or as the only line in a mail item:

GET PIPEDEMO PACKAGE

-The file will come as a KNAPSACK archive. If you do not have the DEKNAP
EXEC, also send the LISTSERV the command:

GET CMSPIP-L PACKAGE

If neither of those distribution methods is available to you, PIPEDEMO
can also be found on the 1991 VMWorkshop Tools Tape, which is
distributed by the University of Waterloo for a nominal duplication
fee. For information, contact

Jack Hughes, MC2053 University of Waterloo Department of
Computing Services Waterloo, Ontario Canada N2L 3Gl (519)
888-4621

Pipelines Programming Paradigms: Prefab Plumbing
3. Testing Paradigms page 3.4 --------------------____________________-----------------------------------

cp QUERY NAME -> SLDTEST - DSC , JBTAP -
-split after , -> SLDTEST - DSC ,

strip leading -> SLDTEST - DSC ,
a:' nlocate / DSC/ -> TINEKE - 122E,
spec 1.8 1 -> TINEKE
sort ->
> corm users a ->
count lines ->
spec l-* 1 / corm. users./ next->
pause ->

a: ->-TVM - DSC
spec 1.8 1 -> TVM
sort ->
> disconn users a ->
count lines ->
spec 1-* 1 / dsc. users./ next ->
pause ->

\

ENTER=Resume PFl=Help PF2=Step PF3=Quit PF4=Delay

+ ____________-___---_--

Pipelines Programming Paradigms: Prefab Plumbing
4. Pipeline Paradigms page 4.1

Section 4

Pipeline Paradigms

A. -Locating alternatives - AND

The LOCATE filter is useful for selecting records when the string is
one contiguous sequence of characters. But when you need to select
records that have certain strings in more than one field in the record,
you must use more than one LOCATE filter. Each LOCATE discards the
records that do NOT contain the specified string, so any record that
passes through all of the LOCATE filters must contain ALL of the
specified strings.

+ +---

-/* Fragment to locate records that contain ALL of several */
/* alternatives. */

'PIPE (name ANDDEMO)' ,
. . . /* Some source for records. */ I locate /first/' , /* Select records that have */ 1 locate /second/' , /* all of the required strings,*/ I locate /third/' , /* discard all others.
. . . /* Continue processing.

+---

B. Locating alternatives - OR

Just as frequently, one must select records that have any one of
several strings. The solution for this is to re-examine the stream of
rejected records, which LOCATE directs to its secondary output, for
additional alternatives.

Pipelines Programming Paradigms: Prefab Plumbing
4. Pipeline Paradigms page 4.2
__________-----__-------~~-----~~~~~---------------~------~------~------~--

/* Fragment to locate records that contain ANY of several */
/* alternatives. */

'PIPE (name ORDEMO end ?)I I

. . .
I a: locate /first/' 1 z: faninany'
. . .
‘7 a: ’
1 b: locate /second/' I z: '
'?b: ' 1 c: locate /third/' 1 z: '

, /* Locate first alternative */
, /* Merge all alternatives */

, /* Non-matches go here.
, /* Locate second alternative
, /* Send to primary stream.
, /* Non-matches go here.
, /* Locate third alternative

/* Send to primary stream.

*/
*/
*/

:{

*/

C. Locate ignoring case

The LOCATE filter performs an exact match -- letters must be the same
case as the target to match. If you wish to ignore case, you can simply
translate all records and the search string to upper case. However, if
you also want.to preserve the original mixed-case record, the following
little trick duplicates the data in the records, translates one of the
copies to upper case, then discards that copy after the comparison.
This example handles up to 256 bytes of data, but can handle more if
necessary. The portion copied can be restricted to just the columns
that contain the target, if that is less than the entire record.

/* Fragment to locate records ignoring case.

s = translate(searchstring)

'PIPE (name IGNCASE)'
. . . I specs 1.256 1 1-k 257', /* Make a duplicate of the */ 1 xlate 1.256 upper' data columns, make it */ 1 locate 1.256 /'s'/' upper case, match on */ I specs 257-* 1' the copy, then delete. */

Pipelines Programming Paradigms: Prefab Plumbing
4. Pipeline Paradigms page 4.3
_____------__--------~~~~~------~~~~-------~~~----------------~~------~~~~~

D. Search file for match

A frequent task is to validate an input against a list -- for instance
checking a userid against a list of privileged users. This
pipeline sets a REXX variable to boolean

simple
true or false if the search

value is found in the list.

+. ______________----__---

/* Find input value in list. */

'PIPE (name VALIDATE)' , I < user list *' I strip'
, /* Or load the list from a stem. */
, /* Remove leading blanks. I xlate upper' , /* Upper case for match. t find' value

:{
, /* Search list for matches. I take 1'

*/
, /* Take only first match. I var match' , /* Optionally save matched line. 1 count lines"

:$
, /* l=found, O=not found. I var valid' /* Set boolean variable.

+---

E. Constructing .host commands

A most useful technique is constructing host commands from records in
the pipeline and issuing them via the CP and CMS device drivers. Each
of these drivers can
listfile * * a),

take a single command as an argument (e.g., ems
however their real power lies in their ability to read

their commands from the input stream. The following exec queries the
users linked to a specified virtual disk, and constructs
telling them to reaccess their disk.

messages

Pipelines Programming Paradigms: Prefab Plumbing

41_______---___----_____________________---------------------------~~~~-~~~
Pipeline Paradigms

/* REACCMSG EXEC
/jc Notify users to re-ACCESS a changed disk

Parse Arg vaddr message

'PIPE (name REACCMSG)' I 1 cp q links' vaddr I /* Issue CP command */ 1 split at ,' I /* Get one user per line */
I strip' I /* Remove leading blanks */
1 sort unique l-8' I /* Discard duplicates
1 nfind' userid() I /* Don't msg ourselves. :;
' spec /MSG/ 1' I /* Make MSG commands */

'w 1 nextword' /* Fill in userid
'/Please re-ACCESS you;/ nextw',

*/

'w 2 nextword' r /* Fill in virtual address */
'/disk./ nextword '

,I'Lpmessage'/ nextword':
/* Issue MSG commands */

+---+

F. Read a CMS file into a REXX stem

This is one of the most basic ways to use CMS Pipelines to replace
EXECIO. However, Pipelines can go far beyond EXECIO: you can insert
filters to remove comment lines or columns, select only the records or
columns that the exec needs, and otherwise reduce the amount of work
the exec needs to do (and reduce the amount of REXX code you have to
write!).

One word of warning: if you replace EXECIO in an exec that is using it
to read or write one record at a time in a loop, and simply replace
that with an identical pipeline to read or write one record, you will
find that the exec is much less efficient. This is because EXECIO does
not close the file (unless you tell it to), while Pipelines does.
However, if you rethink the exec to do all the processing of the loop
inside the pipeline, you will probably gain efficiency.

Pipelines Programming Paradigms: Prefab Plumbing
4. Pipeline Paradigms page 4.5 ___----_------~____-~~~~~~~--~~~~~-~~~~~~-~~~~~~-~~~~~--~~~~~-~~~~~~-~~~~--

/* Fragment to load a file into a REXX stem variable. */

'PIPE (name LOADFILE)' , .I <' fn ft fm , /* Read disk file. - 1 nfind *' I 1 /* Optionally remove comments.:;
stem record.' /* Put into RECORD. */

/* RECORD.0 now contains the number of records read.
/* REC0RD.n (0 < n <= RECORD.0) now contains record n.

_ --+ ;

G. Dump REXX variables to a file for debugging

The REXXVARS device driver can find all active REXX variables at the
time that it is called. This makes it very useful for error routines in
your execs. You can
make debugging easier.

dump all variables to the console or a file, to
The following is an ON ERROR routine for an exec

to dump all variables to a file.

Pipelines Programming Paradigms: Prefab Plumbing
4. Pipeline Paradigms page 4.6 _____----__-_------~~~~~----~~~~~~-~-~~~~~~~~--~~~~~~~--~~~~~~----~~~~-----

Error: /* Unexpected nonzero return code.

/* Save the return code

rt = rc

/* Clear any odd ADDRESS and empty the stack.

address command
'DROPBUF 0'

/* Find out our name.

parse source . . $fn $ft $fm .

$dft = left($ft,4,'X')'VARS'

/* Report the error.

say right(sigl,6) '+++I sourceline(sig1)
say 'Error in line' sigl 'of' $fn $ft $fm 'rc =' rt

/* Dump the variables to a file with our name.

'PIPE (name DUMPVARS)' , I rexxvars' , /* Get all REXX variables. 1 drop 1' , /* Get rid of header line. ' spec 3-* 1 / / next', /* Get rid of id chars. I join 1 /= /' , /* Join var names & values. 1 sort' 1 >' $fn Sdft 'a'
, /* Sort by variable name.

/* Write to file.

say 'Variables have been dumped to' $fn $dft 'A'

exit rt

*/

*/

*/

g

:;

*/

; _____________-__---_--

H. Save and restore REXX variables

Sometimes an exec must save its current state to load
This may arise for an exec that

another time.
and

so must stack
must invoke XEDIT for processing,

a call to itself and call XEDIT. Or a service virtual
machine may need to save its state across restarts. These two fragments
illustrate saving all REXX variables to a file and reloading them.

Pipelines Programming Paradigms: Prefab Plumbing
4. Pipeline Paradigms page 4.7
__________---------_____________________~~~~-~~~~~~--~~~~~---~~~~----~~~---

+---

/* Save REXX variables in CMS file.

'PIPE (name SAVEVARS)', , .I rexxvars' , /* Get all REXX variables.
- 1 drop 1' , /* Get rid of header line.

I spec /=/ 1 3-* next', /* Insert delimiters.
I join 1' , /* Join var names & values.
1 > rexx vars a' /* Write to file.

/* Restore REXX variables from CMS file.

'PIPE (name RESTVARS)' , 1 < test vars a'
' 1 varload'

, /* Read variables from file.
/* Create rexx variables.

*/

*/
*/

:;

*/

*/

*/
*/

+---+

I. Load CP SET values into REXX stem

This example illustrates several nice properties of VARLOAD. This exec
returns the values of the individual settings reported by the CP QUERY
SET command. The SPLIT stage divides up the CP response into individual
records for each setting, each. of which will have one word for the
setting name, and one or more words for the value. The SPEC stage
constructs variable names for these settings, using the supplied stem
and the setting name. (So CPSET.MSG may contain values such as ON, OFF,
or IUCV.) VARLOAD then creates the variables, but the argument '1'
tells it to create the variables not in this exec, but in the exec that
called this one. This technique allows you to write procedures that
pass back information this way, much the way the XEDIT EXTRACT command
does.

Pipelines Programming Paradigms: Prefab Plumbing
4. Pipeline Paradigms page 4.8
---------_-_____-----~-~~~~--~-~~--~~~-~~~~~----~~~~~~~-~~~~~~~~~~~~~~~~~

+---

/* CPQSET EXEC: Load CP SET values into REXX stem.
/* Jim Colten, University of Minnesota

Address Command

*/
*/

Arg stem .

If stem = " then stem = 'CPVAR.'

'PIPE (name CPQSET)' , 1 cp QUERY SET' I 1 split ,I 1 spec /='stem'/ 1': 1 word 1 next' , , /=/ next' I
word 2-* nextw' ,

varload 1'

/* Get Q SET output */
/* Split into settings. */
/* Build up stem name, */

delimiters, and */ 5: value for VARLOAD. */

/* Create vars for caller. */

+---

J. Restore CP settings from REXX stem

This example is the inverse of -the previous one. It gathers a set of
variables from the calling exec, changes them into CP commands, and
issues them. The STEM stage is useful for retrieving a REXX stem if the
subscripts are all numeric and sequential, and if the stem.0 element
has been set to the number of valid stems. This illustrates a technique
for selecting an arbitrary set of variables from the environment: the
REXXVARS stage will locate and output every variable in the
environment; selection stages can then be applied to filter out only
those variables of interest.

Pipelines Programming Paradigms: Prefab Plumbing
4. Pipeline Paradigms page 4.9 _______----___------____________________-~~~~~--~~~~~-~~~~~~-~~~~~~-~~~~---

/* CPRESET EXEC: Restore CP variables from REXX stem.
/* Jim Colten, University of Minnesota

Address Command

Arg stem .

If stem = " then stem = 'CPVAR.'

sl = length(stem)

'PIPE (name CPRESET)' I rexxvars 1' I drop 1' I spec 3-* 1'

: /* ALL variable info
, /* Drop source line.
, /* Join name & value,

read 3-* nextword' I i*
find' stem

removing type col.

nfind'
11 , /* Only our stem.

stem'0' , /* Discard a counter
nlocate /ECMODE/' , /* SET ECMODE is BAD!
spec /CP SET / 1' , /* Make CP command,

sl+l'-* next'
cp' : ;: Let CP do reSET

removing stem name.

console' /* Show any CP output.

________________-__-____________________---------------------------------

K. Compute length of records

+

This pipeline fragment will put all records in one REXX stem variable,
and put the length of each record in the corresponding position in
another stem variable.
pipeline,

If you insert a SPLIT filter earlier in the
you can obtain a list of the words in

lengths.
the input with their

+
I

---+

t

/* SIZE EXEC: Fragment to compute record lengths. */

'PIPE (name SIZE)' I
. . . I stem record.' 1 specs l-* v2c 1.2'

, /* Put all records in stem. */
I , /* Make variable-length char*/

specs 1.2 c2d 1 left' , /*
I stem size.'

strings, keep only len.*/
/* Put lengths in stem. */

I

Pipelines Programming Paradigms: Prefab Plumbing
4. Pipeline Paradigms page 4.10
-_-----~~~-_--------~---~----------~~----~~~~--~~~-~-----------------------

L. Using LOOKUP

LOOKUP is a very handy stage for matching files. It reads two input
files and compares them, and writes out the records that match and the
records that don't match. The trick to understanding the following
example.is realizing that the second occurrence of the label 'lkup:'
defines both an input stream and an output stream.

'PIPE (name LOOKDEMO end ?)', 1 < detail records *' , /* Read Detail file. */ 1 lkup: lookup detail' , /* Match the files. */ I > matches file a' , /* Write matches. */ '3' , /* End of first pipe. 1 < master records *' , /* Read Master file. 1 lkup:' , /* Route through lookup. t > master only a , /* Lookup's secondary output:;
'3' , /* End of second pipe. */ 1 lkup:'
' (> detail only a' ' /* Lookup's tertiary output.*/

M. Using DELAY for monitoring

The DELAY stage can be used to do a task at intervals. This exec issues
a system monitoring command every five minutes and logs the response to
a disk file.

+---

/* MONITOR EXEC: Gather statistics
/* Melinda Varian, Princeton :(

'PIPE (name MONITOR)' t literal +5:00' : /* Interval to wait. */ 1 dup *' , /* Repeat wait. */ I delay' , /* Do wait. 1 spec /QUERY TIME/ 1 write', /* Change output into :;
'/QUERY USERS/ 1' two CP commands. 1 cp' : $1 ssue commands. :/'

1 diskslow users file a' /* Record & close file.*/

Pipelines Programming Paradigms: Prefab Plumbing
5. CallPipe Paradigms page 5.1
------~~_--~~--------~~~-~---------------~~---~~--~---~~----~----~---------

Section 5

CallPipe Paradigms

A. -Two pipeline connections

Many typical subroutine pipelines are a packaging of a sequence of
stages, which replace the calling stage with that sequence. As such,
they have a pipeline connector at each end, one to accept records from
the pipeline, and one to direct records back. This simple example
packages the two steps of creating fixed-length records.

f---

;* FIXED REXX: Make fixed length records.

arg length .

*/

'callpipe (name FIXED)', /* Add subroutine pipeline. */ 1 *: ' I /* Get records from main pipe*/ 1 chop' length I /* Chop off the long ones. */ 1 pad' length r /* Pad out the short ones. */ I *: ' /* Put back into main pipe. */

B. One pipeline connection

Some subroutine pipelines only insert data into a pipeline, or only
take data from the pipeline; in these cases the pipeline has only a
single connector to the main pipeline. You may need this if the stage
is intended to only be a sink or source for records, which would only
appear as the first or last stage of a pipeline. Alternately, it may be
part of a REXX filter that reads or writes the pipeline with READTO and
OUTPUT, and uses the subroutine pipeline for the other connection (see
section 'Read contents of a list of files into the pipeline' for an
example).

Pipelines Programming Paradigms: Prefab Plumbing
5. CallPipe Paradigms page 5.2
----__--------___--

/* GETNAMES REXX: Search NAMES file for matches. */

parse arg criterion

+callpipe (name GETNAMES)',
command NAMEFIND' criterion ':USERID :NAME (TYPE *' ,

11 spec l-* 1.8' , /* Combine userid and */
read l-* 10' I name in 1 record.

q -k:' ;r Write to pipe

+---

C. No pipeline connections

A pipeline segment created with CALLPIPE need not have any
intersections with'the main pipeline. This can be useful to simply take
advantage of pipeline builtin stages to process data within the REXX
stage.

/* How many reader files do we have? */

'callpipe (name QFILES)', I cp QUERY FILES' , /* Query number of files. */ I spec word 2 1' , /* Take only number. 1 change /NO/O/' , /* Make always numeric. 1 var nfiles' /* Put in REXX variable.

D. Multiple pipeline connections - multiple streams

A subroutine pipeline can define multiple input and output streams,
which may be connected to the calling pipeline through the use of
labels on the calling stage. The stream number is supplied on the
connector, with zero being the number of the primary stream, one the
number of the secondary, and so on. The following example writes the
list of currently connected users to the primary stream, and the list
of disconnected users to the secondary stream. Following this is a
sample of how you might call it, sorting each output stream separately
and labeling them. However, you are not required to connect the
secondary output stream; if it is not connected, it is simply not used
and the records are discarded.

I

Pipelines Programming Paradigms: Prefab Plumbing
5. CallPipe Paradigms page 5.3
__------~~__-_------~~~--~------------~~----~~~-------~~-------------------

---+

/* QNAMES REXX: write connected users to primary stream, */
/? disconnected users to secondary stream. */

‘callpipe (name QNAMES‘end ?)' ,
p-8tiOO6 QUERY NAMES' , /* Query all users. */

split at ,' I /* One user per line. */
strip' I /* No extra blanks. */
nlocate /LOGN/'
dsc: nlocate / DSC/' :

/* Get rid of LCGNxxx. */
/* Keep connected users. */

spec l-8 1' I /* Keep only the userid. */
* 0:'
dsc:'

I /* Send to primary stream*/
I /* Disconn users here. */

spec l-8 1' I /* Keep only the userid. */
* 1:' . . /* Send to secondary. */

/* LISTUSER EXEC: List connected & disconnected users. */

'PIPE (name LISTUSER end ?)I, I x: qnames' , /* Generate streams. */ 1 sort' , /* Sort first stream. */ , join 7 / /' , /* Put 8 per line. */ 1 literal Connected:' , /* Label the display. */
I console' , /* Put on console. */
'? x:' , /* Second stream here. */ 1 sort' , /* Sort second stream. */ 1 join 7 / /' , /* Put 8 per line. */ 1 literal Disconnected:' , /* Label the display. */ I console' /* Put on console. */

+---

E. Pass stream through unchanged

Sometimes you want to want to pass records through a subroutine
unchanged, but your processing must make temporary changes. Rather than
attempting to preserve and restore the records, this technique passes
through the main stream unchanged, and duplicates records to a
secondary stream that can be altered. This example would be used in an
XEDIT macro to insert records in the file after the current line.

Pipelines Programming Paradigms: Prefab Plumbing
5. CallPipe Paradigms page 5.4
__--____-----_-_____-----~~~~~~~-~~~~~---~~~------~~~~~~~~~~~~~~~~~~~~~~~~~

/* XI REXX: Xedit insert
/-* John Hartmann 30 Jan 1989 18:35:31

signal on novalue

~~ /* If XEDIT's linend is turned on, translate that
/* character to blanks, because it can't be input.

address xedit 'extract /linend/'
If linend.l='ON'

then xlate='lxlate *--*I c2x(linend.2) 'space'
else xlate="

'callpipe (name XI end ?)' ,
I*: ' , /* Accept input from calling pipe.
' f: fanout' , /* Duplicate to secondary stream. 1 *: ' , /* Pass records back to pipeline.
'?f:'

xlate : /* Translate if necessary. t change //i /' , /* Convert to Insert commands. I subcom xedit' /* Pass to XEDIT.

+--- .+

Pipelines Programming Paradigms: Prefab Plumbing
6. Filter Paradigms page 6.1

Section 6

Filter Paradigms

A. -NULL

This is the basic 'do nothing' pipeline filter, which everyone should
keep around as a starting point for writing any new filters. The
expression on the last line is itself an idiom, which returns zero if
RC is equal to either zero or twelve, and otherwise returns the value
of RC. Use 'signal on error' to end the loop if you don't issue many
host commands that may have valid non-zero return codes, otherwise be
sure you test the return code from both READTO and OUTPUT to leave the
loop.

-/* NULL REXX: Dummy pipeline filter */

Signal On Error

Do Forever
'readto record'
'output' record

End

/* Do until EOF */
/* Read from pipe */
/* Write to pipe */

Error: Exit RC*(RC<>12) /* RC = 0 if EOF */

+--- +

B. Non-Delay

Pipelines Programming Paradigms: Prefab Plumbing
6. Filter Paradigms page 6.2 ____-__-------------____________________-~~~~---~~~~--~~~~---~~~----~------

+-

/* NONDELAY REXX:

Signal On Error

Dummy pipeline filter */

vpeekto record'
~~ Do Forever

'output' record
'readto record'
'peekto record'

End

/* Prime the loop. */
/* Do until EOF */
/* Write to pipe
/* Release record. :;
/* Get next record. */

Error: Exit RC*(RC<>12) /* RC = 0 if EOF */

; --+

C. Summary

The final basic type of filter reads records continuously, but does not
write any records until end-of-file is
writes

and then
a single record summarizing

reached on the input,

filter.COUNT works in this fashion.
the input records. The builtin

/* SUMMARY REXX:

count = 0

Dummy pipeline filter */

Do Forever
'readto record'
if rc <> 0 then leave

/* Do until EOF
/* Read from pipe :;
/* Leave on EOF.

/* Summarize the records here.
count = count + 1

End
/* For example.

ig

'output' count /* Write summary. */

Error: Exit RC*(RC<>12) /* RC = 0 if EOF */

+---

I

Pipelines Programming Paradigms: Prefab Plumbing
6. Filter Paradigms page 6.3
__----___--~~--------~~~-~----~-----~----~~~--~~~-~---~~---~~---~~----~---~

D. Circumventing the REXX 500-character limit

REXX has a limit of 500 characters per clause, which can prevent you
from entering a complex pipeline as a single string. If you store
portions of the pipeline as variables, you can circumvent that limit.

+---

part1 = 'stagel' , I stage2' , I stage3'

part2 = ' stage4' , 1 stage5' , I stage6'

'PIPE' part1 part2

I +-~---

E. EXEC & Filter in same file

Sometimes to keep the number of files down, one wishes to package both
a pipeline and a filter called by the pipeline in the same exec. There
are two techniques for doing this, both of which follow. The first uses
the REXX stage to call a file with filetype of EXEC as a filter, the
second EXECLOADs the exec with a filetype of REXX before calling it.

Pipelines Programming Paradigms: Prefab Plumbing
6. Filter Paradigms page 6.4 ____----____-----_______________________--~~~~----~~~-----~------~~-----~~~

; _____________---__--

/* First demonstration of pipeline and filter in a single file */

parse source . . $fn $ft . . how .

I-f how='?' then do
'output Hello world! (From a dual-path REXX.)'

end
else do

'PIPE (name HELLO)'

:I
rexx (' $fn $ft ')' :
console'

end

exit RC

//* Second demonstration of pipeline and filter in a single file */

parse source . . $fn $ft . . how .

If $ft = 'REXX' then do

end
'output Hello world! (From a dual-path REXX.)'

else do
'EXECLOAD' $fn $ft '*I $fn 'REXX'

'PIPE (name HELLO)' ,
Sfn

f 1 console'
I

'EXECDROP' $fn 'REXX'
end

exit RC

+---

F. Using INTERPRET to apply a REXX function to each record

This useful
through it.

stage can apply any
For instance, pipe . . .

REXX function to each record passing
I applyfn reverse(record) (. . .

Pipelines Programming Paradigms: Prefab Plumbing
6. Filter Paradigms page 6.5
__-----~~~-------_------~--~~~-----~-----~----~~~-~~---~~~----~-----~---~~~

+---

/* APPLYFN REXX: Apply a REXX function to each record */
/? John Lynn, Mobil */

Arg function
Signal On Error

/* The entire loop following is interpreted with the
/* function passed as an argument.

Interpret '
Do forever;

'readto record';
'output' "function";

End"

*/
*/

Error: Return RC*(RC<>12)

,+

+---+

G. Read contents of a list of files into the pipeline

This stage reads a list of file names from its input, and writes the
contents of those files to its output. For instance, one way (though
not the best way) to find out many lines of execs you have written:

pipe ems listfile * exec a 1 readfile I count lines I console

This example also illustrates that you can combine READTO and CALLPIPE
in a single stage, that CALLPIPE can be called multiple times from one
stage, that you can substitute another source of records for those
flowing into the stage.

READFILE is built in to later releases of Pipelines as the GETFILES
stage.

Pipelines Programming Paradigms: Prefab Plumbing
6. Filter Paradigms page 6.6
____ ____________----_---____________________~~--~~~---~~----~----------

-+ +---

/* READFILE REXX:

$

Send contents of files into the pipe
after processing with the filter :;
passed as an argument */

/*-Input: filenames; Output: (modified) contents of the files */

Signal On Error

Do Forever
'readto record'

/* Do until get EOF */
/* Get next input record

Parse Var record fn ft fm .
*/

/* Break out file name */

/* Invoke pipeline

End

/* Put file into stream. :;
/* Connect into main pipe */

Error: Exit RC*(RC<jl2) /* RC = 0 if EOF */

Pipelines Programming Paradigms: Prefab Plumbing
7. A Simple Service VM page 7.1 ____----______-----_____________________-----------------------------------

Section 7

A Simple Service VM

This description of the implementation of a service machine using Pipes was
written by Melinda Varian of Princeton University:

Several people have asked
Pipes, to show a way of
STOP.

me to post a small service
using 'delay',

machine implemented in
'starmsg', 'immcmd', and PIPMOD

A. GETCMD REXX

The guts of the server are hidden in a single subroutine called GETCMD,
-which receives all classes of input, combines it with the FANINANY

stage and routes it to the main pipeline.

Commands typed on the virtual machine console
'immcmd' stages. If a SHUTDOWN command is typed,

are trapped by the
then a PIPMOD STOP

command is given to CMS to stop the pipeline. If a CP command is typed,
then it is given to CMS to pass to CP. If a command intended for the
server' (prefaced by 'CMD') then it is sent
'faninany'

is typed, through the
stage and the connector into the calling pipeline.

Commands SMSGed from other virtual machines are received by the
'starmsg' stage and are also fanned in and sent
to the calling pipeline.

through the connector

Messages generated by the arrival of spool files are trapped by the
same 'starmsg' (all kinds of messages have been set to IUCV), so they
also go to the calling pipeline.

A 'literal' stage fires once when
sends a

the pipeline is first invoked. This
'primer' line into the calling pipeline to get it to start

processing.

Timer interrupts are generated by
feeds a line into GETCMD each time

a subroutine called DELAYCMD, which
it has done something for which the

main (calling) pipeline should be wakened.
and sends them through the connector to

(GETCMD fans those lines in

with everything else.)
the caller, just as it does

Pipelines Programming Paradigms: Prefab Plumbing
7. A Simple Service VM page 7.2
__-------------__----~~~----~~~~--~~~~---~~~~~-~~~~---~~----~~---------~~--

_-______---_-------_---

/* GETCMD REXX */

Signal On Syntax

primer = '00000004* RDR FILE **** FROM'

'callpipe (end ?)'
'1 immcmd CMD' 1 /* Immediate commands */ I
I
I

‘3’

:I
‘?’

I

I

‘7’

I

1

‘7’
I

I

I

‘7’
I

1

I

spec /00000004*/ 1.16 l-* next', ;* As if SMSG from self *j
f: faninany' , /* Join all commands */
: ' I , / Pass to caller */

starmsg' : /* Listen for SMSGs
f:' , /* Pass to caller :{

literal' primer 'startup' : /* Prime the pipeline */
f:' , /* Pass to caller */

delaycmd'
f:'

immcmd CP'
spec /CP/ 1 l-* 4'
subcom ems'

immcmd SHUTDOWN'
spec /PIPMOD STOP/'
subcom ems'

1 /* Repetitive cmds. */
, /* Pass to caller */

: /*I mmediate CP command */
, /* Build command
, /* Pass to CMS :<

: /* SHUTDOWN command */
, /* Build PIPMOD STOP

/* Pass to CMS

B. DELAYCMD REXX

Here's a portion of DELAYCMD:

Pipelines Programming Paradigms: Prefab Plumbing
7. A Simple Service VM page 7.3
---------_------_------~-----~-----~~~~~----~~-----------~----~~~--~~~~~~~~

+- ---+

i-

.I. pipe (end ?)'
literal +24:00:00' : /* Once per day
dup *'
literal 23:00:00'

, /* Repeat interval.
, /* At llpm daily

delay' , /* Do the wait.
spec /CHANGE RDR CLASS K NOHOLD/', 1
g?ocate /NO/'

, /* Release Class K files
, /* Forget it if no files

spec /'primer'/ 1 '
/ class k delay/ next'

f: faninany'
*:I I

: /* Fake file arrival
, /* Join all messages
, /* Pass to GETCMD

*/
*/

:;

:;

*/

:;
I

literal +240:00' , /* Four-hour interval */ 1 dup *' I I delay' 1 spec /CHANGE RDR CLASS J NOHOLD/', I cp' , /* Release Class J files */ I nlocate /NO/’ , /* Forget it if no files */ I spec /'primer'/ 1 '

1; f:'
/ class j delay/ next' : /* Fake file arrival

, /* Pass to GETCMD
'3' ,

. . .

C. Main pipeline

+

Thus, the main pipeline starts out by invoking GETCMD;
from GETCMD, arriving

all its input
comes in whatever order the various events
(reader files, console commands, timer-driven events,
occur and whenever they

SMSGed commands)
occur.

extensive decoding
The rest of the pipeline is simply an

network that looks at the single record received
from GETCMD for each event and decides what action to take in each
case.

'pipe (end ?)I,
'getcmd 1 I,
. . .

